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Abstract

This manuscript introduces the notion of merged-log-concavity for rational functions. We then present
new results on q-binomial coefficients and unimodal sequences of real values of rational functions, extending
q-multinomial coefficients and the Cauchy–Binet formula. The notion is modeled over the q-log-concavity
of Stanley for polynomials.

We construct explicit merged-log-concave rational functions, extending the infinite products (±t;q)∓1
∞ =

∏i≥1(1± tqi−1)∓1 by polynomials with positive integer coefficients. We derive almost strictly unimodal
sequences of rational functions from the merged-log-concavity and Young diagrams. We then study critical
points on the almost strictly unimodal sequences. In particular, we obtain the golden ratio of quantum
dilogarithms and q-exponentials as a critical point. Also, we consider some eta products and generalized
Narayana numbers by the extended q-multinomial coefficients.

In statistical mechanics, we discuss the grand canonical partition functions of certain ideal boson
and fermion gases with or without Casimir energies (Ramanujan summation). The merged-log-concavity
identifies particle-emergence phase transitions in Helmholtz free energy vacua through critical points such
as the golden ratio.

1 Introduction
The notion of unimodal sequences includes increasing, decreasing, or hill sequences of real numbers. As
such, the notion is essential in mathematics. Also, there are log-concavities for polynomials [ALGV, BraHuh,
But, New, Sag, Sta], which give unimodal sequences. We introduce the notion of merged-log-concavity for
rational functions. To study the notion, we extend q-multinomial coefficients and the Cauchy–Binet formula.
This not only gives q-polynomials with positive integer coefficients, but also the continuous variation of
unimodal sequences of real values of rational functions. Furthermore, we obtain the golden ratio and the other
metallic ratios as critical points of the variation. These critical points then give statistical mechanical phase
transitions of ideal boson and fermion gases.

To give an idea of the merged-log-concavity, we consider q
1
2 -polynomials fm(q

1
2 ) = q

m2
2 of m ∈ Z≥0.

They are not q
1
2 -log-concave [But, Sta], since they never give q

1
2 -polynomials with positive integer coefficients

by

f 2
m − f 2

m−1 f 2
m+1 = qm2 −qm2+1. (1.0.1)
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However, we obtain the q
1
2 -polynomial with the positive integer coefficient by

(1−q)(1−q2)

˜

ˆ

f1

1−q

˙2

− f0

1
· f2

(1−q)(1−q2)

¸

= q. (1.0.2)

We realize q-Pochhammer symbols (m)q := ∏1≤i≤m(1−qi) in the above. We then introduce the merged-log-
concavity for Qm(q

1
2 ) = fm

(m)q
, which merges Q2

1 −Q0Q2 and (2)q into q. Also, the merged-log-concavity

gives the variation of unimodal sequence Qm(h) for 0 < h = q
1
2 < 1 in Figure 1. The golden ratio h = −1+

?
5

2
is the critical point of the variation, as it separates hill sequences from strictly decreasing sequences.
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Figure 1: Qm(h) of h = 0.4 (bottom), h = −1+
?

5
2 (middle), and h = 0.8 (top)

The generating function of Fm gives (tq
1
2 ;q)−1

∞ [Eul], i.e.,

(tq
1
2 ;q)−1

∞ = ∏
i≥1

(1+ tq
1
2 qi−1)−1 = ∑

m≥0
Fmtm.

We also obtain the merged-log-concavity for the quantum dilogarithms and q-exponentials (±tqλ ;q)∓1
∞

of λ ∈ Q, where double-sign corresponds. These (±tqλ ;q)∓1
∞ have been heavily studied in mathematics

and physics. Therefore, the merged-log-concavity provides a framework that generalizes (±tqλ ;q)∓1
∞ by

polynomials with positive integer coefficients and the variation of unimodal sequences. We then discuss
explicit examples with open conjectures.

For further discussion, we begin by recalling the fundamental definitions of unimodality and log-concavity
for sequences of real numbers.
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1.1 Unimodality and log-concavity of real numbers
For Ẑ=Z∪{∞} and s1,s2 ∈ Ẑ, let Js1,s2K= {i ∈ Z | s1 ≤ i ≤ s2} and Js2K= J1,s2K throughout. For example,
J∞K= Z≥0. Suppose a family F = pFi ∈Uiqi∈I ∈ ∏i∈I Ui for an index set I and a set Ui. If I ⊂ Z is an interval,
then F is a sequence of the length #(I) ∈ Ẑ, i.e., the number of elements in I. If I = Js2K and s2 ∈ Z≥1, then
F = (F1, . . . ,Fs2) is a tuple.

Definition 1.1. Suppose a sequence r = pri ∈ Rqi∈Js1,s2K.

1. The sequence r has a step if ri < r j for some i, j ∈ Js1,s2K.

2. The sequence r is unimodal if rs1 ≤ . . . ≤ rδ ≥ rδ+1 ≥ . . . for some δ ∈ Ẑ such that s1 ≤ δ ≤ s2. In
particular, r is a hill if such δ ∈ Js1 +1,s2 −1K.

3. When the sequence r is unimodal, r is two-sided if r has both increasing and decreasing steps, and r is
one-sided if r has either increasing steps or decreasing steps, but not both.

4. The sequence r is log-concave if r2
i − ri+1ri−1 ≥ 0 for each i ∈ Js1 +1,s2 −1K.

For example, consider an infinite-length r = pri ∈ Rqi∈J0,∞K. First, suppose that r is unimodal. Then, δ = 0,
δ ∈ J∞K, and δ = ∞ give a decreasing sequence r0 ≥ r1 ≥ r2 ≥ . . . , hill sequence r0 ≤ . . .≤ rδ ≥ rδ+1 ≥ . . . ,
and increasing sequence r0 ≤ r1 ≤ r2 ≤ . . . , respectively. We observe that there are one-sided hill sequences
such that r0 ≤ . . .≤ rδ = rδ+1 = . . . and r0 < rδ .

Second, suppose that r is log-concave and all its terms are positive. Then, r is unimodal by r1
r0
≥ r2

r1
≥ . . . .

1.2 q-log-concavity and strong q-log-concavity of polynomials
Unless stated otherwise, let q be an indeterminate. We recall the q-log-concavity and strong q-log-concavity,
on which we model the merged-log-concavity. By q-polynomials Q[q], Laurent q-polynomials Q[q±1], and
q-rational functions Q(q), we adopt the following binary relations.

Definition 1.2. Suppose f ,g ∈Q(q).

1. Let f ≥q g if f ,g ∈Q[q] and f −g ∈ Z≥0[q]. Also, f >q g if f ≥q g and f −g ̸= 0.

2. Let f ≥q±1 g if f ,g ∈Q[q±1] and f −g ∈ Z≥0[q±1]. Also, f >q±1 g if f ≥q±1 g and f −g ̸= 0.

Stanley and Sagan have introduced the following notions of q-log-concavity and strong q-log-concavity
for polynomials [But, Sag]. These notions have been studied intensively [Bre, Sta], but have not been extended
to rational functions.

Definition 1.3. Suppose f = p fi(q) ∈ Z≥0[q]qi∈Z.

1. The sequence f is q-log-concave if fi(q)2 − fi−1(q) fi+1(q)≥q 0 whenever i ∈ Z.

2. The sequence f is strongly q-log-concave if fi(q) f j(q)− fi−1(q) f j+1(q)≥q 0 whenever j ≥ i.

Suppose a q-log-concave p fi(q) ∈ Z≥0[q]qi∈Z such that fi(q) >q 0 for each i ∈ Z≥0. Then, we have
unimodal p fi(r) ∈ R>0qi∈Z≥0

for r ∈ R.
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1.3 Merged-log-concavity of rational functions
We introduce the merged-log-concavity of rational functions, using the following q-analogs as foundational
elements.

Definition 1.4. Let a be an indeterminate.

1. For each n ∈ Ẑ≥0, we have the q-Pochhammer symbol (a;q)n = ∏i∈JnK(1 − aqi−1) if n ≥ 1 and
(a;q)n = 1 if n = 0. Let (n)q = (q;q)n in our convention.

2. For each n ∈ Z≥1, we have the q-number [n]q = ∑i∈JnK qi−1 and q-factorial [n]!q= ∏i∈JnK[i]q. As
special cases, [0]q = 0 and [0]!q= 1.

We use the notation (n)q = (q;q)n for the q-Pochhammer symbol, as indices n become involved in several
contexts, such as (1−yl−i+1)q. Also, the q-Pochhammer symbol notation (n)q is consistent with the q-number
notation [m]q.

We adopt the following notations for family-to-family and family-to-scalar comparisons.

Definition 1.5. Consider λ ∈ R∪{±∞}. Suppose families F = pFi ∈ Rqi∈I and F ′ = pF ′
i ∈ Rqi∈I .

1. Let F ≥ F ′ (or F > F ′) if each Fi ≥ F ′
i (or Fi > F ′

i ).

2. Let F ≥ λ (or F > λ ) if each Fi ≥ λ (or Fi > λ ). Let F ≤ λ (or F < λ ) if each Fi ≤ λ (or Fi < λ ).

3. Let F = λ if F ≤ λ and F ≥ λ .

We call F positive if F > 0, negative if F < 0, and zero if F = 0. Similarly, we call F non-negative if F ≥ 0
and non-positive if F ≤ 0. Also, let |F |= p|Fi| ∈ R≥0qi∈I .

Also, we adopt the following notations for tuples.

Definition 1.6. Let d ∈ Z≥1.

1. Consider sets V1, . . . ,Vd and a∈∏i∈JdKVi. Then, let a∨= pa∨i = ad−i+1qi∈JdK = pad , . . . ,a1q∈∏i∈JdKVd−i+1
for the flip of a.

2. Consider a set U and u ∈U. If λ ⊂ JdK, then let ιλ (u) ∈ ∏i∈λ U such that ιλ (u)i = u for each i ∈ λ .
Also, let ιd(u) = ιJdK(u) = pu, . . . ,uq ∈Ud =U × . . .×U = ∏i∈JdKU.

We consider q-numbers and the change of variable q 7→ qρ for ρ ∈ Z≥1. This gives the following.

Definition 1.7. Let λ ∈ Z, ρ ∈ Z≥1, and φ(q) ∈Q(q) such that φ(q) ̸= 0. We define the base shift function

b(λ ,φ ,ρ,q) =


φ(qρ)λ [λ ]!qρ

φ(q)λ [λ ]!q
if λ ∈ Z≥0,

0 otherwise.

In particular, let bλ ,ρ(q) = b(λ ,1−q,ρ,q).

We state the following, as we are interested in q-polynomials with positive integer coefficients.

Lemma 1.8. Suppose an irreducible φ(q) ∈ Q[q] such that φ(0) = 1. Then, the following statements are
equivalent.

4



1. b(λ ,φ ,ρ,q)>q 0 whenever λ ∈ Z≥0 and ρ ∈ Z≥1.

2. φ(q) = 1−q.

When φ(q) = 1−q, we have b(λ ,φ ,ρ,q) = bλ ,ρ(q) =
(λ )qρ

(λ )q
. By these q-Pochhammer symbols, we give

the notions of ring shift factors, merged determinants, parcels, and the merged-log-concavity. The ring shift
factors extend 2×2 determinants to the merged determinants. We then define the merged-log-concavity of
the parcels, which are families of rational functions. Definition 1.9 is a simplified version of Definition 6.1,
which allows φ(q) such as φ(q) = 1 and the merged-log-concavity of parcels of finite positive terms.

Definition 1.9. Suppose u−1,ρ, l ∈ Z≥1. Also, suppose w ∈ Zl
≥0 and a,b ∈ Z2l .

1. Let L(a,b),R(a,b) ∈ Zl such that L(a,b)i = bi − ai and R(a,b)i = bl+i − al+i for i ∈ JlK. Also, for
each F = pFm(qu) ∈Q(qu)qm∈Zl , let

det(F ,a,b) = det
„

FL(a,b) FR(a∨,b)
FL(a∨,b) FR(a,b)

ȷ

.

2. In Q(qu), we define the ring shift factor

ϒ(l,w,ρ,a,b,q) =


∏

i∈JlK

(bi)
wi
qρ (bl+i)

wl−i+1
qρ

(ai)
wi
qρ (al+i)

wl−i+1
qρ

if a,b ≥ 0,

0 otherwise.

We call ρ the base shift parameter of ϒ(l,w,ρ,a,b,q). Furthermore, for each F = pFm(qu) ∈Q(qu)qm∈Zl ,
we define the merged determinant

∆(F )(l,w,ρ,a,b,q) = ϒ(l,w,ρ,a,b,q) ·det(F ,a,b) ∈Q(qu).

3. Suppose a family f = p fm ∈Q(qu)qm∈Zl such that fm >(qu)±1 0 if m ≥ 0 and fm = 0 otherwise. Then,
we define the parcel F = Λ(l,w, f ,q,u) = pFm ∈Q(qu)qm∈Zl such that

Fm =


fm

∏i∈JlK (mi)
wi
q

if m ≥ 0,

0 otherwise.

We refer to l, w, f , and q as the width, weight, numerator, and base of the parcel F .

4. For a,b ∈ Z2l , we call pl,a,bq fitting if it satisfies the following inequalities:

a ≤ b;
b1 ≤ . . .≤ bl < bl+1 ≤ . . .≤ b2l ;

0 ≤ a1 ≤ . . .≤ al < al+1 ≤ . . .≤ a2l .

Then, we call F = Λ(l,w, f ,q,u) ρ-merged-log-concave (or merged-log-concave for simplicity) if each
fitting pl,a,bq satisfies

∆(F )(l,w,ρ,a,b,q)>(qu)±1 0.
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On Definition 1.9, we make a few comments.

• A parcel F is a family of rational functions in Q(qu) with parcel parameters. We consider F = G for
parcels F and G when they are the same families of rational functions. However, in most cases, parcel
parameters are clear in the context, as we specify them.

• As ϒ(l,w,ρ,a,b,q) = 1 if w = 0, merged determinants generalize 2× 2 determinants by ring shift
factors. We adopt the term “ring shift factors”, since we study ∆(F )(l,w,ρ,a,b,q) ∈Q[(qu)±1] by the
merged-log-concavity for rational functions Fm ∈Q(qu).

• We adopt the term “merged determinants” for ∆(F )(l,w,ρ,a,b,q), as they merge ϒ(l,w,ρ,a,b,q) and
det(F ,a,b) into polynomials with positive integer coefficients.

1.4 Monomial indices
By the following notion, we construct explicit merged-log-concave parcels.

Definition 1.10. Let l ∈ Z≥1, w ∈ Zl
≥1, and γ ∈ ∏i∈JlKQ3. We call υ = pl,w,γq a monomial index if

2γi,1 ∈ Z for each i ∈ JlK, (1.4.1)

0 ≤ 2 ∑
j∈JiK

γ j,1 ≤ ∑
j∈JiK

w j for each i ∈ JlK. (1.4.2)

We call l, w, and γ the width, weight, and core of υ . We refer to (1.4.1) and (1.4.2) as the integer monomial
condition and the sum monomial condition of υ .

We use these monomial indices by the following quadratic polynomials and binary relations.

Definition 1.11. Suppose l ∈ Z≥1, γ ∈ ∏i∈JlKQ3, and α ∈ Zl
≥1 with δ = gcd(α1, . . . ,αl).

1. Let tγi(z) = γi,1z2 + γi,2z+ γi,3 ∈Q[z] for each i ∈ JlK.

2. Let tα,γ : Zl →Q such that tα,γ(m) = ∑i∈JlK αitγi(mi) for each m ∈ Zl .

3. Let uα,γ =
δ

λ
∈Q for the lowest λ ∈ Z≥1 such that tα,γ (m)

uα,γ
∈ Z for each m ∈ Zl

≥0.

4. Let Uα,γ,q = {quα,γ}. Then, on Q(Uα,γ,q), let

>α,γ,q =>quα,γ and ≥α,γ,q=≥quα,γ if tα,γ(m) ∈Q≥0 for each m ∈ Zd
≥0,

>α,γ,q =>q±uα,γ and ≥α,γ,q=≥q±uα,γ otherwise.

For simplicity, let tγ = t
ι l(1),γ and uγ = u

ι l(1),γ .

Assume a monomial index pl,w,γq. For each m ∈ Zl , let

fγ,m(q) =

{
qtγ (m) if m ≥ 0,
0 otherwise.

We define the monomial parcel Fw,γ,q = Λ(l,w, fγ(q),q,uγ) such that each m ∈ Zl
≥0 satisfies

Fw,γ,q,m =
qtγ (m)

∏i∈JlK(mi)
wi
q

∈Q(quγ ).

Then, we have the following merged-log-concavity of monomial parcels.
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Theorem 1.12 (Theorem 8.40). Let ρ ∈ Z≥1. Then, every monomial parcel Fw,γ,q is ρ-merged-log-concave.
In particular, each fitting pl,a,bq satisfies

q−tγ (L(a,b))−tγ (R(a,b))∆(Fw,γ,q)(l,w,ρ,a,b,q)>q 0.

Unless stated otherwise, we assume the following simplification in the rest of Section 1:

• l = 1 and the width of each parcel is l;

• Fγ,q = Fp1q,γ,q;

• F =
`

Fm = Fpmq ∈Q(qu)
˘

m∈Z for each parcel F = Λ(l,w, f ,q,u).

We deduce γ1,1 =
1
2 or 0 for Fγ,q by the monomial conditions of (1,(1),γ). Consequently, Fγ,q give

Fpp0,γ1,2,γ1,3qq,q,m =
qγ1,2m+γ1,3

(m)q
, or

Fpp 1
2 ,γ1,2,γ1,3qq,q,m =

q
m2
2 +γ1,2m+γ1,3

(m)q
.

We call Fpp0,γ1,2,γ1,3qq,q and Fpp 1
2 ,γ1,2,γ1,3qq,q qγ1,2-linear and q

1
2+γ1,2-quadratic (or linear and quadratic

for simplicity), since qγ1,2

(1) q
=

F
pp0,γ1,2 ,γ1,3qq,q,1

F
pp0,γ1,2 ,γ1,3qq,q,0

and q
1
2 +γ1,2

(1)q
=

F
pp 1

2 ,γ1,2 ,γ1,3qq,q,1
F

pp 1
2 ,γ1,2 ,γ1,3qq,q,0

. In particular, for the q
1
2 -linear

and q
1
2 -quadratic monomial parcels, we define

L = Fpp0, 1
2 ,0qq,q, (1.4.3)

Q = Fpp 1
2 ,0,0qq,q. (1.4.4)

Then, equation (1.0.2) provides a merged determinant of Q in Theorem 1.12 for a = p0,1q and b = p1,2q.

1.5 Parcel convolutions and an extended Cauchy–Binet formula
Consider parcels F and G such that multiplying the generating functions of F and G becomes the generating
function of a parcel. We then discuss the parcel convolution F ∗G by the generating functions and Toeplitz
matrices of F and G . Cauchy–Binet formula writes the minors of a matrix product AB by those of A and B.
Also, merged determinants extend 2×2 determinants by the ring shift factors.

Therefore, in Theorem 15.11, we extend general minors and the Cauchy–Binet formula of a general
matrix product AB to write the merged determinants of F ∗ G by those of F and G . This gives the
merged-log-concavity of parcel convolutions.

Furthermore, we define the notion of multimonomial indices to consider explicit parcel convolutions.

Definition 1.13. Let d ∈ Z≥1, w ∈ Z1
≥1, α,β ∈ Zd

≥1, and γ ∈ ∏i∈JdKQ3. If p1,w,pγiqq is a monomial index
for each i ∈ JdK, then we call

µ = pd,w,α,β ,γq

a multimonomial index. We refer to d, w, α , β , and γ as the depth, weight, inner-exponent, outer-exponent,
and core of µ . In particular, if β = ιd(1), then we call

pd,w,α,γq

a reduced multimonomial index (or a multimonomial index for short).
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We now define the following q-monomials by multimonomial indices.

Definition 1.14. Consider a multimonomial index pd,w,α,γq. Let

ψα,γ,q =
`

ψα,γ,q, j ∈Q(quα,γ )
˘

j∈Zd

such that

ψα,γ,q, j =

{
qtα,γ ( j) if j ≥ 0,
0 otherwise.

Furthermore, we discuss the change of variable q 7→ qρ for ρ ∈ Z≥1. Hence, we define the following
weighted q-multinomial coefficients, extending q-multinomial coefficients. For d ∈ Z≥1 and α ∈ Zd

≥1, let
lcm(α) and gcd(α) denote the least common multiple and greatest common divisor of α1, . . . ,αd .

Definition 1.15. Let d ∈ Z≥1, α ∈ Zd
≥1, and δl = lcm(α). Suppose i ∈ Z and j ∈ Zd . Then, we define the

weighted q-multinomial coefficient:

„

i
j

ȷ

α,q
=


(i)qδl

∏λ∈JdK( jλ )qα
λ

if j ≥ 0 and ∑
λ∈JdK

jλ = i,

0 otherwise.

If δl = 1, then let
“ i

j

‰

q
=

“ i
j

‰

α,q
for the q-multinomial coefficient. If k ∈ Z, then let

“ i
k

‰

q =
“ i

pk,i−kq

‰

q
for the

q-binomial coefficient.

For the weighted q-multinomial coefficients, we prove the weighted q-Pascal identity. In particular, we
have q-polynomials with positive integer coefficients such that

“ i
j

‰

α,q
≥qδg 0 of δg = gcd(α).

For example, if α = p1,2q, then the weighted q-Pascal identity asserts the following weighted q-Pascal’s
triangle (written in a rectangular form to save space), where polynomials along arrows indicate multipliers.

“ 0
p0,0q

‰

α,q
= 1 1−→

“ 1
p0,1q

‰

α,q
= 1 1−→

“ 2
p0,2q

‰

α,q
= 1

[2
]q

−−→ [2]q
−−→ [2]q
−−→

“ 1
p1,0q

‰

α,q
= [2]q

q2
−→

“ 2
p1,1q

‰

α,q
= [4]q

q2
−→

“ 3
p1,2q

‰

α,q
= [6]q

[2]q 2
−−→

[2]q 2
−−→

[2]q 2
−−→

“ 2
p2,0q

‰

α,q
= [4]q

q4
−→

“ 3
p2,1q

‰

α,q
= q7 +q6 +2q5 +2q4 +2q3 +2q2 +q+1

q4
−→

“ 4
p2,2q

‰

α,q
= . . .

.

By weighted q-multinomial coefficients, the convolutions of monomial parcels give explicit merged-log-
concave parcels F = Λ(l,w, f ,q,u) such that each i ∈ Z≥0 satisfies

Fi(qu) =
∑ j∈Zd ψα,γ,q, j

“ i
j

‰w1

α,q

(i)w1
qδ

.

Furthermore, the merged determinants of these F give the following polynomials with positive integer
coefficients.

8



Theorem 1.16. (Theorem 18.15) Suppose a multimonomial index µ = pd,w,α,γq. Let δl = lcm(α), δg =
gcd(α), and ρ ∈Z≥1. For a fitting pl,a,bq, consider integers m = L(a,b)1, n = R(a,b)1, and k = R(a∨,b)1−
n. Then, we have the following strict positivity:

„

b1

a1

ȷw1

qδl ρ

„

b2

a2

ȷw1

qδl ρ

bm,ρ(qδl )w1bn,ρ(qδl )w1 ∑
j1 ∈Zd

ψα,γ,q, j1

„

m
j1

ȷw1

α,q
∑

j2 ∈Zd

ψα,γ,q, j2

„

n
j2

ȷw1

α,q

−
„

b1

a2

ȷw1

qδl ρ

„

b2

a1

ȷw1

qδl ρ

bm−k,ρ(qδl )w1bn+k,ρ(qδl )w1 ∑
j1 ∈Zd

ψα,γ,q, j1

„

m − k
j1

ȷw1

α,q
∑

j2 ∈Zd

ψα,γ,q, j2

„

n + k
j2

ȷw1

α,q

>α,γ,q 0.

In particular, suppose α = ιd(1) of d ∈ Z≥1, w = ρ = p1q, a = p0,1q, and b = ph,h+1q of h ∈ Z≥0.
Then, the convolutions of linear monomial parcels give the following q-polynomials with positive integer
coefficients:

[h + 1]q

 ∑
j1∈Zd

„

h
j1

ȷ

q

2

− [h]q

 ∑
j1∈Zd

„

h + 1
j1

ȷ

q

 ∑
j2∈Zd

„

h − 1
j2

ȷ

q

 >q 0.

Also, the convolutions of quadratic monomial parcels give the following q-polynomials with positive integer
coefficients:

[h + 1]q

 ∑
j1∈Zd

(
∏

i∈JdK
q

j1,i( j1,i−1)
2

)
„

h
j1

ȷ

q

2

− [h]q

 ∑
j1∈Zd

(
∏

i∈JdK
q

j1,i( j1,i−1)
2

)
„

h + 1
j1

ȷ

q

 ∑
j2∈Zd

(
∏

i∈JdK
q

j2,i( j2,i−1)
2

)
„

h − 1
j2

ȷ

q

 >q 0.

1.6 Almost strictly unimodal sequences
We recall the following almost strictly unimodal sequences [Rea, Section 2.2] and strictly log-concave
sequences. We consider the variation of almost strictly unimodal sequences under the merged-log-concavity.

Definition 1.17. Suppose a sequence r = pri ∈ Rqi∈Js1,s2K.

1. The sequence r is almost strictly unimodal if there exists δ ∈ Ẑ with s1 ≤ δ ≤ s2 such that

• priqi∈Js1,δK is strictly increasing,

• rδ ≥ rδ+1, and

• priqi∈Jδ+1,s2K is strictly decreasing.

We refer to such δ as the mode of r.

2. The sequence r is strictly log-concave if r2
i − ri−1ri+1 > 0 for each i ∈ Js1 +1,s2 −1K.

Notice that including the cases rδ = rδ+1, we call δ the mode of r for our convenience.
For instance, let r = pri ∈ R>0qi∈Js1,s2K be strictly log-concave. Then, r is almost strictly unimodal by

rs1+1
rs1

>
rs1+2
rs1+1

> .. . . Even when the merged-log-concavity yields strictly log-concave sequences, we often
study them as almost strictly unimodal sequences for the following two reasons.
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• We discuss the almost strictly unimodal plog(ri) ∈ Rqi∈Js1,s2K, which is not necessarily strictly log-
concave.

• Each almost strictly unimodal sequence has at most one equation rδ = rδ+1, which sits between
rδ < rδ+1 and rδ > rδ+1. Then, as almost strictly unimodal sequences vary, we discuss critical points
and phase transitions in Section 1.6.1.

1.6.1 Critical points and phase transitions

First, let us obtain strictly log-concave sequences by the merged-log-concavity. Let F = Λ(l,w, f ,q,u) be
ρ-merged-log-concave. Also, suppose h ∈ R such that

0 < h = qu < 1, (1.6.1)

which gives temperature inequality 1.11.1 in our statistical mechanical discussion later. By inequality (1.6.1),
1

1−q exists as a positive real number. Also, by the positivity condition of f in Item 3 in Definition 1.9, we
derive the sequence u(F ,h) = pFm(h) ∈ R>0qm∈Z≥0

.
Furthermore, u(F ,h) is strictly log-concave as follows. Let m ∈ Z≥0. By inequality (1.6.1), we have

ϒ(l,w,ρ,p0,1q ,pm,m+1q ,hu−1
) =

(m)w1
qρ (m+1)w1

qρ

(0)w1
qρ (1)

w1
qρ

ˇ

ˇ

ˇ

ˇ

ˇ

q=hu−1
> 0. (1.6.2)

Also, the merged-log-concavity yields

∆(F )(l,w,ρ,p0,1q ,pm,m+1q ,q)>(qu)±1 0. (1.6.3)

By inequalities (1.6.2) and (1.6.3), we derive

Fm(h)2 −Fm−1(h)Fm+1(h)> 0. (1.6.4)

More generally, Young diagrams give rise to strictly log-concave sequences in Section 12, where we obtain

that the trivial Young diagram 1 corresponds to the tuples pm,m+1q.
Second, let us discuss the critical points and phase transitions. Among almost strictly unimodal sequences

such as u(F ,h), there are sequences that are hill sequences and decreasing sequences simultaneously. If
u(F ,h) is one of these boundary sequences, then we call h a critical point of F . In particular, since u(F ,h)
is almost strictly unimodal, u(F ,h) is a hill and decreasing sequence if and only if there is a critical point h
such that

F0(h) = F1(h). (1.6.5)

As for the term “critical points”, these h give the zero discrete derivatives 0 = F1(h)−F0(h)
1−0 for the discrete

variable m ∈ Z≥0 of u(F ,h) = pFm(h) ∈ R>0qm∈Z≥0
.

Also, we say that F has a phase transition if along 0 < h < 1, u(F ,h) changes from a strictly de-
creasing sequence to a two-sided hill or strictly increasing sequence. This phase transition passes through
equation (1.6.5).
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1.7 Metallic ratios as explicit critical points

For n ∈ Z≥1, it is well-known that −n+
?

n2+4
2 : 1 = 1 : n+

?
n2+4

2 . Based on this proportionality, we call the
following real numbers

−n+
?

n2 +4
2

< 1

metallic ratios in our convention, instead of n+
?

n2+4
2 > 1 in [GilWor, Section 1]. For instance, −1+

?
5

2 =

0.618 . . . and −2+
?

8
2 = 0.414 . . . are the golden and silver ratios.

In particular, the golden ratio h = −1+
?

5
2 is the critical point of the q

1
2 -linear monomial parcel L in

equation (1.4.3), since h = q
1
2 = q

u
p0, 1

2 ,0q solves

L0(q
1
2 ) = 1 =

q
1
2

1−q
= L1(q

1
2 ).

Therefore, L has the phase transition at the golden ratio in Figure 2 (see Figure 1 for Q).

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lm(h)

m

Figure 2: Lm(h) of h = 0.4 (bottom), h = −1+
?

5
2 (middle), and h = 0.8 (top)

Furthermore, we consider the n-fold convolutions L ∗n for n ∈ Z≥1. Then, all the critical points of L ∗n

are precisely the metallic ratios, as they solve

L ∗n
0 (q

1
2 ) = 1 =

nq
1
2

1−q
= L ∗n

1 (q
1
2 )

for 0 < q
1
2 < 1. For the q

1
2 -quadratic monomial parcel Q in equation (1.4.4), the same applies to the n-fold

convolutions Q∗n, since Q0 = L0 and Q1 = L1.
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1.8 Characterizations of L and Q

As we are interested in q-polynomials, we introduce the following notion.

Definition 1.18. Let ρ ∈ Z≥1. Also, let F = Λ(l,w, f ,q,u). Then, we call F ρ-ideal if F is ρ-merged-log-
concave and each m ∈ Z≥0 satisfies

∆(F )(l,w,ρ,p0,1q ,pm,m+1q ,q)>q 0.

Section 17.2 verifies that if a monomial parcel Fγ,q is ρ-ideal for some ρ ∈ Z≥1, then Fγ,q is ρ ′-ideal for
any ρ ′ ∈ Z≥1. Hence, we simply call Fγ,q ideal if it is ρ-ideal for some ρ ∈ Z≥1.

Consider all the ideal monomial parcels Fγ,q. Then, the q
1
2 -linear L is extremal among them by phase

transitions as follows. If Fγ,q has a phase transition, then in Section 17.2, we prove that Lm is the maximum
among the values Fγ,q,m

Fγ,q,0
in R for each m ∈ Z≥0 and 0 < q < 1; i.e.,

Lm =
Lm

L0
=

q
m
2

(m)q
≥ qγ1,1m2+γ1,2m

(m)q
=

Fγ,q,m

Fγ,q,0
(1.8.1)

for each m ∈ Z≥0 and 0 < q < 1. Likewise, the q
1
2 -quadratic Q is extremal among all the ideal quadratic

Fγ,q that have phase transitions.
We now adopt the following notation for generating functions.

Definition 1.19. Let t be an indeterminate. For each F = Λ(l,w, f ,q,u), we define the generating function

ZF (t) = ∑
m∈Z≥0

Fm(qu)tm.

In particular, let Zw,γ,q(t) = ZFw,γ,q(t) and Zγ,q(t) = ZFγ,q(t).

1.8.1 The golden ratio of quantum dilogarithms and q-exponentials

We recall the following equations [Eul, Chapter 16], which also hold for q, t ∈ C such that |q|, |t|< 1.

Definition 1.20. Assume the ring of formal power series Q[[q, t]]. Then, we call the following the Euler
binomial identities:

(t;q)−1
∞ = ∑

λ∈Z≥0

tλ

(λ )q
;

(−t;q)∞ = ∑
λ∈Z≥0

q
λ (λ−1)

2

(λ )q
tλ .

For simplicity, suppose Fγ,q,0 = 1. Then, γ1,3 = 0. Since γ1,1 = 0 or γ1,1 =
1
2 by the monomial conditions,

we have

Zγ,q(t) = ∑
λ∈Z≥0

qγ1,1λ 2+γ1,2λ

(λ )q
tλ =


(tqγ1,2 ;q)−1

∞ = ∑
λ∈Z≥0

qγ1,2λ

(λ )q
tλ if γ1,1 = 0,

(−tq
1
2+γ1,2 ;q)−1

∞ = ∑
λ∈Z≥0

q
λ2
2 +γ1,2λ

(λ )q
tλ if γ1,1 =

1
2
.
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Hence, Zγ,q(t) are quantum dilogarithms [FadKas, FadVol, Kir, KonSoi, Rom, Schu, Zag], as they satisfy
pentagon identities (see Section 17.1). They have been studied intensively, but to our knowledge, the golden
ratio of quantum dilogarithms has not been obtained in the literature. Also, (±t;q)∓1

∞ are q-extensions of the
exponential function [KoeSwa, equations (0.7.7) and (0.7.8)], since

et = lim
q→1−

(±(1−q)t;q)∓1
∞ =


lim

q→1−
((1−q)t;q)−1

∞ ,

lim
q→1−

(−(1−q)t;q)∞.
(1.8.2)

It follows that Zγ,q(t) are not only quantum dilogarithms, but also q-exponentials.
Therefore, we obtain the golden ratio of the quantum dilogarithms and q-exponentials Zγ,q(t) as the

critical point of L , since the q
1
2 -linear L is the single extremal parcel among Fγ,q and the critical point of

L is the golden ratio as in Section 1.8.

Remark 1.21. By Lemma 1.8, we are often interested in Fγ,q. However, let Gγ,q =
`

Gγ,q,m ∈Q(quγ )
˘

m∈Z
such that

Gγ,q,m =


qγ1,1m2+γ1,2m

[m]!q
if m ∈ Z≥0,

0 otherwise.

Then, these ZGγ,q(t) are quantum dilogarithms and q-exponentials, which are also often studied.
Furthermore, Gγ,q are merged-log-concave in the general merged-log-concavity of Definition 6.1, which

allows [m]!q for (m)q in Item 3 of Definition 1.9. Then, just like u(Fγ,q,h), u(Gγ,q,h) are almost strictly
unimodal sequences for 0 < h = quγ < 1.

However, unlike u(Fγ,q,h), u(Gγ,q,h) have no phase transitions for 0 < h = quγ < 1, since h does not
satisfy

1 = Gγ,q,0 = Gγ,q,1 = qγ1,1+γ1,2 .

Therefore, even with Gγ,q, the golden ratio still emerges as the critical point of the quantum dilogarithms and
q-exponentials Zγ,q(t) and ZGγ,q(t), since the q

1
2 -linear L is the unique extremal parcel among Fγ,q and its

critical point is precisely the golden ratio.

1.9 Comparison with the strong q-log-concavity and q-log-concavity
First, we compare the strong q-log-concavity and the merged-log-concavity. By Definition 1.9, we focus
on positive merged determinants and infinite positive terms in Section 1. However, let s1,s2 ∈ Ẑ. Then, a
strongly q-log-concave f = p fm(q) ∈ Z≥0[q]qm∈Z such that fm >q 0 for m ∈ Js1,s2K is a weight-zero merged-
log-concave parcel by the full merged-log-concavity in Definition 6.1. We explain this in more detail in
Section 11.

Also, we introduce Hadamard (term-wise) products of parcels for the merged-log-concavity. Consequently,
if there is a strongly q-log-concave f = p fm(q) ∈ Z≥0[q]qm∈Z such that fm >q 0 for m ≥ 0 and fm = 0 for
m < 0, then we obtain the weight-one merged-log-concave parcel F such that each m ≥ 0 satisfies

Fm =
fm

(m)q
.
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However, the converse is not true, since the numerators q
m(m−1)

2 of Fpp 1
2 ,−

1
2 ,0qq,q are not strongly q-log-

concave by equation (1.0.1).
Second, we compare the q-log-concavity and the merged-log-concavity. This gives q-log-concave

polynomials from weight-zero merged-log-concave parcels. Also, a merged-log-concave parcel deduces the
strict analog of q-log-concavity (1.6.3), which in turn gives almost strictly unimodal sequences of our interest.

1.9.1 On Newton’s log-concavities

More explicitly, we compare the q-log-concavity and the merged-log-concavity by finite or infinite geometric
sequences.

For finite geometric sequences, we recall the following Newton’s log-concavities on polynomials. For
d ∈ Z≥2 and α = pαλ ∈ R>0q

λ∈JdK, let pα =
`

pα,λ ∈ R>0
˘

λ∈J0,dK such that

∏
i∈JdK

(1+αit) = ∑
λ∈J0,dK

pα,λ tλ .

Then, Newton claimed λ

λ+1
d−λ

d+1−λ
p2

α,λ − pα,λ−1 pα,λ+1 ≥ 0 for all λ ∈ Jd −1K [New, p241–p243] (see [Bra,

Lemma 1.1] for a proof). In particular, since λ

λ+1
d−λ

d+1−λ
< 1, all λ ∈ Jd −1K satisfy

p2
α,λ − pα,λ−1 pα,λ+1 ≥ 0,

which we call Newton’s log-concavity of α . This gives the unimodality of pα such as the unimodality of
binomial coefficients pα when α = ιd(1).

First, let 0 < h < 1. For d ∈ Z≥2, we consider the finite geometric sequences

g(h,d) =
´

hλ

¯

λ∈J0,dK
.

The q-log-concavity of (−t;q)d extends Newton’s log-concavity of g(h,d) as follows. By the q-binomial
theorem, consider B(d,λ ,q) ∈Q[q] such that

(−t;q)d = ∑
λ∈J0,dK

q
λ (λ−1)

2

„

d
λ

ȷ

q
tλ = ∑

λ∈J0,dK
B(d,λ ,q)tλ .

Then, [Sag, Theorem 3.2] (see [But, Kra]) gives the q-log-concavity:

B(d,λ ,q)2 −B(d,λ −1,q)B(d,λ +1,q)≥q 0. (1.9.1)

This inequality implies Newton’s log-concavity of g(h,d), when we substitute q = h.
Second, we extend to the following infinite case by the infinite geometric sequences

g(h,∞) =
´

hλ

¯

λ∈J0,∞K
.

By the Euler binomial identity, we have

(−t;q)∞ = Zpp 1
2 ,−

1
2 ,0qq,q(t).

Also, the merged-log-concavity in Theorem 1.12 and the ideal property for Fpp 1
2 ,−

1
2 ,0qq,q give

∆(Fpp 1
2 ,−

1
2 ,0qq,q)(l,w,ρ,a,b,q)>q 0
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for each fitting pl,a,bq and ρ ∈ Z≥1. Therefore, this inequality extends Newton’s log-concavity of the finite
geometric sequences g(h,d) to the infinite geometric sequences g(h,∞) via the above q-polynomials with
positive integer coefficients.

We have (t;q)−1
∞ = Zpp0,0,0qq,q(t) by the Euler binomial identity. We also introduce separable products

of parcels, which correspond to multiplying suitable ZF (t) and ZG (t ′) for distinct indeterminates t and t ′.
Hence, the merged-log-concavity generalizes the quantum dilogarithms and the q-exponentials (±t;q)∓∞ by
monomial parcels with convolutions and Hadamard/separable products.

1.10 Monomial convolutions and eta products
We recall the eta function and eta products as follows. These functions, along with exponentials, have been
studied intensively [HeiNeu, HonZha, Koh, NekOko].

Definition 1.22. For the imaginary unit i, let q = e2πiτ of τ ∈ C such that Im(τ) > 0. Then, we have the
(Dedekind) eta function:

η(τ) = q
1
24 (q;q)∞.

Also, let d ∈ Z≥1, α ∈ Zd
≥1, and β ∈ Zd

̸=0. Then, we have the eta product:

Ed,α,β (τ) = ∏
λ∈JdK

η(αλ τ)βλ .

Weight-one linear and quadratic monomial parcels specialize to the eta function η(τ) and exponential.
Hence, we introduce the following notions of graded monomial products and monomial convolutions by
the generating functions of monomial parcels. Then, merged-log-concave parcels give (q, t)-analogs of
exponentials and eta products for some tuple t of indeterminates.

Definition 1.23. Suppose a multimonomial index pd,w,α,β ,γq.

1. Let z = pziqi∈JdK be a tuple of indeterminates. Then, we define the graded monomial product

M(d,w,α,β ,γ,q,z) = ∏
λ∈JdK

ˆ

ZFw,pγ
λ q,qα

λ
(zλ )

˙βλ

∈Q(quα,γ )[[z1, . . . ,zd ]].

2. Let v be an indeterminate. Then, we define the monomial convolution

M (d,w,α,β ,γ,q,v) = M(d,w,α,β ,γ,q, ιd(v)) = ∑
λ∈Z≥0

M (d,w,α,β ,γ,q,v)λ vλ .

We call M(d,w,α,β ,γ,q,z) graded, because it is graded as formal power series of z. For each λ , the

monomial convolutions
ˆ

ZFw,pγ
λ q,qα

λ
(zλ )

˙βλ

correspond to parcel convolutions. Furthermore, multiplying
ˆ

ZFw,pγ
λ q,qα

λ
(zλ )

˙βλ

in M(d,w,α,β ,γ,q,z) for different λ corresponds to separable products of parcels.

Also, when w = p1q, Fw,pγλ q,qα
λ are linear and quadratic monomial parcels, which satisfy γλ ,1 = 0 or

γλ ,1 =
1
2 with arbitrary γλ ,2,γλ ,3 ∈Q. Hence, we introduce the following notation to obtain the (q, t)-analogs.
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Definition 1.24. Let d ∈ Z≥1, α ∈ Zd
≥1, β ∈ Zd

̸=0, and κ ∈Qd . Suppose a tuple z = pzλ q
λ∈JdK of indetermi-

nates.

1. Let γ(β ,κ) ∈ ∏λ∈JdKQ3 such that

γ(β ,κ)λ =


ˆ

0,κλ ,−
1
24

˙

if βλ ≤−1,
ˆ

1
2
,

κλ

2
,

1
24

˙

otherwise.

2. Let T (z,q,α,β ,κ) = pT (z,q,α,β ,κ)λ q
λ∈JdK such that

T (z,q,α,β ,κ)λ =

q−(1−κλ )αλ · zλ if βλ ≤−1,

−q−
1−κ

λ
2 αλ · zλ otherwise.

In particular, let w = p1q and t = T (z,q,α,β ,κ). Also, let q = e2πiτ for some τ ∈ C such that Im(τ)> 0.
Then, as z ∈ Cd varies, the dominated convergence theorem implies

Ed,α,β (τ) = lim
t→ιd(1)

M(d,w,α, |β | ,γ(β ,κ),q,z). (1.10.1)

Hence, M(d,w,α, |β | ,γ(β ,κ),q,z) is the (q, t)-analog of

• the exponential e∑λ∈JdK αλ βλ zλ when q → 1− by equation (1.8.2), and

• the eta product Ed,α,β (τ) when t → ιd(1) by equation (1.10.1).

We prove that all graded monomial convolutions and monomial convolutions are generating functions
of merged-log-concave parcels, where the parcels of graded monomial convolutions are of general widths.
In particular, we obtain the merged-log-concavity of the (q, t)-analogs M(d,w,α, |β | ,γ(β ,κ),q,z) and the
monomial convolutions M (d,w,α, |β | ,γ(β ,κ),q,v). Then, merged determinants give polynomials with
positive integer coefficients by the weighted q-multimonomial coefficients in Theorem 1.16. Furthermore, we
give conjectures on these polynomials with positive integer coefficients. For example, let λ ∈ Z≥0. Then, in
Conjecture 18.17, we conjecture a new log-concavity for the trivial eta product

1 = η(τ)λ ·η(τ)−λ ,

which becomes non-trivial by the (q, t)-analogs. Also, we conjecture a periodicity on the polynomials with
positive integer coefficients by the generalized Narayana numbers [Guy].

1.11 Statistical-mechanical phase transitions by the merged-log-concavity
Bose, Einstein, and Fermi [Bos, Ein, Fer] pioneered the mathematical models of non-interacting particles
as ideal boson and fermion gases. Sections 1.11 and 19 consider the grand canonical partition functions
of some ideal boson, fermion, or (mixed) boson–fermion gases by monomial convolutions introduced in
Section 1.10, since the grand canonical partition functions of these ideal boson and fermion systems coincide
with monomial convolutions in Definition 1.23.

We observe the vacua that have the lowest Helmholtz free energies in these ideal boson and fermion
systems at different temperatures. For this purpose, we examine the grand canonical partition functions by
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the merged-log-concavity introduced in Section 1.3, which provides a mathematical framework to analyze
certain generating functions of rational functions by polynomials. Then, we obtain statistical-mechanical
phase transitions on vacua. In particular, zero particle vacua transition to non-zero particle vacua when the
temperature crosses critical thresholds, which are determined by the golden ratio and other metallic ratios.
Unlike Bose-Einstein condensations, particle numbers in the vacuum determined by the golden ratio continue
to increase as the temperature increases. The golden ratio emerges from geometric properties of almost strictly
unimodal sequences obtained by the merged-log-concavity, where the almost strictly unimodal sequences
realize sequences of Helmholtz free energies.

More explicitly, we discuss the following.

• Section 1.11 considers the grand canonical partition functions of the ideal boson or fermion gases by
monomial parcels in Section 1.4. In particular, we discuss the grand canonical partition functions of
the extremal L and Q, which are the q

1
2 -linear and q

1
2 -quadratic monomial parcels in Section 1.8.

• Section 19 considers the grand canonical partition functions of the boson–fermion gases with or without
Casimir energies (Ramanujan summation of zero-point energies) by monomial convolutions, which
generalize monomial parcels.

Unless stated otherwise, Section 1.11 assumes the thermodynamic beta β > 0 and chemical potential
µ < 0 with q = e−β , µ ′ =−µβ > 0, and t = e−µ ′

, where t represents the fugacity. Then, we have

0 < q, t < 1. (1.11.1)

The above 0 < q < 1 is a temperature inequality, since the temperature T satisfies

β =
1

T kB
(1.11.2)

for the Boltzmann constant kB = 1.380649×10−23 J ·K−1 by the Joule and Kelvin units J and K. In particular,
the temperature inequality 0 < q < 1 gives mathematical inequality (1.6.1).

For background on the fundamental concepts of statistical mechanics in this manuscript, the reader is
referred to [KapGal, Chapter 1].

1.11.1 Ideal boson gases

Let δλ ,λ ′ for λ ,λ ′ ∈ Q denote the Kronecker delta function such that δλ ,λ ′ = 1 if λ = λ ′ and δλ ,λ ′ = 0
otherwise. We consider the following operators and numbers to describe ideal boson gases.

Definition 1.25. Suppose λ ∈ Z≥1 and v ∈Q.

1. Let ab,λ and a†
b,λ be the boson annihilation and creation operators that satisfy the following commutator

relations:

[ab,λ ,a
†
b,λ ′ ] = δλ ,λ ′ ;

[a†
b,λ ,a

†
b,λ ′ ] = [ab,λ ,ab,λ ′ ] = 0.

2. Let

εv,λ = λ − v ∈Q.
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Also, let Hb,v and Nb be the Hamiltonian and number operators such that

Hb,v = ∑
λ∈Z≥1

εv,λ a†
b,λ ab,λ , (1.11.3)

Nb = ∑
λ∈Z≥1

a†
b,λ ab,λ .

3. Let γb,v = pp0,1− v,0qq ∈Q3.

Then, the boson system B(1,v) defined by Hb,v and Nb represents an ideal boson gas. The boson system
B(1,v) has the grand canonical partition function

ZB(1,v)(q, t) = Tr
´

e−βpHb,v−µNbq
¯

= Tr
´

e−βHb,v · e−µ ′Nb
¯

such that

ZB(1,v)(q, t) = Zγb,v,q(t), (1.11.4)

where Zγb,v,q(t) is the generating function of the monomial parcel Fγb,v,q in Definition 1.19.
Let us obtain the t-expansion of ZB(1,v)(q, t) (known in physics [Dim, Chapter 1]). We have the eigen-

values nλ ∈ Z≥0 of a†
b,λ ab,λ for the eigenvectors |nλ ⟩= 1?

nλ !
(a†

b,λ )
nλ |0⟩, where nλ indicates the occupation

number of a state λ . Then, the system has the boson Fock space with basis vectors |n1,n2, . . . ,nk, . . .⟩ such
that ∑λ∈Z≥1

nλ < ∞ for states with finitely many particles. In particular, for λ ∈ Z≥1 and nλ ∈ Z≥0,

⟨n1,n2, . . . ,nk, . . . |e−βHb,v · e−µ ′Nb |n1,n2, . . . ,nk, . . .⟩= e−β ∑λ∈Z≥1
nλ εv,λ · e−µ ′ ∑λ∈Z≥1

nλ .

The Euler binomial identity in Definition 1.20 gives equation (1.11.4), since multiplying the above over all
states λ ∈ Z≥1, we obtain

ZB(1,v)(q, t) = ∏
λ∈Z≥1

∑
nλ∈Z≥0

e−βnλ εv,λ · e−µ ′nλ = ∏
λ∈Z≥1

∑
nλ∈Z≥0

(qλ−v · t)nλ = (tq1−v;q)−1
∞ = Zγb,v,q(t).

For each n∈Z≥1, suppose that B(n,v) has n sub-systems with negligible interactions and B(1,v) represents
each sub-system. This system B(n,v) describes an ideal boson gas with the grand canonical partition function
Zγb,v,q(t)

n.

1.11.2 Ideal fermion gases

Similarly, we consider the following operators and numbers for ideal fermion gases by the energies εv,λ in
Definition 1.25.

Definition 1.26. Assume λ ∈ Z≥1 and v ∈Q.

1. Let a f ,λ and a†
f ,λ be the fermion annihilation and creation operators that satisfy the anti-commutator

relations:

{a f ,λ ,a
†
f ,λ ′}= δλ ,λ ′ ;

{a†
f ,λ ,a

†
f ,λ ′}= {a f ,λ ,a f ,λ ′}= 0.
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2. Let H f ,v and N f be the Hamiltonian and number operators such that

H f ,v = ∑
λ∈Z≥1

εv,λ a†
f ,λ a f ,λ ,

N f = ∑
λ∈Z≥1

a†
f ,λ a f ,λ .

3. Let γ f ,v =
`` 1

2 ,
1
2 − v,0

˘˘

∈Q3.

We obtain the fermion system F(1,v) of H f ,v and N f , which is of an ideal fermion gas. This system
F(1,v) has the grand canonical partition function

ZF(1,v)(q, t) = Tr
´

e−βH f ,v · e−µ ′N f
¯

such that

ZF(1,v)(q, t) = Zγ f ,v,q(t). (1.11.5)

Let us derive equation (1.11.5). Let λ ∈ Z≥1. Then, nλ ∈ {0,1} are the eigenvalues of a†
f ,λ a f ,λ for the

eigenvectors |0⟩ and a†
f ,λ |0⟩ by the Pauli exclusion principle. This gives the fermion Fock space with basis

vectors |n1,n2, . . . ,nk, . . .⟩ such that ∑λ∈Z≥1
nλ < ∞. It follows that

1+qλ−v · t = ∑
nλ∈{0,1}

e−βnλ εv,λ · e−µ ′nλ ,

⟨n1,n2, . . . ,nk, . . . |e−βH f ,v · e−µ ′N f |n1,n2, . . . ,nk, . . .⟩= e−β ∑λ∈Z≥1
nλ εv,λ · e−µ ′ ∑λ∈Z≥1

nλ ,

Since Zγ f ,v,q(t) = ∑r∈Z≥0
q

r2
2 +p 1

2 −vqr

(r)q
tr = (−tq1−v;q)∞ by the Euler binomial identity, equation (1.11.5)

follows. 1.
Assume that for each n∈Z≥1, F(n,v) has n sub-systems with negligible interactions and F(1,v) represents

each sub-system. Consequently, F(n,v) represents an ideal fermion gas with the grand canonical partition
function Zγ f ,v,q(t)

n.

1.11.3 Extremal L and Q on free energies

Consider the t-series coefficients of Zγb,v,q(t)
n and Zγ f ,v,q(t)

n:

Zγb,v,q(t)
n = ∑

λ∈Z≥0

Z f ,v,n,λ (q
uγb,v )tλ ;

Zγ f ,v,q(t)
n = ∑

λ∈Z≥0

ZF,v,n,λ (q
uγ f ,v )tλ .

These Z f ,v,n,λ (q
uγb,v ) and Z f ,v,n,λ (q

uγb,v ) of particle numbers λ are the canonical partition functions of B(n,v)
and F(n,v). In particular, n ∈ Z≥1 and λ ∈ Z≥0 give Z f ,v,n,λ (q

uγb,v ) ∈ R>0 and Z f ,v,n,λ (q
uγb,v ) ∈ R>0 by

1This equation (1.11.5) does not require |t|= |e−µ ′ |< 1 [Koh, Lemma 1.2]. But, we assume µ ′ > 0, i.e., µ < 0, for simplicity. See
also [Cow, Fig 1 and 2] for µ in high temperatures.
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inequality (1.11.1). We then recall the Helmholtz free energies (or free energies for short) Ab,v,n,λ (q
uγb,v ) and

A f ,v,n,λ (q
uγ f ,v ) of the canonical partition functions such that

Ab,v,n,λ (q
uγb,v ) =−

log(Z f ,v,n,λ (q
uγb,v ))

β
,

A f ,v,n,λ (q
uγ f ,v ) =−

log(Z f ,v,n,λ (q
uγ f ,v ))

β
.

By inequality (1.6.4), the free energies satisfy the following inequalities of real numbers:

2Ab,v,n,λ (q
uγb,v )− ∑

i∈{−1,1}
Ab,v,n,λ+i(q

uγb,v )< 0; (1.11.6)

2A f ,v,n,λ (q
uγ f ,v )− ∑

i∈{−1,1}
A f ,v,n,λ+i(q

uγ f ,v )< 0. (1.11.7)

The merged determinants of monomial convolutions decompose energy inequalities (1.11.6) and (1.11.7)
into Laurent quγb,v - or quγ f ,v -polynomials in Theorem 1.16.

In particular, suppose ideal monomial parcels Fγb,v,q and Fγ f ,v,q that have phase transitions. Then, the
merged determinants decompose the inequalities into q-polynomials. Furthermore, by inequality (1.8.1),
Ab, 1

2 ,1,λ
(q

1
2 ) of the q

1
2 -linear monomial parcel L are the lowest among Ab,v,1,λ (q

uγb,v ) and A f ,v,1,λ (q
uγ f ,v );

i.e., 0 < q < 1 and λ ∈ Z≥0 satisfy

Ab, 1
2 ,1,λ

(q
1
2 )≤ Ab,v,1,λ (q

uγb,v ),

Ab, 1
2 ,1,λ

(q
1
2 )≤ A f ,v,1,λ (q

uγ f ,v ).

Also, A f , 1
2 ,1,λ

(q
1
2 ) of the q

1
2 -quadratic monomial parcel Q satisfy the same inequalities to A f ,v,1,λ . Therefore,

L and Q are extremal on the free energies Ab,v,1,λ (q
uγb,v ) and A f ,v,1,λ (q

uγ f ,v ), where the corresponding Fγb,v,q
and Fγ f ,v,q are ideal monomial parcels that have phase transitions.

1.11.4 Phase transitions

We consider the n-fold convolutions L ∗n and Q∗n of the extremal L and Q. Then, we have

ZB(n, 1
2 )
(q, t)n = ZL (t)n = ZL ∗n(t),

ZF(n, 1
2 )
(q, t)n = ZQ(t)n = ZQ∗n(t).

Also, since uγ
b, 1

2
= uγ

f , 1
2
= 1

2 , let

AL ,n(q
1
2 ) =

´

AL ,n,λ (q
1
2 ) := Ab, 1

2 ,n,λ
(q

1
2 )

¯

λ∈Z≥0
,

AQ,n(q
1
2 ) =

´

AQ,n,λ (q
1
2 ) := A f , 1

2 ,n,λ
(q

1
2 )

¯

λ∈Z≥0
.

Then, since β > 0, the positivities in Theorem 1.16 yield the following phase transitions on these free energies
by critical points in the mathematical sense of Section 1.6.
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Corollary 1.27. (Corollary 17.21 by the terminology of Section 1.11) Let n ∈ Z≥1.

1. Then, we have the almost strictly unimodal sequences −AL ,n(q
1
2 ) by the critical point 0 < cL ,n < 1

and modes mL ,n(q
1
2 ) as follows.

(a) For each 0 < q
1
2 < cL ,n, mL ,n(q

1
2 ) = 0 gives the strictly decreasing sequence:

−A
L ,n,mL ,n(q

1
2 )
(q

1
2 )>−AL ,n,1(q

1
2 )>−AL ,n,2(q

1
2 )> .. . .

(b) If q
1
2 = cL ,n, then mL ,n(q

1
2 ) = 0 gives the hill and decreasing sequence:

−A
L ,n,mL ,n(q

1
2 )
(q

1
2 ) =−AL ,n,1(q

1
2 )>−AL ,n,2(q

1
2 )> .. . .

(c) For each 1 > q
1
2 > cL ,n, mL ,n(q

1
2 ) ∈ Z≥1 gives the two-sided hill sequence:

−AL ,n,0(q
1
2 )< · · ·<−A

L ,n,mL ,n(q
1
2 )
(q

1
2 )≥−A

L ,n,mL ,n(q
1
2 )+1

(q
1
2 )> .. . .

2. We have the same for the almost strictly unimodal sequences −AQ,n(q
1
2 ) by the critical point 0 <

cQ,n = cL ,n < 1 and modes mQ,n(q
1
2 ).

3. In particular, we have the metallic ratios

cL ,n = cQ,n =
−n+

?
n2 +4

2
,

which is the golden ratio for n = 1.

By equation (1.11.2), as the temperature T increases, Corollary 1.27 implies particle-emergence phase
transitions in the free energy vacua:

A
L ,n,mL ,n(q

1
2 )
(q

1
2 ) = min(AL ,n(q

1
2 ));

A
Q,n,mL ,n(q

1
2 )
(q

1
2 ) = min(AQ,n(q

1
2 )).

Specifically, a low temperature T such that 0 < q
1
2 ≤ cL ,n gives the zero particle mode

mL ,n(q
1
2 ) = mQ,n(q

1
2 ) = 0,

while a high temperature T such that 1 > q
1
2 > cL ,n gives the non-zero particle mode

mL ,n(q
1
2 ),mQ,n(q

1
2 )≥ 1.

In particular, the temperatures Tn of cL ,n = cQ,n are

Tn =
1

−2log
ˆ

−n+
?

n2+4
2

˙

· (1.38 · · ·×10−23)

K
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such that

T1 = 0.75 · · ·×1023K,

T2 = 0.41 · · ·×1023K,

. . .

There are critical points even for lower temperatures, because we have critical points on B(n,v) and F(n,v)
of n ∈ Z≥1 and v ∈Q<1, solving

nq1−κ = 1−q

for 0 < q1−κ < 1.
We now reinterpret Figure 2. Figure 3 illustrates the phase transition of the boson free energies AL ,1(q

1
2 )

with the zero and non-zero particle vacua by the golden ration cL ,1. We have a similar figure for the fermion
free energies AQ,1(q

1
2 ).

0 2 4 6 8 10

-2

0

2

4

AL ,1,λ (q
1
2 )

λ

Figure 3: AL ,1,λ (q
1
2 ) of q

1
2 = 0.4 (top), q

1
2 = cL ,1 (middle), and q

1
2 = 0.8 (bottom)

Bose-Einstein condensations differ from the phase transitions in Figure 3, because non-zero particle vacua
keep appearing for higher temperatures. More precisely, for each λ ∈ Z≥1, we obtain the λ -particle vacuum
at the temperature that solves

q
1
2 = 1−qλ .
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It is natural to consider many states at high temperatures. But, instead of the infinite product (−tq
1
2 ;q)∞,

there is the following finite analog to the phase transition on AQ,1(q
1
2 ). Consider

(−tq
1
2 ;q)2 = 1+(q

1
2 +q

3
2 )t +q2t2 = ∑

i∈J0,2K
F(q

1
2 )it i.

Then, F(q
1
2 ) =

´

F(q
1
2 )i ∈ R>0

¯

i∈J0,2K
for each 0 < q

1
2 < 1 is strictly log-concave by the discriminant of

the t-polynomial (−tq
1
2 ;q)2 (c.f. inequality (1.9.1)). We have the critical point c = 0.68233 . . . that solves

1= q
1
2 +q

3
2 . Therefore, F(q

1
2 ) is a strictly decreasing sequence for 0< q

1
2 < c, a hill and decreasing sequence

for q
1
2 = c, and a two-sided hill sequence for c < q

1
2 < 1.
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2 Notations for families, rings, and some q-analogs
We fix some notations to develop our theory of the merged-log-concavity.

2.1 Families
Definition 2.1. Suppose a family F = (Fi ∈U)i∈I of some set U. Then, F is flat if Fi = Fj whenever i, j ∈ I.
Let L(F) = #(I) ∈ Ẑ. Also, for u ∈U, let Lu(F) = #({i ∈ I | Fi = u}).

Also, we adopt the following notation of families by rings.

Definition 2.2. Let R be a commutative ring. Consider families F = pFi ∈ Rqi∈I and F ′ = pF ′
i ∈ Rqi∈I .

1. Let FF ′
=

´

FF ′
i

i ∈ R
¯

i∈l
whenever every FF ′

i
i ∈ R is defined.

2. Let F ±F ′ = pFi ±F ′
i qi∈I .

3. Let F ◦F ′ = pFiF ′
i qi∈l for the Hadamard product (term-wise product).

4. For a scalar λ ∈ R, suppose F ′′ = pλ qi∈I . Then, let λ ±F = F ±λ = F ′′±F and λF = Fλ = F ′′ ◦F.

5. Let ∑F = ∑i∈I Fi and ∏F = ∏i∈I Fi whenever they are defined.

We define the following tuples by increasing integers.

Definition 2.3. Suppose d ∈ Z≥1 and λ ∈ Z2.
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1. Let T<(d,λ ) =
{

m ∈ Zd | λ1 ≤ m1 < · · ·< md ≤ λ2
}

and T<(d,λ2) = T<(d,p1,λ2q).

2. Let T≤(d,λ ) =
{

m ∈ Zd | λ1 ≤ m1 ≤ . . .≤ md ≤ λ2
}

and T≤(d,λ2) = T≤(d,p1,λ2q).

We adopt the following notation by tuples. For our convenience, let JsK = Jps1,s2qK = Js1,s2K if s ∈ Ẑ2,

Definition 2.4. Consider d,d′ ∈ Z≥1, λ ∈ T≤(2,d), and l = λ2 −λ1 + 1. For a set U, let f ∈ U, m ∈ Ud ,
m′ ∈Ud′ , and m′′ ∈U l .

1. Let m++m′ = (m1, . . . ,md ,m′
1, . . . ,m

′
d′) ∈ Ud+d′ for the concatenation. If µ ∈ Z≥1, then let m++µ =

m++ · · ·++m ∈U µd for the µ-fold concatenation.

2. Let m⊔ = m++m∨ ∈U2d for the palindromization.

3. Let m[λ1 : λ2] =
`

mλ1+i−1
˘

i∈JlK ∈U l for the subtuple.

4. Suppose that U is a ring. Then, let

m′′+λ m = m+λ m′′ = m[1 : λ1 −1]++(m[λ1 : λ2]+m′′[1 : l])++m[λ2 +1 : d] ∈Ud

for the segment addition. Also, let m′′+λ m = −(−m′′+λ m) and m−λ m′′ = −(m′′−λ m) for the
segment subtraction.

Notice that when L(m) = l, then m′′+λ m = m+λ m′′ = m+m′′. Hence, m′′±λ m are well-defined.

2.2 Rings
We adopt the following notation for rings of polynomials, Laurent polynomials, and rational functions. Unless
stated otherwise, let

X= {X1, . . . ,XL}= {Xi}i∈JLK

denote a finite set of free indeterminates X1, . . . ,XL for some L ∈ Z≥1. We often refer to X as a coordinate. If
needed, we write X1 = {X1,i}i∈JL1K ,X2 = {X2,i}i∈JL2K , . . . for multiple finite sets of free indeterminates.

First, Q[[X]] = Q[[X1, . . . ,XL]], Q[X] = Q[X1, . . . ,XL], and Q[X±1] = Q[X±1
1 , . . . ,X±1

L ] denote the rings
of formal power series, polynomials, and Laurent polynomials, respectively. We write an element f in each
of these rings as

f = ∑
j∈ZL

f j1, j2,..., jL X j1
1 X j2

2 . . .X jL
L

possibly with zero f j1, j2,..., jL ∈Q. If 0 ̸= f ∈Q[X±1], then degXi
f ∈ Z and ordXi f ∈ Z denote the degree and

order of f as the Laurent Xi-polynomial. Let −degXi
(0) = ordXi(0) = ∞ for our convention.

Second, Q(X) = Q(X1, . . . ,XL) is the field of rational functions. We often look at the real values of
rational functions. For this, let f ∈Q(X) and r = pr1, . . . ,rLq ∈ RL. Then, we assume

f (r) = f ′(r) ∈ R,

if f = f ′ ∈ Q(X) and f ′(r) ∈ R. We write f (r) by f (r1, . . . ,rL) as well. For a family F = pFi ∈Q(X)qi∈I
and r ∈ RL, let F(r) = pF(r)i = Fi(r) ∈ Rqi∈I .
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2.3 Some q-analogs
We adopt the following tuple notation for the q-analogs in Definitions 1.4 and 1.15. For l ∈ Z≥1, we call
x ∈Q(X)l an indeterminate if each xi is an indeterminate.

Definition 2.5. Let l ∈ Z≥1 and m,m′,w ∈ Zl
≥0. Suppose an indeterminate x ∈Q(X)l . Let

(m)w
x = ∏

i∈JlK
(mi)

wi
xi
,

[m]wx = ∏
i∈JlK

[mi]
wi
xi
,

[m]!w
x = ∏

i∈JlK
[mi]!wi

xi
,

„

m
m′

ȷw

x
= ∏

i∈JlK

„

mi

m′
i

ȷwi

xi

for the x-Pochhammer symbol, x-number, x-factorial, and x-binomial coefficient, respectively.
In particular, if x= ι l(q) for an indeterminate q∈Q(X), then let (m)w

q =(m)w
x , [m]wq = [m]wx , [m]!w

q = [m]!w
x ,

and
“m

m′
‰w

q =
“m

m′
‰w

x . Also, we often omit the superscript w when w = ι l(1).

3 Fitting condition
We first introduce the following notions of gates, σ–operator, σ -plus and σ -minus, and σ -equivalence.

Definition 3.1. Suppose s ∈ Ẑ2. We call s a gate if s1 < ∞ and s1 ≤ s2. Suppose that s is a gate.

1. We call s2 − s1 +1 the width of s.

2. We call s finite if the width of s is finite; otherwise, we call s infinite.

We now extend the notion of fitting condition in Definition 1.9.

Definition 3.2. For l ∈ Z≥1, let m ∈Q(X)l and k,k′ ∈Q(X)2l .

1. We define the σ -operator σ(k) ∈Q(X)l such that

σ(k)i = ∑k[i+1 : 2l − i+1] for each i ∈ JlK.

2. In Q(X)l , let

m ‘ k = m+σ(k)∨,

m a k = m−σ(k).

We call ‘ and a the σ -plus and σ -minus.

3. We call k and k′ σ -equivalent (or equivalent for short) if σ(k) = σ(k′).

More explicitly, σ -equivalent k and k′ satisfy the following equations:

(m ‘ k)i = mi +σ(k)l−i+1 = (m ‘ k′)i;
(m a k)i = mi −σ(k)i = (m a k′)i.
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Remark 3.3. For l ∈ Z≥1, let a ∈Q(X)l . This allows expressions such as a++a+a++a and a◦a−a. To
clarify, we adopt the following order of operations: (1) flip, palindromization; (2) ◦, scalar multiplication; (3)
++, ‘, a; (4) tuple addition/subtraction; (5) scalar addition/subtraction. Other than the order of operations, we
use the parentheses and center dots to avoid confusion.

Definition 3.4. For l ∈ Z≥1, consider m,n ∈ Zl and k ∈ Z2l with a gate s ≥ 0. Let µ = ps, l,m,n,kq. We call
l, m, n, and k the width, left ladder, right ladder, and support of µ . Also, we call k1 the free parameter of µ .

1. In Z2l , we define

ν(k) =
`

∑k[1 : i]
˘

i∈J2lK ,

ν(m,n,k) = ν(k)+m++n.

2. Let a = ν(k) and b = ν(m,n,k). We call µ fitting if its ladders and support satisfy the following:

m++n ∈ JsK2l , (3.0.1)
b1 ≤ . . .≤ bl < bl+1 ≤ . . .≤ b2l , (3.0.2)

0 ≤ a1 ≤ . . .≤ al < al+1 ≤ . . .≤ a2l . (3.0.3)

We refer to (3.0.1), (3.0.2), and (3.0.3) as the inclusion condition, upper slope condition, and lower
slope condition of µ .

3. We call µ wrapped if (m a k)++(n ‘ k) ∈ JsK2l .

Compared to Definition 1.9, Definition 3.4 not only has the gate parameter s, but also employs the ladder
and support parameters m,n,k for later computations.

Remark 3.5. Let µ = ps, l,m,n,kq be fitting. We call k1 the free parameter of µ , since whenever k1+λ ∈Z≥0,
µ ′ = ps, l,m,n,pk1 +λ q++ k[2 : l]q is fitting. Also, µ is wrapped if and only if µ ′ is wrapped. Still, the free
parameter gives different polynomials with positive integer coefficients later by the merged-log-concavity.

Example 3.6. Let l = 2. Suppose a fitting ps, l,m,n,kq with a = ν(k) and b = ν(m,n,k). Then, we have the
following diagram, where mi, ni, and ki indicate the differences along the inequalities.

b1 ≤ b2 < b3 ≤ b4≥

m1

≥

m2

≥

n1

≥

n2

0
k1
≤ a1

k2
≤ a2

k3
< a3

k4
≤ a4,

Let us state the following lemmas for our later discussion.

Lemma 3.7. Suppose a fitting ps, l,m,n,kq with a = ν(k) and b = ν(m,n,k). Then, we have the following
inequalities.

1. k = pa1,a2 −a1, · · · ,a2l −a2l−1q ≥ 0.

2. b ≥ a ≥ k1 ≥ 0.

Proof. Proof of Claim 1. By the lower slope condition, k1 = ∑k[1 : 1] = a1 ≥ 0 and ki = ∑k[1 : i]−∑k[1 :
i−1] = ai −ai−1 ≥ 0.

Proof of Claim 2. By the inclusion condition, a ≥ k1 by Claim 1 and b−a = m++n ≥ 0.
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Lemma 3.8. For l ∈ Z≥1, let m,n ∈ Zl and k ∈ Z2l with a = ν(k) and b = ν(m,n,k). Then, each i ∈ JlK
gives a2l−i+1 −ai = σ(k)i and b2l−i+1 −bi = nl−i+1 +σ(k)i −mi.

Proof. We have a2l−i+1 −ai = ∑k[1 : 2l− i+1]−∑k[1 : i] = σ(k)i. Also, b2l−i+1 −bi = ∑k[1 : 2l− i+1]+
nl−i+1 − (∑k[1 : i]+mi) = σ(k)i +nl−i+1 −mi.

Lemma 3.9. Suppose a fitting ps, l,m,n,kq. Then, we have the following inequalities:

σ(k)1 ≥ σ(k)2 ≥ . . .≥ σ(k)l = kl+1 > 0;
nl +σ(k)1 −m1 ≥ nl−1 +σ(k)2 −m2 ≥ . . .≥ n1 +σ(k)l −ml > 0.

Proof. Since σ(k)l = ∑k[l +1 : l +1] = kl+1, the inequalities hold by Lemma 3.8 and the slope conditions.

In particular, we have the following equivalence for the width-one fitting condition.

Lemma 3.10. For l = 1, suppose m,n ∈ Zl and k ∈ Z2l with a gate s ≥ 0. Then, ps, l,m,n,kq is fitting if and
only if m++n ∈ JsK2l , k ≥ p0,1q, and n1 + k2 > m1.

Proof. First, m++n ∈ JsK2l is the inclusion condition. Second, for a = ν(k), the lower slope condition is a1 =
k1 ≥ 0 and a2−a1 = k2 ≥ 1. Third, for b = ν(m,n,k), the upper slope condition is b2−b1 = n1+k2−m1 > 0
by Lemma 3.8.

4 Base shift functions
By gates and exponentiations, we extend the base shift function in Definition 1.7.

Definition 4.1. Let w ∈ Z≥0, λ ∈ Z, and ρ ∈ Z≥1 with a gate s ≥ 0. Consider an indeterminate q ∈Q(X)
and non-zero φ(q) ∈Q(q). Then, in Q(X), we define the base shift function

b(s,w,λ ,φ ,ρ,q,X) =

{
b(λ ,φ ,ρ,q)w if λ ∈ JsK,
0 otherwise.

We have the following positivities.

Lemma 4.2. Let λ ∈ JsK. Then, we have the following.

1. If either w = 0, λ = 0, or ρ = 1, then b(s,w,λ ,φ ,ρ,q,X) = 1.

2. If w = 1 and λ ≥ 1, then b(s,w,λ ,1−q,ρ,q,X) = ∏h∈JλK[ρ]qh >q 0.

Proof. Proof of Claim 1. When ρ = 1 or λ = 0, φ(qρ)λ [λ ]!qρ and φ(q)λ [λ ]!q of b(s,w,λ ,φ ,ρ,q,X) coincide.
Also, w = 0 implies b(s,w,λ ,φ ,ρ,q,X) = b(λ ,φ ,ρ,q)w = 1 by λ ∈ JsK.

Proof of Claim 2. We have b(s,w,λ ,1−q,ρ,q,X) =
(λ )qρ

(λ )q
.

Let us prove Lemma 1.8.

Proof. Statement 2 gives Statement 1 by Lemma 4.2. We prove the converse. If λ = ρ = 2, then
[λ ]!qρ

[λ ]!q
= 1+q4

1+q2

is not a polynomial. This implies φ(q) ̸= 1. Suppose λ = 1. Then, φ(qρ )
φ(q) >q 0 for each ρ ∈ Z≥1. Hence,

φ(q) is a product of ψm(q) = 1−qm for some m ∈ Z≥1, since φ(0) = 1. Statement 2 now follows from the
irreducibility of φ(q).
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For l ∈ Z≥1, x ∈ Q(X)l , and φ(x) ∈ ∏i∈JlKQ(xi), we write φ(x)i = φi(xi) ∈ Q(xi). We then define the
following base shift functions over tuples.

Definition 4.3. Assume a gate s ≥ 0, l ∈ Z≥1, w ∈ Zl
≥0, m,n ∈ Zl , and ρ ∈ Zl

≥1. For an indeterminate
x ∈Q(X)l , let φ(x) ∈ ∏i∈JlKQ(xi) such that φi(xi) ̸= 0 for each i ∈ JlK. The base shift functions are

B(s, l,w,m,φ ,ρ,x,X) = ∏
i∈JlK

b(s,wi,mi,φi,ρi,xi,X) ∈Q(X),

B(s, l,w,m,n,φ ,ρ,x,X) = B(s, l,w,m,φ ,ρ,x,X)B(s, l,w,n,φ ,ρ,x,X).

5 Squaring orders
We introduce the notion of squaring orders on rational functions. This is to discuss not only polynomials
with positive integer coefficients, but also the positive real values of rational functions in some generality. We
adopt the following notion (see [GilJer]).

Definition 5.1. Suppose a set R.

1. A binary relation ⪰ on R is called a partial order if ⪰ satisfies the following conditions.

(a) f ⪰ f for each f ∈ R (reflexivity).

(b) f1 ⪰ f2 and f2 ⪰ f3 imply f1 ⪰ f3 (transitivity).

(c) f1 ⪰ f2 and f2 ⪰ f1 imply f1 = f2 (antisymmetricity).

Suppose a binary relation ≻ on R. If f ≻ f never holds (irreflexivity) and ≻ has the transitivity, then
≻ is called a strict partial order on R. We also refer to a partial order and strict partial order as an
inequality and strict inequality if no confusion occurs.

2. Let R be a ring. Assume a partial order ⪰ on R. Then, R is called a partially ordered ring of ⪰ (or
⪰-poring for short) when R satisfies the following conditions.

(a) f1 ⪰ f2 and f3 ∈ R imply f1 + f3 ⪰ f2 + f3 (additivity).

(b) f1 ⪰ 0 and f2 ⪰ 0 imply f1 f2 ⪰ 0 (multiplicativity).

Similarly, if a strict partial order ≻ on R satisfies the additivity and multiplicativity, then R is called a
strictly partially ordered ring of ≻ (or strict ≻-poring).

Let us recall the following properties of porings.

Lemma 5.2. If R is a ⪰-poring and strict ≻-poring, the following statements hold.

1. (a) f ⪰ g is equivalent to f −g ⪰ 0.

(b) f1 ⪰ f2 and g1 ⪰ g2 imply f1 +g1 ⪰ f2 +g2.

(c) f1 ⪰ f2 and g ⪰ 0 imply f1g ⪰ f2g.

(d) f1 ⪰ f2 ⪰ 0 and g1 ⪰ g2 ⪰ 0 imply f1g1 ⪰ f2g2 ⪰ 0.

2. (a) f ≻ g is equivalent to f −g ≻ 0.

(b) f1 ≻ f2 and g ≻ 0 imply f1g ≻ f2g.
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(c) f1 ≻ f2 and g1 ≻ g2 imply f1 +g1 ≻ f2 +g2.

(d) f1 ≻ f2 ≻ 0 and g1 ≻ g2 ≻ 0 imply f1g1 ≻ f2g2 ≻ 0.

Proof. Proof of Claim 1a. By the additivity and −g ∈ R, f ⪰ g implies f −g ⪰ g−g = 0. Conversely, by
g ∈ R, f −g ⪰ 0 gives f = f −g+g ⪰ 0+g = g.

Proof of Claim 1b. Claim 1b holds by the transitivity of ⪰, since f1 + g1 ⪰ f2 + g1 by g1 ∈ R, and
f2 +g1 ⪰ f2 +g2 by f2 ∈ R.

Proof of Claim 1c. Claim 1c follows from Claim 1a, because f1 − f2 ⪰ 0 by f1 ⪰ f2, and ( f1 − f2)g =
f1g− f2g ⪰ 0 by the multiplicativity of ⪰.

Proof of Claim 1d. By Claim 1c, f1 ⪰ f2 gives f1g1 ⪰ f2g1. We also have f1g1 ⪰ f2g1 ⪰ f2g2, since
g1 ⪰ g2 implies f2g1 ⪰ f2g2. Hence, f1g1 ⪰ f2g2 by the transitivity of ⪰, and f2g2 ⪰ 0 by the multiplicativity
of f2,g2 ⪰ 0.

We now obtain Claims 2a, 2c, 2b, and 2d, replacing ⪰ by ≻ in the above.

Let us consider the following active domain of a binary relation.

Definition 5.3. Suppose a binary relation ≥ on a set R. Then, let

A(≥,R) = { f ∈ R | f ≥ g or g ≥ f for some g ∈ R} .

We now introduce the notion of squaring orders on general rings.

Definition 5.4. Let R be a ring. Let ≥,> and ⪰,≻ be binary relations on R. Suppose the following conditions:

1. f > g implies f ≥ g (>-≥ implication);

2. f ≻ g implies f ⪰ g (≻-⪰ implication);

3. f ⪰ 0 implies f ≥ 0 (half ⪰-≥ implication);

4. f ≻ 0 implies f > 0 (half ≻-> implication).

We refer to these four implications as the squaring implications of ≥,> and ⪰,≻.
Also, suppose the following conditions:

1. each of f ⪰ g ≻ h and f ≻ g ⪰ h implies f ≻ h (semi-strict transitivity);

2. we have the ≥-poring A(≥,R) and strict >-poring A(>,R) such that A(≥,R) = A(>,R) (≥->-poring
equality);

3. we have the ⪰-poring A(⪰,R) and strict ≻-poring A(≻,R) such that A(⪰,R) = A(≻,R) (⪰-≻-poring
equality);

4. A(⪰,R)⊂ A(≥,R) (⪰-≥-poring inclusion).

Then, we call ⪰,≻ squaring orders on pR,≥,>q. Also, we call ≻ a strict squaring order of ⪰.

We employ the terminology “squaring orders” by the following implication diagram (“square diagram +
ring” orders):
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≻

> ⪰

≥

Also, notice that ⪰ is not necessarily “larger than or equal to”, since f ⪰ g and f ̸= g do not imply f ≻ g.
Let us state the following lemma.

Lemma 5.5. Suppose binary relations ≥,> on a ring R with the >-≥ implication and >-≥-poring equality.
Also, suppose binary relations ⪰,≻ on R with the ⪰-≥-poring inclusion and ⪰-≻-poring equality.

1. The half ⪰-≥ implication gives the ⪰-≥ implication.

2. The half ≻-> implication gives the ≻-> implication.

Proof. Proof of Claim 1. Let f ⪰ g. Since A(⪰,R) is a ⪰-poring by the ⪰-≻-poring equality, the additivity
of ⪰ gives f −g ⪰ 0. Then, f −g ≥ 0 by the half ⪰-≥ implication. Also, the ⪰-≥-poring inclusion gives

f ,g ∈ A(⪰,R)⊂ A(≥,R).

We deduce f ≥ g, since A(≥,R) is the ≥-poring by the >-≥-poring equality.
Proof of Claim 2. Claim 2 follows similarly, since we have

A(≻,R) = A(⪰,R)⊂ A(≥,R) = A(>,R)

by the ⪰-≻-poring equality, ⪰-≥-poring inclusion, and ≥->-poring equality.

Then, we verify the following implications by squaring orders.

Proposition 5.6. Squaring orders ⪰,≻ on pR,≥,>q satisfy the following.

1. f1 ⪰ f2 and g1 ≻ g2 imply f1 +g1 ≻ f2 +g2.

2. f1 ≻ f2 ⪰ 0 and g1 ≻ g2 ⪰ 0 imply f1g1 ≻ f2g2 ⪰ 0.

3. f1 ⪰ f2 ≻ 0 and g1 ≻ g2 ⪰ 0 imply f1g1 ≻ f2g2 ⪰ 0.

Proof. Proof of Claim 1. By the ≻-⪰ implication, g1 ∈ A(⪰,R). Then,

f1 +g1 ⪰ f2 +g1

by f1 ⪰ f2 and the additivity of ⪰. Also, f2 ∈ A(≻,R) by the ⪰-≻-poring equality. We deduce

f2 +g1 ≻ f2 +g2

by g1 ≻ g2 and the additivity of ≻. Claim 1 holds by the semi-strict transitivity of ⪰,≻.
Proof of Claim 2. By the semi-strict transitivity, f1 ≻ f2 ⪰ 0 implies f1 ≻ 0. Then, f1g1 ≻ f1g2 follows

from g1 ≻ g2 and Claim 2b of Lemma 5.2. Furthermore, f1 ⪰ f2 by the ≻-⪰ implication. Then, f1g2 ⪰ f2g2
by g2 ⪰ 0 and Claim 1c of Lemma 5.2. By the semi-strict transitivity, we deduce

f1g1 ≻ f2g2.
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Also, f2g2 ⪰ 0 holds by f2,g2 ⪰ 0 and the multiplicativity.
Proof of Claim 3. Since g1 ≻ 0 by the semi-strict transitivity on g1 ≻ g2 ⪰ 0, we have g1 ⪰ 0 by the ≻-⪰

implication. Then, f1g1 ⪰ f2g1 by f1 ⪰ f2 and Claim 1c of Lemma 5.2. Also, since g1 ≻ g2 and f2 ≻ 0,
Claim 2b of Lemma 5.2 gives f2g1 ≻ f2g2. Therefore,

f1g1 ≻ f2g2

by the semi-strict transitivity. We also have f2g2 ⪰ 0 by the multiplicativity, since f2 ⪰ 0 by the ≻-⪰
implication on f2 ≻ 0,

We state the following for our later discussion.

Corollary 5.7. Suppose squaring orders ⪰,≻ on pR,≥,>q. Let f1, f2,g1,g2 ∈ R such that f1 ≻ f2 ⪰ 0,
g1 ≻ 0, g1 ⪰ g2, and either g2 ≻ 0 or g2 = 0. Then, we have f1g1 ≻ f2g2 ⪰ 0.

Proof. The assumption says g1 ⪰ g2 ≻ 0 by g2 ≻ 0, or g1 ≻ g2 ⪰ 0 by g2 = 0 and g1 ≻ 0. Hence, Claims 2
and 3 in Proposition 5.6 imply the assertion.

Assume that a semiring U ⊂Q satisfies U Ľ {0}, while U ∋ 1 is not necessarily true. We call a semiring
U ⊂ Q nonnegative if U = U≥0 = {u ∈U | u ≥ 0}. We introduce the following binary relations to obtain
squaring orders.

Definition 5.8. Let OX =
{

r ∈ RL | 0 < ri < 1 for each i ∈ JLK
}

. Consider a nonnegative semiring U ⊂Q.
Then, we write the following six binary relations on Q(X).

1. f ≥U
X g if f ,g ∈Q[X] and f −g ∈U [X]. Also, f >U

X g if f ≥U
X g and f ̸= g.

2. f ≥U
X±1 g if f ,g ∈Q[X±1] and f −g ∈U [X±1]. Also, f >U

X±1 g if f ≥U
X±1 g and f ̸= g.

3. f ≥OX
g if f (r),g(r) ∈R and f (r)≥ g(r) for each r ∈ OX. Also, f >OX

g if f ≥OX
g and f (r) ̸= g(r)

for each r ∈ OX.

For simplicity, let ≥X=≥Z≥0
X , >X=>

Z≥0
X , ≥X±1=≥Z≥0

X±1 , and >X±1=>
Z≥0
X±1 .

The open-unit hypercube OX generalizes that of inequality (1.6.1). Also, OX gives the ≥OX
- and strict

>OX
-poring A(≥OX

,Q(X)). To prove this, we state the following lemmas.

Lemma 5.9. Let f ∈Q[X1]. Then, f (r) = 0 for each r ∈ AX1 if and only if f = 0 ∈Q[X1].

Proof. The if part is clear. Let us prove the only if part. Suppose X1 = {X1,i}i∈JL1K. When L1 = 1, it follows
from the division and the infinite cardinality of AX1 . Let us use the induction on L1. Suppose

Q[X1] ∋ f = ∑
j∈ZL1

f j1,..., jL1
X j1

1,1 . . .X
jL1

1,L1
̸= 0.

This gives µ ∈ ZL1 such that fµ1,...,µL1
̸= 0. Then, for X2 = {X2,i = X1,i+1}i∈JL2K of L2 = L1 −1, we have

Q[X2] ∋ g = ∑
j∈ZL2

fµ1, j1,..., jL2
X j1

2,1 . . .X
jL2

2,L2
̸= 0.

The induction now gives u ∈ AX2 such that g(u) ̸= 0. Also, Q[X1] ∋ h = f (X1,u1 . . . ,uL2) ̸= 0. Hence, the
induction gives v∈A{X1} such that h(v) ̸= 0. This implies w= pv1,u1, . . . ,uL2q∈OX1 such that f (w) ̸= 0.
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Lemma 5.10. If R is a strict ≻-poring such that /0 ̸= A(≻,R)⊂ R, then A(≻,R) = R.

Proof. We have some f ≻ g. Then, f − g ≻ 0 by Claim 2a of Lemma 5.2. Hence, each h ∈ R satisfies
f −g+h ≻ h by the additivity of ≻.

Furthermore, we adopt the following notation for our convenience.

Definition 5.11. Suppose F,G ∈Q(X)2. Then in Q(X), let

det(F,G) = det
„

F1 F2
G1 G2

ȷ

,

Frac(F) =
F2

F1
if F1 ̸= 0.

We obtain the following characterization and poring properties of A(≥OX
,Q(X)) and A(>OX

,Q(X)).

Proposition 5.12. We have the following.

1. A(≥OX
,Q(X)) = { f ∈Q(X) | f (r) ∈ R for each r ∈ OX}.

2. A(≥OX
,Q(X)) is a ≥OX

-poring.

3. A(≥OX
,Q(X)) is a strict >OX

-poring.

4. A(≥OX
,Q(X)) = A(>OX

,Q(X)).

Proof. Proof of Claim 1. Claim 1 holds by the reflexivity f ≥OX
f for f in the right-hand side.

Proof of Claim 2. First, if f1 ≥OX
f2 ≥OX

f3, then f1(r)− f2(r) ≥ 0 and f2(r)− f3(r) ≥ 0 for each
r ∈ OX. Also, f1(r)− f3(r)≥ 0 for each r ∈ OX. Then, we obtain the transitivity f1 ≥OX

f3.
Second, if f1 ≥OX

f2 ≥OX
f1, then f1(r) = f2(r) ∈ R for each r ∈ OX. This gives F1,F2 ∈ Q[X]2 such

that fi = Frac(Fi) with ∏i∈J2K Fi,1(r) ̸= 0 and det(F1,F2)(r) = 0 for each r ∈ OX. By Lemma 5.9, the
antisymmetricity f1 = f2 holds.

Third, if f1 ≥OX
f2 and f3 ∈ A(≥OX

,Q(X)), then the additivity f1 + f3 ≥OX
f2 + f3 holds by Claim 1

and f1(r)+ f3(r)− ( f2(r)+ f3(r)) = f1(r)− f2(r)≥ 0 for each r ∈ OX.
Finally, if f1, f2 ≥OX

0, then the multiplicativity f1 f2 ≥OX
0 follows from f1(r) f2(r)≥ 0 for each r ∈ OX.

Proof of Claim 3. Claim 3 holds by the argument similar to the above without the reflexivity.
Proof of Claim 4. Claim 4 follows from Lemma 5.10, since 1 >OX

0.

We now introduce the notions of squaring implications and squaring orders on X.

Definition 5.13. We refer to the squaring implications of ⪰,≻ and ≥OX
,>OX

on Q(X) as the squaring
implications of ⪰,≻ on X. Also, we refer to squaring orders ⪰,≻ on

`

Q(X),≥OX
,>OX

˘

as squaring orders
on X.

To obtain squaring orders on X, we state the following lemma.

Lemma 5.14. We have the following.

1. (a) A(≥U
X,Q(X)) is the ≥U

X-poring such that A(≥U
X,Q(X)) =Q[X].

(b) A(≥U
X,Q(X)) is a strict >U

X-poring.

(c) A(≥U
X,Q(X)) = A(>U

X,Q(X)).
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2. (a) A(≥U
X±1 ,Q(X)) is the ≥U

X±1 -poring such that A(≥U
X±1 ,Q(X)) =Q[X±1].

(b) A(≥U
X±1 ,Q(X)) is a strict >U

X±1 -poring.

(c) A(≥U
X±1 ,Q(X)) = A(>U

X±1 ,Q(X)).

Proof. Proof of Claim 1a. First, by 0 ∈U , we have the reflexivity f ≥U
X f for f ∈ A(≥U

X,Q(X)). Second,
A(≥U

X,Q(X)) =Q[X] by the reflexivity. Third, let f1 ≥U
X f2 ≥U

X f3. The transitivity f1 ≥U
X f3 follows, since

f1− f3 = ( f1− f2)+( f2− f3)∈U [X] by the semiring U . Fourth, if f1 ≥U
X f2 ≥U

X f1, then the antisymmetricity
f1 = f2 follows, since f1 − f2, f2 − f1 ∈U [X] and U =U≥0. Fifth, if f1 ≥U

X f2 and f3 ∈ A(≥U
X,Q(X)), then

the additivity f1+ f3 ≥U
X f2+ f3 holds by ( f1+ f3)− ( f2+ f3) = f1− f3 ∈U [X]. Finally, f1, f2 ≥U

X 0 implies
the multiplicativity f1 f2 ≥U

X 0 by the semiring U .
Proof of Claim 1b. Claim 1b follows as above, since f >U

X g demands f ̸= g.
Proof of Claim 1c. Lemma 5.10 gives Claim 1c, because there is f ∈U such that f >U

X 0 by U Ľ {0}.
Similar arguments hold for Claims 2a, 2b, and 2c.

Hence, we have the following squaring orders.

Proposition 5.15. The binary relations ≥U
X, >U

X, ≥U
X±1 , >U

X±1 , ≥OX
, >OX

are squaring orders on X such
that >U

X, >U
X±1 , >OX

are strict squaring orders of ≥U
X, ≥U

X±1 , ≥OX
, respectively.

Proof. First, we establish that ≥OX
,>OX

are squaring orders on X. By
Claims 2, 3, and 4 of Proposition 5.12, ≥OX

,>OX
on X satisfy the ≥OX

->OX
-poring equality. Also,

≥OX
,>OX

have the squaring implications on X by Definition 5.8.
We prove the semi-strict transitivity of ≥OX

,>OX
. Assume

f1 ≥OX
f2 >OX

f3.

Then, f1(r)− f2(r) ≥ 0 and f2(r)− f3(r) > 0 for each r ∈ OX. We deduce f1 >OX
f3 by f1(r)− f2(r)+

f2(r)− f3(r)> 0. Similarly, f1 >OX
f2 ≥OX

f3 implies f1 >OX
f3. Therefore, ≥OX

,>OX
are squaring orders

on X such that >OX
is a strict squaring order of ≥OX

.
Second, we establish that ≥U

X,>
U
X are squaring orders on X. By Claim 1 of Lemma 5.14, ≥U

X,>
U
X give

the ≥OX
->OX

-poring equality. The squaring implications of ≥U
X, >U

X on X follows from Definition 5.8. Also,
we have the ≥U

X-≥OX
-poring inclusion by Claim 1a, of Lemma 5.14 and Claims 1 and 2 of Proposition 5.12.

We prove the semi-strict transitivity of ≥U
X,>

U
X. Suppose

f1 >
U
X f2 ≥U

X f3.

Then, f1 − f2 ∈U [X] with f1 − f2 ̸= 0. Also, f2 − f3 ∈U [X]. We obtain f1 >
U
X f3 by f1 − f3 ∈U [X], since

f1 − f3 = ( f1 − f2)+( f2 − f3) ̸= 0 by U =U≥0. Also, f1 ≥U
X f2 >

U
X f3 implies f1 >

U
X f3. Hence, ≥U

X,>
U
X

are squaring orders such that >U
X is a strict squaring order of ≥U

X.
Similar arguments hold for ≥U

X±1 ,>
U
X±1 .

We compare squaring orders by the following terminology.

Definition 5.16. Let X1 ⊂ Q(X2). Assume squaring orders Oi = {⪰i,≻i} on Xi for i ∈ J2K. Then, O2 is
compatible to O1 if the ⪰1-⪰2 and ≻1-≻2 implications hold. If O2 is compatible to O1, then we write

O2 Ţ O1.

For instance,
{
≥OX

,>OX

}
Ţ O for any squaring orders O = {⪰,≻} on X by Lemma 5.5.
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5.1 Admissible variables
We discuss polynomials and their values in real numbers by squaring orders. For an indeterminate x ∈Q(X),
the binary relation >x on Q(X) does not have to be a squaring order on X. We define the following notion to
obtain >x as a squaring order.

Definition 5.17. Let x ∈Q(X) be an indeterminate. Suppose squaring orders O = {⪰,≻} on X. We call x
O-admissible (or admissible for short) if x and O satisfy the following conditions:

1. f >x 0 implies f ≻ 0 (half >x-≻ implication);

2. 1 >OX
x (upper condition of x on X).

Similarly, suppose an indeterminate x ∈Q(X)l of l ∈ Z≥1. Then, we call x O-admissible (or admissible for
short) if each xi is O-admissible.

Also, we extend Definition 1.2 for an indeterminate x ∈ Q(X)l , whose elements are not necessarily
algebraically independent over Q.

Definition 5.18. For l ∈ Z≥1, suppose an indeterminate x ∈Q(X)l . Also, suppose a nonnegative semiring
U ⊂Q.

1. Let U [x] =
{

f ∈Q(X) | f = ∑ j∈Zl
≥0

f j1,..., jl x
j1
1 . . .x jl

l for some finitely many non-zero f j1,..., jl ∈U
}

.

2. Let U [x±1] =
{

f ∈Q(X) | f = ∑ j∈Zl f j1,..., jl x
j1
1 . . .x jl

l for some finitely many non-zero f j1,..., jl ∈U
}

.

3. Let f ≥U
x g if f ,g ∈Q[x] and f −g ∈U [x]. Also, f >U

x g if f ≥U
x g and f −g ̸= 0.

4. Let f ≥U
x±1 g if f ,g ∈Q[x±1] and f −g ∈U [x±1]. Also, f >U

x±1 g if f ≥U
x±1 g and f −g ̸= 0.

For simplicity, if x = pqq, then let >U
q =>U

x , ≥U
q =≥U

x , >U
q±1=>U

x±1 , and ≥U
q±1=≥U

x±1 . When U = Z≥0, we

often omit the superscript U for the binary relations above.

By admissible variables, we shall obtain porings for these binary relations. First, we state the following
general strict-to-non-strict transitivity by an indeterminate.

Lemma 5.19. Suppose squaring orders O = {⪰,≻} on X and an indeterminate x ∈Q(X). Then, the half
>x-≻ implication yields the half ≥x-⪰ implication.

Proof. The assertion holds by the reflexivity of ⪰, since f ≥x 0 implies f >x 0 or f = 0.

Second, we obtain the following inequality implications by admissible variables.

Lemma 5.20. For squaring orders O = {⪰,≻} on X, consider an O-admissible x ∈Q(X)l of l ∈ Z≥1. Then,
we have the following.

1. The half ≥x-⪰ implication holds.

2. The half >x-≻ implication holds.

3. f ≥U
x 0 implies λ ∈ Z≥1 such that λ f ⪰ 0 and λ µ f ⪰ 0 for each µ ≥x 0.

4. f >U
x 0 implies λ ∈ Z≥1 such that λ f ≻ 0 and λ µ f ≻ 0 for each µ >x 0.
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5. f ≥U
x±1 0 implies a monomial λ >x 0 of variables xi such that λ f ⪰ 0 and λ µ f ⪰ 0 for each µ ≥x 0.

6. f >U
x±1 0 implies a monomial λ >x 0 of variables xi such that λ f ≻ 0 and λ µ f ≻ 0 for each µ >x 0.

Proof. Proof of Claim 1. Since f ≥xi 0 implies f ⪰ 0 by Lemma 5.19, Claim 1 follows from the additivity
and multiplicativity of ⪰.

Proof of Claim 2. We deduce Claim 2 similarly from the half >xi -≻ implication.
Proof of Claim 3. There exists λ ∈ Z≥1 such that λ f ≥x 0 by U =U≥0 ⊂Q. It follows that λ f ⪰ 0 by

Claim 1. The latter inequality holds by the multiplicativity of ⪰, since µ ⪰ 0 by Claim 1.
Proof of Claim 4. We deduce Claim 4 similarly from Claim 2.
Proof of Claim 5. Recall that f = ∑ j∈Zl f j1,..., jl x

j1
1 . . .x jl

l for some finitely many f j1,..., jl ∈Q>0. Hence,
there is u ∈ Zl

≥1 such that u+ j ≥ 0 whenever f j1,..., jl ∈ Q>0. This gives a monomial λ = vxu1
1 . . .xul

l >x 0
for some v ∈ Z≥1 such that λ f ≥x 0. By Claim 1, we deduce λ f ⪰ 0. The latter inequality follows from the
multiplicativity of ⪰, since µ ⪰ 0 by Claim 1.

Proof of Claim 6. We have a monomial λ = vxu1
1 . . .xul

l >x 0 for some u ∈ Zl
≥1 and v ∈ Z≥1 such that

λ f ≥x 0. Also, λ f ̸= 0, since Q[X] is an integral domain and λ ̸= 0. We obtain λ f >x 0. In particular,
λ f ≻ 0 by Claim 2. The latter inequality holds by the multiplicativity of ≻ and Claim 2.

By the inequality implications above, we deduce the following porings.

Proposition 5.21. Suppose squaring orders O = {⪰,≻} on X. Let l ∈ Z≥1 and x ∈Q(X)l be O-admissible.
Then, we have the following porings.

1. (a) A(≥U
x ,Q(X)) is the ≥U

x -poring such that A(≥U
x ,Q(X)) =Q[x].

(b) A(≥U
x ,Q(X)) is a strict >U

x -poring.
(c) A(≥U

x ,Q(X)) = A(>U
x ,Q(X)).

2. (a) A(≥U
x±1 ,Q(X)) is the ≥U

x±1 -poring such that A(≥U
x±1 ,Q(X)) =Q[x±1].

(b) A(≥U
x±1 ,Q(X)) is a strict >U

x±1 -poring.

(c) A(≥U
x±1 ,Q(X)) = A(>U

x±1 ,Q(X)).

Proof. Proof of Claim 1a. First, the reflexivity f ≥U
x f holds for f ∈ A(≥U

x ,Q(X)) by 0 ∈U . Also, A(≥U
x

,Q(X)) =Q[x] by the reflexivity. Second, f ≥U
x g ≥U

x h implies the transitivity f ≥U
x h, since f −g,g−h ∈

U [x] gives ( f −g)+(g−h)∈U [x] for the semiring U . Third, we prove the antisymmetricity. Let f ≥U
x g≥U

x f .
Then, Claim 3 of Lemma 5.20 gives λ1,λ2 ∈ Z≥1 such that λ1( f −g) ⪰ 0 and λ2(g− f ) ⪰ 0. The former
gives λ1λ2( f −g)⪰ 0 by λ2 ≥x 0 and Claim 3 of Lemma 5.20. Similarly, the latter gives λ1λ2(g− f )⪰ 0.
Then, the antisymmetricity of ⪰ yields λ1λ2 f = λ1λ2g. In particular, λ1λ2( f −g) = 0 and hence f = g, since
Q[X] is an integral domain and λ1λ2 ̸= 0. Furthermore, the additivity and multiplicativity of ≥U

x holds by the
semiring U .

Proof of Claim 1b. The irreflexivity of >U
x follows, since for each f ∈ A(≥U

x ,Q(X)), we do not have
f >U

x f by f − f = 0. Let us prove the transitivity. Consider f >U
x g >U

x h. This implies f ≥U
x h by

the transitivity of ≥U
x and >U

x -≥U
x implication. Also, Claim 4 of Lemma 5.20 gives λ ∈ Z≥1 such that

λ ( f − g),λ (g− h) ≻ 0. Then, λ ( f − g) + λ (g− h) = λ ( f − h) ≻ 0 by the additivity of ≻. This gives
f −h ̸= 0 by the irreflexivity of ≻, and hence f >U

x h. The additivity of >U
x on A(≥U

x ,Q(X)) holds by the
semiring U . To verify the multiplicativity, let f ,g >U

x 0. Then, f g ∈U [x] by f ,g ∈U [x]. Also, f g ̸= 0, since
Q[X] is an integral domain. Hence, f g >U

x 0 follows.
Proof of Claim 1c. Lemma 5.10 implies Claim 1c, since U ̸= {0} gives some f ,g ∈U [x] such that f >U

x g.
Claims 2a, 2b, and 2c hold similarly.
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Also, we state the following subset relations to obtain squaring orders by admissible variables.

Lemma 5.22. Suppose squaring orders O = {⪰,≻} on X. For l ∈ Z≥1, let x ∈Q(X)l be O-admissible. Then,
we have the following.

1. For each r ∈ OX and i ∈ JlK, we have xi(r) ∈ R such that 0 < xi(r)< 1.

2. We have A(≥U
x ,Q(X))⊂ A(≥OX

,Q(X)) and A(≥U
x±1 ,Q(X))⊂ A(≥OX

,Q(X)).

Proof. Proof of Claim 1. We notice that xi ≻ 0 by xi >xi 0 and the half >xi -≻ implication. By the half ≻->OX

implication, we obtain xi >OX
0. This means xi(r) ∈ R and xi(r)> 0 for each r ∈ OX. We deduce Claim 1

from the upper condition of xi.
Proof of Claim 2. Claim 2 holds by Claim 1.

We now obtain the following squaring orders by admissible variables, which are not necessarily alge-
braically independent over Q.

Theorem 5.23. Consider squaring orders O = {⪰,≻} on X. For l ∈ Z≥1, let x ∈Q(X)l be O-admissible.
Then, ≥U

x ,>
U
x ,≥U

x±1 ,>
U
x±1 are squaring orders on X such that >U

x and >U
x±1 are strict squaring orders of ≥U

x

and ≥U
x±1 , respectively.

Proof. We prove the assertion for ≥U
x ,>

U
x . The >OX

-≥OX
and >U

x -≥U
x implications are in Definitions 5.8

and 5.18. Claim 1 of Proposition 5.21 give the ≥U
x ->U

x -poring equality. The ≥U
x -≥OX

-poring inclusion holds
by Claim 2 of Lemma 5.22.

First, we prove the half ≥U
x -≥OX

implication. Let f ≥U
x 0. We have λ f ⪰ 0 for some λ ∈ Z≥1 by Claim 3

of Lemma 5.20. Also, λ f ≥OX
0 by the half ⪰-≥OX

implication. By λ ∈ Z≥1, we deduce the half ≥U
x -≥OX

implication f ≥OX
0.

Second, the half >U
x ->OX

implication holds similarly by Claim 4 of Lemma 5.20 and the half ≻->OX

implication.
Third, we prove the semi-strict transitivity of ≥U

x ,>
U
x . Let f ≥U

x g >U
x h. Then, f −g,g−h ∈U [x] gives

f −h ∈U [x], which implies f ≥U
x h. Also, the ≥U

x -≥OX
and >U

x ->OX
implications give f ≥OX

g >OX
h, and

hence f >OX
h. Then, f ̸= h implies f >U

x h. Similarly, we have f >U
x h by f >U

x g ≥U
x h.

The assertion for ≥U
x±1 ,>

U
x±1 holds by a parallel argument. In particular, we replace Claims 3 and 4 of

Lemma 5.20 with Claims 5 and 6 of Lemma 5.20 to prove the half ≥U
x±1 -≥OX

and >U
x±1 ->OX

implications.

We have the following admissible variables.

Proposition 5.24. Let l ∈ Z≥1. For squaring orders O = {⪰,≻} on X, let x ∈ Q(X)l be O-admissible.
Suppose an indeterminate f = ∑ j∈Zl

≥0
f j1,..., jl x

j1
1 . . .x jl

l ∈Q≥0[x].

1. f is O-admissible if f and O satisfy the following conditions:

(a) f j1,..., jl ≻ 0 if f j1,..., jl ̸= 0;

(b) 0 < ∑ j∈Zl
≥0

f j1,..., jl ≤ 1.

2. f is O-admissible if f = x j1
1 . . .x jl

l for some j ∈ Zl
≥0 such that j ̸= 0.
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Proof. Proof of Claim 1. First, we prove

f ≻ 0. (5.1.1)

Since Claim 2 of Lemma 5.20 gives x j1
1 . . .x jl

l ≻ 0 for each j ∈ Zl
≥0, f j1,..., jl ̸= 0 implies f j1,..., jl x

j1
1 . . .x jl

l ≻ 0
by Condition 1a and the multiplicativity of ≻. We deduce inequality (5.1.1) by the additivity of ≻.

Second, we prove the half > f -≻ implication. For each u ∈Z≥1, we have u ≻ 0 by Claim 2 of Lemma 5.20
and the multiplicativity of ≻. Also, for each d ∈ Z≥0, f d ≻ 0 by inequality (5.1.1) and the multiplicativity of
≻. Consequently, if g > f 0, then g ≻ 0 by the additivity and multiplicativity of ≻.

Third, the upper condition of f on X holds as follows. Since f is an indeterminate, there is j ∈ Zl
≥0 such

that f j1,···, jl x
j1
1 . . .x jl

l ̸∈Q. It follows that 1 >OX
f by Condition 1b, since Claim 1 of Lemma 5.22 implies

0 < xi(r)< 1 for i ∈ JlK and r ∈ OX.
Proof of Claim 2. Claim 1 and 1 ≻ 0 imply Claim 2.

By admissible variables, we define the following notion to discuss explicit real values of rational functions
over OX.

Definition 5.25. Suppose squaring orders O = {⪰,≻} on X. Let l ∈ Z≥1.

1. We call x ∈Q(X) fully O-admissible by X (or fully admissible for short) if x is O-admissible and there
exist d ∈ Z≥1 and Xi ∈ X such that x = Xd

i .

2. We call x ∈ Q(X)l fully O-admissible by X (or fully admissible for short) if each xi ∈ Q(X) is fully
O-admissible by X.

5.2 Mediators
We introduce the notion of mediators, extending the q-Pochhammer symbols (n)q within our purpose. Since
a strict ≻ presumes a non-strict ⪰, we often denote squaring orders {⪰,≻} just by ≻.

Definition 5.26. Consider a gate s ≥ 0, l ∈ Z≥1, w ∈ Zl
≥0, and ρ ∈ Zl

≥1. Suppose a ≻-admissible x ∈Q(X)l

and φ(x) ∈ ∏i∈JlKQ(xi). Let µ = ps, l,w,≻,ρ,x,Xq. We call φ a µ-mediator (or a mediator for short) if φ

and µ satisfy the following conditions.

1. For each i ∈ JlK, φ(x)wi
i >OX

0.

2. For each m ∈ JsKl , B(s, l,w,m,φ ,ρ,x,X)≻ 0.

We refer to 1 and 2 as the base positivity and base-shift positivity of φ and µ .

For a ≻-admissible variable q ∈Q(X), we have the squaring order >q of q-polynomials by Theorem 5.23.
Then, we introduce the notion of canonical mediators by Lemma 1.8.

Definition 5.27. Let l ∈ Z≥1. If φ(x) = p1− xiqi∈JlK ∈ ∏i∈JlKQ(xi) for an indeterminate x ∈Q(X)l , then we
call φ the canonical l-mediator (or the canonical mediator for short).

When l = 1 and x= pqq∈Q(X)l , the canonical mediator φ(x) = p1−qq∈Q(X)l gives the q-Pochhammer
symbols φ(x)1[n]q = (n)q of n ∈ Z≥0.
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6 Merged-log-concavity
We now introduce the notions of ring shift factors, merged determinants, parcels, and merged-log-concavity.

Definition 6.1. Suppose a gate s ≥ 0. Let l ∈ Z≥1, w ∈ Zl
≥0, and ρ ∈ Zl

≥1. Assume squaring orders
O = {⪰,≻} on X. Consider a ps, l,w,≻,ρ,x,Xq-mediator φ for an O-admissible x ∈Q(X)l .

1. If F = pFm ∈Q(X)qm∈Zl , then for m,n ∈ Zl and k ∈ Z2l , let

det(F ,m,n,k) = det
„

Fm F(n‘k)∨

Fmak Fn∨

ȷ

.

2. Let m,n ∈ Zl and k ∈ Z2l with a = ν(k) and b = ν(m,n,k). Suppose y = xρ . Then, in Q(X), we define
the ring shift factor

ϒ(s, l,w,m,n,k,φ ,ρ,x,X) =

∏(φ(y)⊔)(b−a)◦w⊔ ·
[b]!w⊔

y⊔

[a]!w⊔
y⊔

if a,b ≥ 0,

0 otherwise.

Also, we define the merged determinant

∆(F )(s, l,w,m,n,k,φ ,ρ,x,X) = ϒ(s, l,w,m,n,k,φ ,ρ,x,X)det(F ,m,n,k) ∈Q(X).

3. When fs = p fs,m ∈Q(X)qm∈Zl satisfies {
fs,m ≻ 0 if m ∈ JsKl ,

fs,m = 0 otherwise,

we call fs ps, l,≻q-positive (or ≻-positive for short).

4. Suppose a ≻-positive fs = p fs,m ∈Q(X)qm∈Zl . Then, we define the parcel

F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) = pFm ∈Q(X)qm∈Zl

by the following rational functions:

Fm =


fs,m

∏φ(x)m◦w · [m]!w
x

if m ∈ JsKl ,

0 otherwise.

We refer to s, l, w, ≻, fs, φ , ρ , x, and X as the gate, width, weight, strict squaring order, numerator,
mediator, base shift, base, and coordinate of F . We call them parcel parameters of F .

5. Suppose F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) with squaring orders O′ = {⪰′,≻′} Ţ O.

(a) We call F ps, l,w,≻′,φ ,ρ,x,Xq-merged-log-concave (or ≻′-merged-log-concave for short) if any
fitting ps, l,m,n,kq satisfies

∆(F )(s, l,w,m,n,k,φ ,ρ,x,X)≻′ 0.
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(b) Similarly, we call F ps, l,w,⪰′,φ ,ρ,x,Xq-merged-log-concave (or ⪰′-merged-log-concave for
short),if any fitting ps, l,m,n,kq satisfies

∆(F )(s, l,w,m,n,k,φ ,ρ,x,X)⪰′ 0.

Suppose width-l parcels F and F ′. As families of rational functions, we consider F = F ′ if Fm =
F ′

m ∈ Q(X) for each m ∈ Zl even with different parcel parameters. We later discuss the change of parcel
parameters and the merged-log-concavity in Propositions 7.8 and 18.1.

We simplify some notations in Definition 6.1 for the following cases.

Definition 6.2. Suppose a parcel F = Λ(s, l,w,≻, fs,φ ,ρ,x,X).

1. When φ is the canonical mediator, we write

ϒ(s, l,w,m,n,k,ρ,x,X) = ϒ(s, l,w,m,n,k,φ ,ρ,x,X),

∆(F )(s, l,w,m,n,k,ρ,x,X) = ∆(F )(s, l,w,m,n,k,φ ,ρ,x,X),

Λ(s, l,w,≻, fs,ρ,x,X) = Λ(s, l,w,≻, fs,φ ,ρ,x,X).

2. When ρ = ι l(1), we write

ϒ(s, l,w,m,n,k,φ ,x,X) = ϒ(s, l,w,m,n,k,φ ,ρ,x,X),

∆(F )(s, l,w,m,n,k,φ ,x,X) = ∆(F )(s, l,w,m,n,k,φ ,ρ,x,X),

Λ(s, l,w,≻, fs,φ ,x,X) = Λ(s, l,w,≻, fs,φ ,ρ,x,X).

3. When ρ = ι l(1) and φ is the canonical mediator, we write

ϒ(s, l,w,m,n,k,x,X) = ϒ(s, l,w,m,n,k,φ ,ρ,x,X),

∆(F )(s, l,w,m,n,k,x,X) = ∆(F )(s, l,w,m,n,k,φ ,ρ,x,X),

Λ(s, l,w,≻, fs,x,X) = Λ(s, l,w,≻, fs,φ ,ρ,x,X).

4. When w = ι l(0), we write

ϒ(s, l,m,n,k,X) = ϒ(s, l,w,m,n,k,φ ,ρ,x,X),

∆(F )(s, l,m,n,k,X) = ∆(F )(s, l,w,m,n,k,φ ,ρ,x,X),

Λ(s, l,≻, fs,X) = Λ(s, l,w,≻, fs,φ ,ρ,x,X).

7 Fundamental discussions on parcels and the merged-log-concavity
7.1 On the mediators
On the canonical mediators, we obtain the following q-Pochhammer symbols.

Proposition 7.1. Let F = Λ(s, l,w,≻, fs,ρ,x,X).

1. Then, we have

Fm =


fs,m

(m)w
x

for m ∈ JsKl ,

0 otherwise.
(7.1.1)
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2. Let m,n ∈ Zl , k ∈ Z2l , ρ ∈ Zl
≥1, and y = xρ with a = ν(k) and b = ν(m,n,k). Then, we have

∆(F )(s, l,w,m,n,k,ρ,x,X) =


(b)w⊔

y⊔

(a)w⊔
y⊔

·det(F ,m,n,k) if a,b ≥ 0,

0 otherwise.

(7.1.2)

Proof. Proof of Claim (7.1.1). We have m ≥ 0 by m ∈ JsKl . Then, Claim (7.1.1) holds by

∏φ(x)m◦w · [m]!w
x = ∏

i∈JlK
(1− xi)

miwi [mi]!wi
xi
= (m)w

x .

Proof of Claim (7.1.2). We obtain Claim (7.1.2), since a,b ≥ 0 gives

(φ(y)⊔)b◦w⊔ · [b]!w⊔
y⊔ = ∏

i∈JlK
(1− yi)

biwi [bi]
wi
yi
· ∏

i∈JlK
(1− yl−i+1)

bi+lwl−i+1 [bi+l ]
wl−i+1
yl−i+1 = ∏

i∈JlK
(bi)

wi
yi
(bi+l)

wl−i+1
yl−i+1 = (b)w⊔

y⊔

and similarly (φ(y)⊔)a◦w⊔ · [a]!w⊔
y⊔ = (a)w⊔

y⊔ .

On the choice of mediators, we obtain the following invariance of the merged-log-concavity for the trivial
base shifts.

Proposition 7.2. Consider F = Λ(s, l,w,≻, fs,φ ,x,X) and G = Λ(s, l,w,≻, fs,ψ,x,X). For a fitting µ =
ps, l,m,n,kq, let a = ν(k) and b = ν(m,n,k). Then, we have

∏(φ(x)⊔)(b−a)◦w⊔

∏φ(x)m◦w ·∏φ(x)n∨◦w =
∏(ψ(x)⊔)(b−a)◦w⊔

∏ψ(x)m◦w ·∏ψ(x)n∨◦w = 1, (7.1.3)

∏(φ(x)⊔)(b−a)◦w⊔

∏φ(x)(mak)◦w ·∏φ(x)(n‘k)∨◦w
=

∏(ψ(x)⊔)(b−a)◦w⊔

∏ψ(x)(mak)◦w ·∏ψ(x)(n‘k)∨◦w
= 1. (7.1.4)

In particular, F is ≻′-merged-log-concave if and only if G is ≻′-merged-log-concave. Similarly, F is
⪰′-merged-log-concave if and only if G is ⪰′-merged-log-concave.

Proof. First, we prove equation (7.1.3). By

(φ(x)n∨◦w)∨ = (φ(x)∨)(n
∨◦w)∨ = (φ(x)∨)n◦w∨

,

we have ∏φ(x)n∨◦w =∏(φ(x)∨)n◦w∨
. This gives ∏φ(x)m◦w ·∏φ(x)n∨◦w =∏(φ(x)++φ(x)∨)(m++n)◦(w++w∨)=

∏(φ(x)⊔)(m++n)◦w⊔
. By m++n = b−a, we deduce equation (7.1.3).

Second, equation (7.1.4) follows from equation (7.1.3), because

∏φ(x)(mak)◦w ·∏φ(x)(n‘k)∨◦w = ∏
i∈JlK

φ(x)(mi−σ(k)i)wi
i ·φ(x)(nl−i+1+σ(k)i)wi

i = ∏φ(x)m◦w ·∏φ(x)n∨◦w.

Third, latter statements hold by equations (7.1.3) and (7.1.4), since when µ is fitting,

ϒ(s, l,w,m,n,k,φ ,x,X)FmFn∨ =
∏(φ(x)⊔)(b−a)◦w⊔

∏φ(x)m◦w · ∏φ(x)n∨◦w

[b]!w⊔
x⊔

[a]!w⊔
x⊔

fm fn∨

[m]!w
x [n∨]!w

x
,
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and when µ is wrapped and fitting,

ϒ(s, l,w,m,n,k,φ ,x,X)FmakF(n‘k)∨ =
∏(φ(x)⊔)(b−a)◦w⊔

∏φ(x)(mak)◦w · ∏φ(x)(n‘k)∨◦w

[b]!w⊔
x⊔

[a]!w⊔
x⊔

fmak f(n‘k)∨

[m a k]!w
x [(n ‘ k)∨]!w

x
.

In Proposition 7.2. ∆(F )(s, l,w,m,n,k,φ ,x,X) = ∆(G )(s, l,w,m,n,k,ψ,x,X). But, the choice of media-
tors matters for explicit Fm(r),Gm(r) ∈ R, since r ∈ OX does not satisfy Fm(r) = Gm(r) ∈ R in general.

7.2 On the coordinates
We introduce the following notion on the choice of parcel coordinates by ιλ (1) in Definition 1.6.

Definition 7.3. Let X1 = {X1,i}i∈JL1K.

1. If λ ⊂ JL1K, then for a family κ ∈ ∏i∈λ Z≥1, we define the set

rλ ,κ(X1) =
{

Xκi
i

}
i∈λ

,

which we call a restricted coordinate of X1.

2. In particular, if κ = ιλ (1), then let

rλ (X1) = rλ ,κ(X1).

Suppose F = Λ(s, l,w,≻, fs,φ ,ρ,x,X1) and a restricted coordinate X2 = rλ ,κ(X1). Let µ = pF ,X2q.

(a) We say the following:

• µ satisfies the base condition if x ∈Q(X2)
l;

• µ satisfies the numerator condition if fs,m ∈Q(X2) for each m ∈ Zl .

(b) When the base and numerator conditions of µ hold if and only if κ = ιλ (1), we call X2 optimal for F .

By the notion above, we consider the change of coordinates X2 ⊂Q(X1) such that X2 has powers of some
elements of X2, and F is still a parcel on Q(X2). Then, we demonstrate the existence of optimal coordinates
for arbitrary parcels. For this, we introduce the following notion of faithful squaring orders.

Definition 7.4. Assume squaring orders O1 = {⪰1,≻1} on X1. We call O1 faithful if for any X2 = rλ ,κ(X1),
the binary relations ⪰2=⪰|Q(X2) and ≻2=≻|Q(X2) give the ⪰2-≻2-poring equality

A(⪰2,Q(X2)) = A(≻2,Q(X2)).

We obtain faithful squaring orders.

Lemma 7.5. Assume squaring orders O1 = {⪰1,≻1} on X1. For X2 = rλ ,κ(X1), let ⪰2=⪰1|Q(X2) and
≻2=≻1|Q(X2). Then, we have the following.

1. A(⪰2,Q(X2)) = A(⪰1,Q(X1))∩Q(X2).

2. O1 is faithful if there is an O1-admissible x ∈Q(X1).
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3. Suppose a nonnegative semiring U ⊂Q with 1 ∈U. If O1 is either
{
≥U

X1
,>U

X1

}
,
{
≥U

X±1
1
,>U

X±1
1

}
, or{

≥OX1
,>OX1

}
, then O1 is faithful.

Proof. Proof of Claim 1. If f ∈ A(⪰1,Q(X1))∩Q(X2), then f ∈ A(⪰2,Q(X2)) by the reflexivity f ⪰1 f .
Claim 1 holds, since the ⪰2-⪰1 implication yields

A(⪰2,Q(X2))⊂ A(⪰1,Q(X1))∩Q(X2).

Proof of Claim 2. Claim 2 of Lemma 5.20 gives 1≻1 0 by 1∈Z[x]. This implies 1≻2 0 by {1,0}⊂Q(X2).
Hence, Claim 2 follows from Claim 1, since A(⪰2,Q(X2)) = A(≻2,Q(X2)) by Lemma 5.10.

Proof of Claim 3. Claim 1 gives Claim 3, since each element of X1 is O1-admissible by 1 ∈U .

By Lemma 7.5, the squaring orders of parcels are always faithful, as parcels have admissible variables.
But in general, we have unfaithful squaring orders.

Example 7.6. Let X1 = {X1,1,X1,2} and X2 = {X1,1}. Also, we consider the following binary relations:

• f ⪰1 g on Q(X1) if f ,g ∈Q[X2], f −g ∈ Z≥0[X2], and ordX1,1( f −g)> 0;

• f ≻1 g if f ⪰1 g and f ̸= g.

Then, O1 = {⪰1,≻1} is of squaring orders on X1, but not faithful on X1.
We verify that O1 is of squaring orders on X1. We first prove that A(⪰1,Q(X1)) is a ⪰1-poring. The

reflexivity of ⪰1 is by ordX1,1(0) = ∞ > 0. The transitivity of ⪰1 holds, since f ⪰1 g ⪰1 h implies

ordX1,1( f −h) = min(ordX1,1( f −g),ordX1,1(g−h))> 0

by f −g,g−h∈Z≥0[X2]. The antisymmetricity of ⪰1 holds, since f ⪰1 g⪰1 f implies f = g by f −g,g− f ∈
Z≥0[X2]. We also have the additivity and multiplicativity, because we have f +h ⪰1 g+h for f ⪰1 g and
h ∈ A(⪰1,Q(X1)), and we have f g ⪰1 0 for f ,g ⪰1 0 by

ordX1,1( f g) = ordX1,1( f )+ordX1,1(g).

Hence, A(⪰1,Q(X1)) =Q[X2] is a ⪰1-poring.
Second, A(⪰1,Q(X1)) is also a strict ≻1-poring, since we similarly obtain the transitivity, additivity, and

multiplicativity of ≻1.
Third, since we have the squaring implications of O1 on X1, we obtain the semi-strict transitivity of O1 as

follows. Suppose f ⪰1 g ≻1 h. Then, f −g,g−h ∈ Z≥0[X2] and g−h ̸= 0. Hence, f −h ̸= 0. This gives
f ≻1 h, because the ≻1-⪰1 implication implies f ⪰1 g ⪰1 h, which gives f ⪰1 h. Similarly, f ≻1 g ⪰1 h
implies f ≻1 h. Therefore, O1 consists of squaring orders on X1.

However, for X3 = {X1,2}, let ⪰3=⪰1 |Q(X3) and ≻3=≻1 |Q(X3). Then, O1 is not faithful, since

/0 = A(≻3,Q(X3)) ̸= A(⪰3,Q(X3)) =Q=Q[X2]∩Q(X3).

We have the following squaring orders as restrictions of faithful squaring orders.

Lemma 7.7. Consider faithful O1 = {⪰1,≻1} on X1. For X2 = rλ ,κ(X1), suppose ≻2=≻1|Q(X2) and
⪰2=⪰1|Q(X2). Let O2 = {⪰2,≻2}. Then, we have the following.
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1. For f ,g ∈Q(X2), f >OX1
g if and only if f >OX2

g. Also, f ≥OX1
g if and only if f ≥OX2

g.

2. We have squaring orders O2 on X2 such that ≻2 is a strict squaring order of ⪰2.

3. If x ∈Q(X2) is O1-admissible, then x is O2-admissible.

Proof. Let Li = #(Xi). For simplicity, suppose λ = JL2K so that {X1,i}i∈JL2K ⊂ X1 = {X1,i}i∈JL1K and X2 ={
Xκi

1,i

}
i∈JL2K

.

Proof of Claim 1. We first prove the only if part of the strict inequalities. Fix some u ∈ R such that
0 < u < 1. Then, for r = priqi∈JL2K ∈ OX2 , we put radu,λ ,κ(r) ∈ OX1 such that

radu,λ ,κ(r)i =

{
κi?ri if i ∈ JL2K,

vi = u if i ∈ JL2 +1,L1K.

Then, f >OX1
g implies f (r)> g(r) for each r ∈OX2 by f (radu,λ ,κ(r))> g(radu,λ ,κ(r)) for radu,λ ,κ(r)∈OX1 .

Second, we prove the if part. For r ∈ OX1 , we put

powλ ,κ(r) =
`

rκi
i

˘

i∈JL2K ∈ OX2 .

Then, f >OX2
g gives f (r)> g(r) for each r ∈ OX1 by f (powλ ,κ(r))> g(powλ ,κ(r)) for powu,λ ,κ(r) ∈ OX2 .

The equivalence for non-strict inequalities holds similarly.
Proof of Claim 2. First, we have the ⪰2-≻2-poring equality A(⪰2,Q(X2)) = A(≻2,Q(X2)), since O1 is

faithful. Also, the semi-strict transitivity holds for O2, as it holds for O1.
Second, we prove the ⪰2-≥OX2

-poring inclusion. Let f ∈ A(⪰2,Q(X2)). Suppose f ⪰2 g by some
g ∈Q(X2). Then, f ⪰1 g. We deduce f ≥OX1

g by the half ⪰1-≥OX1
implication and Claim 1 of Lemma 5.5.

It follows that f ≥OX2
g by Claim 1. Similarly, g ⪰2 f implies g ≥OX2

f .
Third, we prove the squaring implications of O2 on X2. By Claim 1, the >OX2

-≥OX2
implication follows

from the >OX1
-≥OX1

implication. The ≻2-⪰2 implication follows from the ≻1-⪰1 implication. For the half
⪰2-≥OX2

implication, let f ⪰2 0. Then, since f ⪰1 0, we have f ≥OX2
0 by the half ⪰1-≥OX1

implication
and Claim 1. Similarly, we obtain the half ≻2->OX2

implication.
Proof of Claim 3. We have the half >x-≻2 implication, as O2 restricts O1 to Q(X2). We have the upper

condition of x on OX2 by 1 >OX1
x, because x(r) for each r ∈ OX2 is x(radu,λ ,κ(r))< 1.

Then, the following proposition gives parcels on restricted coordinates.

Proposition 7.8. Consider F = Λ(s, l,w,≻1, fs,φ ,ρ,x,X1) for squaring orders O1 = {⪰1,≻1} on X1. Let
X2 = rλ ,κ(X1). Assume ζ = pF ,X2q with the base and numerator conditions. Let O2 = {⪰2,≻2} for
⪰2=⪰1|Q(X2) and ≻2=≻1|Q(X2). Then, we have the following.

1. O2 has squaring orders on X2 such that ≻2 is a strict squaring order of ⪰2.

2. x is O2-admissible.

3. fs is ≻2-positive.

4. φ is a ps, l,w,≻2,ρ,x,X2q-mediator.

5. There is a parcel Λ(s, l,w,≻2, fs,φ ,ρ,x,X2).
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Proof. Proof of Claim 1. Since x is O1-admissible, O1 is faithful by Claim 2 of Lemma 7.5. This gives
Claim 1 by Claim 2 of Lemma 7.7.

Proof of Claim 2. Claim 2 holds by the base condition of ζ and Claim 3 of Lemma 7.7.
Proof of Claim 3. Claim 3 holds by the numerator condition of ζ .
Proof of Claim 4. Let µi = ps, l,w,≻i,ρ,x,Xiq for i ∈ J2K. First, we verify the base positivity of φ and

µ2. The base condition of ζ gives φ(x) ∈ Q(X2)
l . Then, φ(x)wi

i >OX2
0 by Claim 1 of Lemma 7.7, since

φ(x)wi
i >OX1

0 by the base positivity of φ and µ1. Second, the base-shift positivity of φ and µ1 implies that
of φ and µ2, since B(s, l,w,m,φ ,ρ,x,X1) ∈Q(X2) by the base condition of ζ .

Proof of Claim 5. Claim 5 follows from Claims 1, 2, 3, and 4.

Remark 7.9. If ≻1=>x and ⪰1=≥x in Proposition 7.8, then by x ∈Q(X2)
l , f ≻1 g and f ⪰1 g are equivalent

to f ≻2 g and f ⪰2 g, respectively.

We introduce the following parcels by Proposition 7.8,

Definition 7.10. Under the assumption of Proposition 7.8, we define the restricted parcel

rλ ,κ(F ,X1) = Λ(s, l,w,≻2, fs,φ ,ρ,x,X2).

In Definition 7.10, ≻2 on Q(X2) depends on ≻1 on Q(X1), as ≻2=≻1|Q(X2). However, we have the
following for some restricted squaring orders (see Remark 7.9 for ≥x,>x of the base x of a parcel).

Proposition 7.11. Let X1 and X2 = rλ ,κ(X1). Then, we have the following:

≥OX1
|Q(X2)=≥OX2

and >OX1
|Q(X2)=>OX2

; (7.2.1)

≥U
X1

|Q(X2)=≥U
X2

and >U
X1

|Q(X2)=>U
X2

; (7.2.2)

≥U
X±1

1
|Q(X2)=≥U

X±1
2

and >U
X±1

1
|Q(X2)=>U

X±1
2

. (7.2.3)

Proof. Claim 1 of Lemma 7.7 gives equations (7.2.1). We prove equations (7.2.2). First, let f ≥U
X1

g for
f ,g∈Q(X2). Then, f ≥U

X2
g, since f −g∈U [X1] implies f −g∈U [X2] by Q[X1]∩Q(X2) =Q[X2]. Second,

if f ≥U
X2

g for f ,g ∈Q[X2], then f ≥U
X1

g by f −g ∈U [X2]⊂U [X1]. Also, if f ,g ∈Q(X2) and f ̸= g, then
f >U

X1
g is the same as f >U

X2
g, since f >U

X1
g and f >U

X2
g imply f ≥U

X1
g and f ≥U

X2
g, respectively.

Therefore, equations (7.2.2) follow. Similarly, equations (7.2.3) hold.

Since Q[X] is a unique factorization domain, we employ the following notation.

Definition 7.12. If f ∈Q(X), then we write some Ir(X)( f ) ∈Q[X]2 such that Ir(X)( f )1 and Ir(X)( f )2 are
coprime and

f = Frac(Ir(X)( f )).

We use Ir(X)( f ) when our argument does not depend on the choice of Ir(X)( f )1 and Ir(X)( f )2 in Q[X].
We state the following lemmas to obtain the optimal parcel coordinate of a parcel.

Lemma 7.13. Assume Q(X) of X= {Xi}i∈JLK. Let λ1,λ2,λ3 ⊂ JLK such that λ3 = λ1 ∩λ2. For i ∈ J2K, sup-
pose κi ∈ ∏i∈λi Z≥1 and Yi = rλi,κi(X). Also, let κ3 = plcm(κ1,i,κ2,i)qi∈λ3

∈ ∏i∈λ3
Z≥1 and Y3 = rλ3,κ3(X).

Then, we have the following.
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1. Q(Y1)∩Q(Y2) =Q(Y3).

2. If f = Frac(g) ∈Q(Y3) such that g = Ir(Y1)( f ) and degXp
g1,degXp

g2 < κ2,p for some p ∈ JLK, then
f ∈Q(Y1 \

{
Xp
}
).

3. Consider F = Λ(s, l,w,≻, fs,φ ,ρ,x,X). If pF ,Y1q and pF ,Y2q satisfy the base and numerator
conditions, then so does pF ,Y3q.

Proof. By Q[Y1]∩Q[Y2] ⊃ Y3, Q(Y1)∩Q(Y2) ⊃ Q(Y3). Conversely, if f ∈ Q(Y1)∩Q(Y2), then
det(Ir(Y1)( f ), Ir(Y2)( f )) = 0 in the unique factorization domain Q[X]. Hence, each irreducible factor of
Ir(Y1)( f )i is a factor of Ir(Y2)( f )i for i ∈ J2K. In particular, f ∈Q(Y3), and hence Claim 1 follows. Claim 2
then holds, since degXp

g1 = degXp
g2 = 0 by Claim 1. Also, Claim 3 follows from Claim 1.

If u1,u2 ∈ ZL
≥1 for some L ∈ Z≥1, then let lcm(u1,u2) = plcm(u1,i,u2,i)qi∈JLK ∈ ZL

≥1.

Lemma 7.14. Let F = Λ(s, l,w,≻, fs,φ ,ρ,x,X1) of X1 = {X1,i}i∈JL1K. Then, we have the following.

1. There is the smallest non-empty X2 ⊂ X1 such that pF ,X2q has the base and numerator conditions.

2. Let rλ (X1) =X2 in Claim 1 for some λ ⊂ JL1K. Consider the partial order ≥ on V := ∏i∈λ Z≥1. Then,
there is the largest κ ∈V such that pF ,X3q of X3 = rλ ,κ(X1) has the base and numerator conditions.

Proof. Proof of Claim 1. Claim 1 follows from Claim 3 of Lemma 7.13 and the finite cardinality of X1.
Proof of Claim 2. If there are u1,u2 ∈ V such that

`

F ,rλ ,u1(X1)
˘

and
`

F ,rλ ,u2(X1)
˘

have the base
and numerator conditions, then

`

F ,rλ ,lcm(u1,u2)(X1)
˘

has the base and numerator conditions by Claim 3 of
Lemma 7.13. Hence, suppose the non-existence of the largest κ : i.e., let µi ∈V for i∈Z≥1 and Yi = rλ ,µi(X1)
with the following three conditions:

• first, µ1 = ιλ (1);

• second, pF ,Yiq satisfies the base and numerator conditions for each i ∈ Z≥1;

• third, some p ∈ λ satisfies limi→∞ µi,p = ∞.

Assume g ∈Q(Yi) for each i ∈ Z≥1. Let g = Frac(h) for h = Ir(Y1)(g). The third condition gives v ∈ Z≥1
such that degX1,p

hi < µv,p for i ∈ J2K. This implies g ∈Q(Y1 \
{

X1,p
}
) by Claim 2 of Lemma 7.13. Hence,

the base and numerator conditions hold for
`

F ,Y1 \
{

X1,p
}˘

against the smallest assumption of Y1.

By the smallest subset and the largest power above, we derive the following optimal parcel coordinates.

Proposition 7.15. Let F = Λ(s, l,w,≻1, fs,φ ,ρ,x,X1). Then, there is X2 = rλ ,κ(X1) such that X2 is optimal
for rλ ,κ(F ,X1) = Λ(s, l,w,≻2, fs,φ ,ρ,x,X2). In particular, X2 is uniquely determined by F and X1.

Proof. Because Lemma 7.14 gives the existence, let us prove the uniqueness. Let X′
2 = rλ ′,κ ′(X1) such

that X′
2 is optimal for rλ ′,κ ′(F ) = Λ(s, l,w,≻′

2, fs,φ ,ρ,x,X′
2). First, suppose rµ(X1) = rλ (X1)\ rλ ′(X1) and

rµ,p(X1)⊂ X2. By Claim 1 of Lemma 7.13, the base and numerator conditions hold for
´

F ,rλ1∩λ ′
1
(X1)

¯

.

Furthermore, each v ∈ Z≥1 gives the base and numerator conditions of
`

F ,rµ,vp(X1)∪
`

X2 \ rµ,p(X1)
˘˘

. By
the optimal property of X2, we deduce λ ′ = λ . Second, Claim 2 of Lemma 7.14 gives κ = κ ′.

We introduce the following notion to explicitly discuss the real values of parcels.

Definition 7.16. Suppose F = Λ(s, l,w,≻1, fs,φ ,ρ,x,X1). We call X fully optimal for F if X is optimal
and x ∈Q(X)l is fully admissible.
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7.3 Merged determinants by q-binomial coefficients and base shift functions
We write merged determinants by q-binomial coefficients and base shift functions. For this, we adopt the
following notation.

Definition 7.17. Consider a parcel F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) with m,n ∈ Zl , k ∈ Z2l , a = ν(k), and
b = ν(m,n,k). Let y = xρ . Then, in Q(X), we define

∆L(F )(s, l,w,m,n,k,φ ,ρ,x,X) = fs,m fs,n∨B(s, l,w,m,n∨,φ ,ρ,x,X)
„

b
a

ȷw⊔

y⊔
,

∆R(F )(s, l,w,m,n,k,φ ,ρ,x,X) = fs,mak fs,(n‘k)∨B(s, l,w,m a k,(n ‘ k)∨,φ ,ρ,x,X)
„

b
a∨

ȷw⊔

y⊔
.

We first write the σ -plus and σ -minus by ν and flips.

Lemma 7.18. Let l ∈ Z≥1, m,n ∈ Zl , and k ∈ Z2l with a = ν(k) and b = ν(m,n,k). Then, we have

m a k = (b−a∨)[1 : l], (7.3.1)
n ‘ k = (b−a∨)[l +1 : 2l]. (7.3.2)

Proof. We obtain equations (7.3.1) and (7.3.2), since i ∈ JlK gives

bi −a2l−i+1 = ∑k[1 : i]+mi −∑k[1 : 2l − i+1] = mi −∑k[i+1 : 2l − i+1] = mi −σ(k)i,

bi+l −al−i+1 = ∑k[1 : i+ l]+ni −∑k[1 : l − i+1] = ni +∑k[l − i+2 : l + i] = ni +σ(k)l−i+1.

Then, we have the following general statement on merged determinants. This allows us to examine the
merged-log-concavity not only through q-binomial coefficients and base shift functions, but also through
general non-negativities and positivities on squaring orders.

Theorem 7.19. Suppose a parcel F = Λ(s, l,w,≻, fs,φ ,ρ,x,X). Let µ = ps, l,m,n,kq for m,n ∈ Zl and
k ∈ Z2l .

1. We have the following equations:

∆L(F )(s, l,w,m,n,k,φ ,ρ,x,X) = ϒ(s, l,w,m,n,k,φ ,ρ,x,X) ·FmFn∨ ; (7.3.3)
∆R(F )(s, l,w,m,n,k,φ ,ρ,x,X) = ϒ(s, l,w,m,n,k,φ ,ρ,x,X) ·FmakF(n‘k)∨ . (7.3.4)

2. We obtain the following equation:

∆(F )(s, l,w,m,n,k,φ ,ρ,x,X)=∆L(F )(s, l,w,m,n,k,φ ,ρ,x,X)−∆R(F )(s, l,w,m,n,k,φ ,ρ,x,X).

3. We have the following inequalities:

∆L(F )(s, l,w,m,n,k,φ ,ρ,x,X)⪰ 0; (7.3.5)
∆R(F )(s, l,w,m,n,k,φ ,ρ,x,X)⪰ 0. (7.3.6)

46



4. Let µ be fitting. Then, we obtain

∆L(F )(s, l,w,m,n,k,φ ,ρ,x,X)≻ 0, (7.3.7)

and

∆R(F )(s, l,w,m,n,k,φ ,ρ,x,X)
{≻ 0 if µ is wrapped, (7.3.8)
= 0 if µ is unwrapped. (7.3.9)

Proof. Let y = xρ , a = ν(k), and b = ν(m,n,k).
Proof of Claim 1. We first prove equation (7.3.3). When m++ n ̸∈ JsK2l or a++ b ̸≥ 0, it holds by

0 = 0. In fact, if m++n ̸∈ JsK2l , then Fm = fs,m = 0 or Fn∨ = fs,n∨ = 0. Also, if a++b ̸≥ 0, then
“b

a

‰w⊔

y⊔ =

ϒ(s, l,w,m,n,k,φ ,ρ,x,X) = 0.
Assume m++n ∈ JsK2l and a++b ≥ 0. Then, m = (b−a)[1 : l]≥ 0 gives

fs,m ·B(s, l,w,m,φ ,ρ,x,X) ·
„

b[1 : l]
a[1 : l]

ȷw

y
= fs,m · ∏

i∈JlK

φi(yi)
miwi [mi]!

wi
yi

φi(xi)miwi [mi]!
wi
xi

· ∏
i∈JlK

[bi]!
wi
yi

[ai]!
wi
yi [mi]!

wi
yi

= fs,m · ∏
i∈JlK

φi(yi)
miwi [bi]!

wi
yi

φi(xi)miwi [ai]!
wi
yi [mi]!

wi
xi

=
fs,m

∏φ(x)m◦w · [m]!w
x
·∏φ(y)(b−a)[1:l]◦w ·

[b[1 : l]]!w
y

[a[1 : l]]!w
y

= Fs,m ·∏φ(y)(b−a)[1:l]◦w ·
[b[1 : l]]!w

y

[a[1 : l]]!w
y
. (7.3.10)

Also, n = (b−a)[l +1 : 2l]≥ 0 gives

fs,n∨ ·B(s, l,w,n∨,φ ,ρ,x,X) ·
„

b[l +1 : 2l]
a[l +1 : 2l]

ȷw∨

y∨

= fs,n∨ · ∏
i∈JlK

φl−i+1(yl−i+1)
niwl−i+1 [ni]!

wl−i+1
yl−i+1

φl−i+1(xl−i+1)niwl−i+1 [ni]!
wl−i+1
xl−i+1

· ∏
i∈JlK

[bi+l ]!
wl−i+1
yl−i+1

[ai+l ]!
wl−i+1
yl−i+1 [ni]!

wl−i+1
yl−i+1

= fs,n∨ · ∏
i∈JlK

φl−i+1(yl−i+1)
niwl−i+1 [bi+l ]!

wl−i+1
yl−i+1

φl−i+1(xl−i+1)niwl−i+1 [ai+l ]!
wl−i+1
yl−i+1 [ni]!

wl−i+1
xl−i+1

=
fs,n∨

∏φ(x)n∨◦w · [n∨]!w
x
·∏(φ(y)∨)(b−a)[l+1:2l]◦w∨ ·

[b[l +1 : 2l]]!w∨
y∨

[a[l +1 : 2l]]!w∨
y∨

= Fs,n∨ ·∏(φ(y)∨)(b−a)[l+1:2l]◦w∨ ·
[b[l +1 : 2l]]!w∨

y∨

[a[l +1 : 2l]]!w∨
y∨

. (7.3.11)

Equations (7.3.10) and (7.3.11) imply equation (7.3.3) by

[b[1 : l]]!w
y

[a[1 : l]]!w
y
·
[b[l +1 : 2l]]!w∨

y∨

[a[l +1 : 2l]]!w∨
y∨

=
[b]!w⊔

y⊔

[a]!w⊔
y⊔

,

∏φ(y)(b−a)[1:l]◦w ·∏(φ(y)∨)(b−a)[l+1:2l]◦w∨
= ∏(φ(y)⊔)(b−a)◦w⊔

.
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Second, we prove equation (7.3.4). As before, when (m a k) ++ (n ‘ k) ̸∈ JsK2l or a++ b ̸≥ 0, equa-
tion (7.3.4) holds by 0 = 0. Instead, assume a wrapped µ with a++b ≥ 0.

By Lemma 7.18, we have (b−a∨)[1 : l] = m a k, which is non-negative by m a k ∈ JsKl . Replacing a and
m by a∨ and m a k in equation (7.3.10), we obtain

(7.3.12)fs,mak · B(s, l,w,m a k,φ ,ρ,x,X) ·
„

b[1 : l]
a∨[1 : l]

ȷw

y
= Fs,mak · ∏φ(y)(b−a∨)[1:l]◦w ·

[b[1 : l]]!w
y

[a∨[1 : l]]!w
y
.

Also, by Lemma 7.18, we have (b−a∨)[l +1 : 2l] = n ‘ k, which is non-negative by n ‘ k ∈ JsKl . Replacing
a and n by a∨ and n ‘ k in equation (7.3.11), we obtain

(7.3.13)
fs,(n‘k)∨ · B(s, l,w,(n ‘ k)∨,φ ,ρ,x,X) ·

„

b[l + 1 : 2l]
a∨[l + 1 : 2l]

ȷw∨

y∨

= Fs,(n‘k)∨ · ∏(φ(y)∨)(b−a∨)[l+1:2l]◦w∨ ·
[b[l + 1 : 2l]]!w∨

y∨

[a∨[l + 1 : 2l]]!w∨
y∨

.

In the right-hand side of equation (7.3.12), we have

[b[1 : l]]!w
y

[a∨[1 : l]]!w
y
·
[b[l +1 : 2l]]!w∨

y∨

[a∨[l +1 : 2l]]!w∨
y∨

=
[b]!w⊔

y⊔

[a∨]!w⊔
y⊔

=
[b]!w⊔

y⊔

[a]!w⊔
y⊔

, (7.3.14)

since [a∨]!w⊔
y⊔ = ∏i∈JlK[a2l−i+1]

wi
yi ·∏i∈JlK[al−i+1]

wl−i+1
yl−i+1 = ∏i∈JlK[al+i]

wl−i+1
yl−i+1 ·∏i∈JlK[ai]

wi
yi = [a]!w⊔

y⊔ . Also, in the
right-hand side of equation (7.3.13), we have

∏φ(y)(b−a∨)[1:l]◦w ·∏(φ(y)∨)(b−a∨)[l+1:2l]◦w∨
= ∏(φ(y)⊔)(b−a)◦w⊔

. (7.3.15)

We deduce equation (7.3.4) from equations (7.3.12), (7.3.13), (7.3.14), and (7.3.15).
Proof of Claim 2. Claim 2 follows from Claim 1.

Proof of Claim 3. We prove inequality (7.3.5) by the following ⪰-non-negativities of fs,m fs,n,
“b

a

‰w⊔

y⊔ , and

B(s, l,w,m,n,φ ,ρ,x,X). We have fs,m = 0 when m ̸∈ JsKl . Then, for each m ∈ Zl , the ≻-positivity of fs and
≻-⪰ implication imply

fs,m ⪰ 0. (7.3.16)

Similarly, for each m,n ∈ Zl , we have

B(s, l,w,m,n,φ ,ρ,x,X)⪰ 0 (7.3.17)

by the base-shift positivity of φ and ps, l,w,≻,ρ,x,Xq.
Let us prove

„

b
a

ȷw⊔

y⊔
= ∏

i∈JlK

„

bi

ai

ȷwi

x
ρi
i

·
„

bl+i

al+i

ȷwl−i+1

x
ρl−i+1
l−i+1

⪰ 0. (7.3.18)
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If b−a ̸≥ 0, a ̸≥ 0, or b ̸≥ 0, then
“b

a

‰w⊔

y⊔ = 0. Suppose otherwise. Then,
“bi

ai

‰wi

x
ρi
i
>xi 0 and

“bl+i
al+i

‰wl−i+1

x
ρl−i+1
l−i+1

>xl−i+1 0

for each i ∈ JlK. Furthermore, since each xi is ≻-admissible, the multiplicativity of ≻ gives

„

b
a

ȷw⊔

y⊔
≻ 0. (7.3.19)

This induces inequality (7.3.18). Therefore, inequality (7.3.5) holds by inequalities (7.3.16), (7.3.17),
and (7.3.18). Similarly, inequality (7.3.6) holds.

Proof of Claim 4. We obtain inequality (7.3.7) by the ≻-positivity of fs, the base-shift positivity of
φ and ps, l,w,≻,ρ,x,Xq, and inequality (7.3.19), since we have the inclusion condition of µ and Claim 2
of Lemma 3.7. Similarly, we obtain inequality (7.3.8), since b− a∨ ≥ 0 by (m a k)++(n ‘ k) ∈ JsK2l and
Lemma 7.18. Also, equation (7.3.9) holds, since fs,mak fs,(n‘k)∨ = 0 by (m a k)++(n ‘ k) ̸∈ JsK2l .

7.4 Cut and shift operators
We introduce the notions of cut and shift operators on parcels. They trim and reindex the positive terms of
parcels.

7.4.1 Cut operators

Definition 7.20. Suppose gates s1,s2 ≥ 0 such that s1,1 ≤ s2,1 ≤ s2,2 ≤ s1,2. Let F1 =Λ(s1, l,w,≻, f1,s1 ,φ ,ρ,x,X).
Then, we define the parcel

Cs1,s2(F1) = Λ(s2, l,w,≻, f2,s2 ,φ ,ρ,x,X)

such that

f2,s2,m =

{
f1,s1,m if m ∈ Js2Kl ,

0 otherwise.

We call Cs1,s2 a cut operator.

Then, we have the following merged-log-concavity on cut operators.

Proposition 7.21. Let Fi = Λ(si, l,w,≻, fi,si ,φ ,ρ,x,X) for i ∈ J2K such that F2 = Cs1,s2(F1). Suppose a
fitting µ = ps2, l,m,n,kq.

1. ∆(F2)(s2, l,w,m,n,k,φ ,ρ,x,X) = ∆(F1)(s1, l,w,m,n,k,φ ,ρ,x,X) if µ is wrapped.

2. ∆(F2)(s2, l,w,m,n,k,φ ,ρ,x,X) = ∆L(F1)(s1, l,w,m,n,k,φ ,ρ,x,X) if µ is unwrapped.

3. F2 is ≻′-merged-log-concave if F1 is ≻′-merged-log-concave.

Proof. Proof of Claim 1. Claim 1 holds by Claim 2 of Theorem 7.19. In fact, we have

f2,s2,m f2,s2,n∨B(s2, l,w,m,n∨,φ ,ρ,x,X) = f1,s1,m f1,s1,n∨B(s1, l,w,m,n∨,φ ,ρ,x,X)

by s1,1 ≤ s2,1 ≤ s2,2 ≤ s1,2. Also, since (m a k)++(n ‘ k) ∈ Js2K2l , we have

f2,s2,mak f2,s2,(n‘k)∨B(s2, l,w,m a k,(n ‘ k)∨,φ ,ρ,x,X)

= f1,s1,mak f1,s1,(n‘k)∨B(s1, l,w,m a k,(n ‘ k)∨,φ ,ρ,x,X).
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Proof of Claim 2. Claim 4 of Theorem 7.19 implies

∆(F2)(s2, l,w,m,n,k,φ ,ρ,x,X) = ∆L(F2)(s2, l,w,m,n,k,φ ,ρ,x,X),

which equals to ∆L(F2)(s1, l,w,m,n,k,φ ,ρ,x,X) by m++n ∈ Js1K2l .
Proof of Claim 3. We want to prove

∆(F2)(s2, l,w,m,n,k,φ ,ρ,x,X)≻′ 0. (7.4.1)

Because µ is fitting, ps1, l,m,n,kq is fitting. Then, ∆(F1)(s1, l,w,m,n,k,φ ,ρ,x,X) ≻′ 0. If µ is wrapped,
this inequality gives inequality (7.4.1) by Claim 1. Since F1 is ≻′-merged-log-concave, we have ≻′Ţ≻. If µ

is unwrapped, this compatibility gives inequality (7.4.1) by Claim 2 and Claim 4 of Theorem 7.19.

7.4.2 Shift operators

Definition 7.22. Suppose F1 = Λ(s1, l,w,≻, f1,s1 ,φ ,ρ,x,X) with h ∈ Z≥0 and s2 = s1 + h. We define the
parcel

Sh(F1) = Λ(s2, l,w,≻, f2,s2 ,φ ,ρ,x,X)

such that

f2,s2,m =

 f1,s1,m−h ·
[m]!w

x

[m−h]!w
x

for m ∈ Js2Kl ,

0 otherwise.

We call Sh a shift operator. Also, let f2,s2 = Sh( f1,s1).

Notice that Sh(F1) is a parcel by h ∈ Z≥0, because for each m ∈ Js2Kl , the ≻-admissibility of x and the
≻-positivity of f1,s1 imply f2,s2,m = f1,s1,m−h · [m]!w

x
[m−h]!w

x
≻ 0, which is the ≻-positivity of f2,s2 .

For example, each m ∈ Js1Kl +1 satisfies

S1(F1)m =
f1,s1,m−1[m]wx

∏φ(x)m◦w · [m]!w
x
=

f1,s1,m−1

∏φ(x)m◦w · [m−1]!w
x
.

We first prove Sh+1 = S1 ◦Sh to discuss the merged-log-concavity of shift operators.

Lemma 7.23. Assume F1 = Λ(s1, l,w,≻, f1,s1 ,φ ,ρ,x,X) and h ∈ Z≥0. Then, Sh+1(F1) = S1(Sh(F1)).

Proof. Let s2 = s1 +h and s3 = s4 = s2 +1. Consider the parcels

F2 = Sh(F1) = Λ(s2, l,w,≻, f2,s2 ,φ ,ρ,x,X),

F3 = S1(F2) = Λ(s3, l,w,≻, f3,s3 ,φ ,ρ,x,X),

F4 = Sh+1(F1) = Λ(s4, l,w,≻, f4,s4 ,φ ,ρ,x,X).

Let m ∈ Js4Kl . The assertion now follows from

f3,s3,m = f2,s2,m−1 ·
[m]!w

x

[m−1]!w
x
= f1,s1,m−1−h ·

[m−1]!w
x

[m−1−h]!w
x
· [m]!w

x

[m−1]!w
x
= f1,s1,m−h−1 ·

[m]!w
x

[m−h−1]!w
x
= f4,s4,m.
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We then state the following compatibility of the fitting condition and shift operators.

Lemma 7.24. Let h ∈ Z≥0 and s2 = s1 + h. For m,n ∈ Zl and k ∈ Z2l , let µ1 = ps1, l,m−h,n−h,kq and
µ2 = ps2, l,m,n,kq. Then, we have the following.

1. µ2 is fitting if and only if µ1 is fitting.

2. µ2 is wrapped if and only if µ1 is wrapped.

Proof. Let a1 = a2 = ν(k), b1 = ν(m−h,n−h,k), and b2 = ν(m,n,k).
Proof of Claim 1. Assume that µ2 is fitting. We have the inclusion condition of µ1 by (m−h)++(n−h) ∈

Js2K2l −h = Js1K2l . Also, we have the slope conditions of µ1 by a1 = a2 and b1 = b2 −h. It follows that µ1 is
fitting. The converse holds similarly.

Proof of Claim 2. Claim 2 follows, since (m a k)++(n ‘ k) ∈ Js2K2l is equivalent to

((m−h)a k)++((n−h)‘ k) = (m a k)++(n ‘ k)−h ∈ Js2K2l −h.

We verify the following equations on the change of variables m 7→ m−1 and n 7→ n−1 by q-numbers
and q-binomial coefficients.

Lemma 7.25. Let l ∈ Z≥1, w ∈ Zl
≥0, ρ ∈ Zl

≥1, and m,n ∈ Zl
≥1. Consider a,b ∈ Z2l

≥0 such that b−a = m++n.
For an indeterminate x ∈ Q(X)l , let y = xρ . Suppose φ(x) ∈ ∏i∈JlKQ(xi) such that ∏φ(x) ̸= 0. Then, we
have the following equations:

∏φ(y)m◦w · [m]!w
y

∏φ(x)m◦w · [m]!w
x
· [m]wx ·

„

b[1 : l]
a[1 : l]

ȷw

y
= [b[1 : l]]wy ·

∏φ(y)(m−1)◦w · [m − 1]!w
y

∏φ(x)(m−1)◦w · [m − 1]!w
x
· ∏φ(y)w

∏φ(x)w ·
„

b[1 : l]− 1
a[1 : l]

ȷw

y
;

∏φ(y)n∨◦w · [n∨]!w
y

∏φ(x)n∨◦w · [n∨]!w
x
· [n∨]wx ·

„

b[l + 1 : 2l]
a[l + 1 : 2l]

ȷw∨

y∨
= [b[l + 1 : 2l]]w

∨
y∨ ·

∏φ(y)(n
∨−1)◦w · [n∨ − 1]!w

y

∏φ(x)(n∨−1)◦w · [n∨ − 1]!w
x

· ∏φ(y)w

∏φ(x)w ·
„

b[l + 1 : 2l]− 1
a[l + 1 : 2l]

ȷw∨

y∨
.

Proof. Since (b−a)[1 : l] = m ≥ 1, we have the former equation by

l.h.s. =
∏i∈JlK φi(yi)

miwi [mi]!
wi
yi

∏i∈JlK φi(xi)miwi [mi]!
wi
xi

· ∏
i∈JlK

[mi]
wi
xi
· [bi]!

wi
yi

[ai]!
wi
yi [mi]!

wi
yi

=
∏φ(y)w

∏φ(x)w ·
∏i∈JlK φi(yi)

(mi−1)wi [mi − 1]!wi
yi

∏i∈JlK φi(xi)(mi−1)wi [mi − 1]!wi
xi

· [bi]
wi
yi
· [bi − 1]!wi

yi

[ai]!
wi
yi [mi − 1]!wi

yi

= r.h.s.

Since (b−a)[l +1 : 2l] = n ≥ 1, the latter equation holds similarly by
[n∨]!w

y

[n]!w∨
y∨

=
[n∨−1]!w

y

[n−1]!w∨
y∨

.

We derive the following merged-log-concavity on shift operators.
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Proposition 7.26. Consider Fi = Λ(si, l,w,≻, fi,s,φ ,ρ,x,X) for i ∈ J2K such that F2 = Sh(F1). Let y = xρ .
Also, let µ2 = ps2, l,m,n,kq be fitting.

1. We have

∆(F2)(s2, l,w,m,n,k,φ ,ρ,x,X) = ∏
i∈JhK

[ν(m − i + 1,n − i + 1,k)]w
⊔

y⊔ ·
(

∏φ(y)w

∏φ(x)w

)2h

· ∆(F1)(s1, l,w,m − h,n − h,k,φ ,ρ,x,X).

2. Assume a squaring order ≻′ such that

ˆ

∏φ(y)w

∏φ(x)w

˙2

≻′ 0. (7.4.2)

Then, F2 is ≻′-merged-log-concave when F1 is ≻′-merged-log-concave.

Proof. Suppose a = ν(k) and b = ν(m,n,k).
Proof of Claim 1. By Lemma 7.23, it suffices to prove it for h = 1. Then, Claim 2 of Theorem 7.19 gives

∆(F2)(s2, l,w,m,n,k,φ ,ρ,x,X) = f2,s2,m f2,s2,n∨ ·B(s2, l,w,m,n∨,φ ,ρ,x,X)
„

b
a

ȷw⊔

y⊔

− f2,s2,mak f2,s2,(n‘k)∨ ·B(s2, l,w,m a k,(n ‘ k)∨,φ ,ρ,x,X)
„

b
a∨

ȷw⊔

y⊔

= f1,s1,m−1[m]wx f1,s1,(n−1)∨ [n
∨]wx ·B(s2, l,w,m,n∨,φ ,ρ,x,X)

„

b
a

ȷw⊔

y⊔

− f1,s1,mak−1[m a k]wx f1,s1,(n‘k−1)∨ [(n ‘ k)∨]wx

·B(s2, l,w,m a k,(n ‘ k)∨,φ ,ρ,x,X)
„

b
a∨

ȷw⊔

y⊔
. (7.4.3)

First, since µ2 is fitting, we have b−a = m++n ≥ h = 1 and a,b ≥ 0 by Claim 2 in Lemma 3.7. Then, in
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the right-hand side of equation (7.4.3), Lemma 7.25 gives

[m]wx [n
∨]wx B(s2, l,w,m,n∨,φ ,ρ,x,X)

„

b
a

ȷw⊔

y⊔

= [m]wx [n
∨]wx B(s2, l,w,m,φ ,ρ,x,X)B(s2, l,w,n∨,φ ,ρ,x,X)

„

b
a

ȷw⊔

y⊔

=
∏φ(y)m◦w · [m]!w

y

∏φ(x)m◦w · [m]!w
x
· [m]wx ·

„

b[1 : l]
a[1 : l]

ȷw

y
·

∏φ(y)n∨◦w · [n∨]!w
y

∏φ(x)n∨◦w · [n∨]!w
x
· [n∨]wx ·

„

b[l +1 : 2l]
a[l +1 : 2l]

ȷw

y

= [b[1 : l]]wy ·
∏φ(y)(m−1)◦w · [m−1]!w

y

∏φ(x)(m−1)◦w · [m−1]!w
x
· ∏φ(y)w

∏φ(x)w ·
„

b[1 : l]−1
a[1 : l]

ȷw

y

· [b[l +1 : 2l]]w
∨

y∨ ·
∏φ(y)(n

∨−1)◦w · [n∨−1]wy
∏φ(x)(n∨−1)◦w · [n∨−1]wx

· ∏φ(y)w

∏φ(x)w ·
„

b[l +1 : 2l]−1
a[l +1 : 2l]

ȷw∨

y∨

= [b]w
⊔

y⊔

ˆ

∏φ(y)w

∏φ(x)w

˙2

B(s1, l,w,m−1,(n−1)∨,φ ,ρ,x,X)
„

b−1
a

ȷw⊔

y⊔
. (7.4.4)

Second, if µ2 is wrapped, b−a∨ = (m a k)++(n ‘ k)≥ h = 1 by Lemma 7.18. Then, Lemma 7.25 gives

(7.4.5)
[m a k]wx [(n ‘ k)∨]wx B(s2, l,w,m a k,(n ‘ k)∨,φ ,ρ,x,X)

„

b
a∨

ȷw⊔

x⊔

= [b]w
⊔

y⊔ ·
(

∏φ(y)w

∏φ(x)w

)2

· B(s1, l,w,m a k − 1,(n ‘ k − 1)∨,φ ,ρ,x,X) ·
„

b − 1
a∨

ȷw⊔

y⊔
.

If µ2 is unwrapped, then so is µ1 by Claim 2 of Lemma 7.24. By 0 = 0, equation (7.4.5) holds.
We deduce Claim 1 from equations (7.4.3), (7.4.4), and (7.4.5), since

f1,s1,m−1 f1,s1,(n−1)∨B(s1, l,w,m − 1,(n − 1)∨,φ ,ρ,x,X)
„

b − 1
a

ȷw⊔

y⊔

= ∆L(F1)(s1, l,w,m − 1,n − 1,k,φ ,ρ,x,X),

f1,s1,mak−1 f1,s1,(n‘k−1)∨B(s1, l,w,m a k − 1,(n ‘ k − 1)∨,φ ,ρ,x,X) ·
„

b − 1
a∨

ȷw⊔

y⊔

= ∆R(F1)(s1, l,w,m − 1,n − 1,k,φ ,ρ,x,X).

Proof of Claim 2. Since b−a = m++n ≥ h and a ≥ 0, ν(m− i+1,n− i+1,k) = b− i+1 ≥ 1 for i ∈ JhK.
In particular, ∏i∈JhK[ν(m− i+1,n− i+1,k)]w

⊔
y⊔ ≻ 0 by Claim 2 of Lemma 5.20. We obtain Claim 2, since

Claim 1 and inequality (7.4.2) imply ∆(F2)(s2, l,w,m,n,k,φ ,ρ,x,X)≻′ 0.

We state the following corollary for some specific parcel parameters.

Corollary 7.27. Let Fi = Λ(si, l,w,≻, fi,s,φ ,ρ,x,X) for i ∈ J2K such that F2 = Sh(F1). Assume one of the
following four cases.

1. φ is the canonical mediator.

53



2. 1 ∈ Js1K.

3. w = ι l(0).

4. ρ = ι l(1).

Then, we have

∏φ(y)w

∏φ(x)w ≻ 0. (7.4.6)

In particular, if F1 is ≻′-merged-log-concave, then F2 is ≻′-merged-log-concave.

Proof. First, suppose Case 1. Then, since ρ ≥ 1, we have

∏φ(y)w

∏φ(x)w = ∏
i∈JlK

(1− xρi
i )wi

(1− xi)wi
= ∏

i∈JlK
[ρi]

wi
xi
≻ 0

by Claim 2 of Lemma 5.20. Second, suppose Case 2. Let m = ι l(1) ∈ Js1Kl . Then, since φ(x) is the mediator
of F1, its base-shift positivity gives

0 ≺ B(s1, l,w,m,φ ,ρ,x,X) = ∏
i∈JlK

φi(yi)
miwi [mi]!

wi
yi

φi(xi)miwi [mi]!
wi
xi

=
∏φ(y)w

∏φ(x)w .

Third, inequality (7.4.6) holds for the other cases, since ∏φ(y)w

∏φ(x)w = 1 ≻ 0.
The latter statement holds by Claim 2 of Proposition 7.26.

8 Explicit merged-log-concave parcels
By monomial conditions in Definition 1.10, we construct explicit merged-log-concave parcels for arbitrary
gates, widths, base shifts, and positive weights. Also, we discuss several conjectures on merged determinants.

8.1 Base shift functions, shifted x-binomial products, and pre-merged determinants
We state the following lemmas on the base shift functions bλ ,ρ(q) in Definition 1.7.

Lemma 8.1. We have

bλ ,ρ(q) =

 ∏
h∈JλK

[ρ]qh if λ ∈ Z≥1,

1 if λ = 0.

Proof. The assertion follows from Lemma 4.2.

Lemma 8.2. If λ ∈ Z≥0, then degq bλ ,ρ(q) =
(ρ−1)λ (λ+1)

2 .

Proof. By Lemma 8.1, degq bλ ,ρ(q) = degq qρ−1q2(ρ−1) . . .qλ (ρ−1) = (ρ−1)λ (λ+1)
2 .

Lemma 8.3. Consider λ ≥ k ≥ 0. Then, we have

bλ ,ρ(q)
bλ−k,ρ(q)

=


∑

j∈J0,ρ−1Kk

q∑h∈JkK jh(λ−k+h) if k ≥ 1,

1 otherwise.
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Proof. By Lemma 8.1, we have
bλ ,ρ (q)

bλ−k,ρ (q)
= ∏h∈Jλ−k+1,λK[ρ]qh = ∏h∈JkK[ρ]qλ−k+h if k ≥ 1 and bλ ,ρ(q) =

bλ−k,ρ(q) ̸= 0 if k = 0.

We introduce a tuple version of bλ ,ρ(q), as well as shifted x-binomial products and pre-merged determi-
nants.

Definition 8.4. Let µ ∈ Z≥1 and λ = ⌊ µ

2 ⌋. Suppose an indeterminate x ∈Q(X)µ and w,ρ ∈ Zµ

≥1 such that
x,w,ρ are palindromic. Let φ be the canonical µ-mediator.

1. If m ∈ Zµ , then we define the base shift function

B(µ,w,m,ρ,x) = ∏
i∈JµK

bwi
mi,ρi(xi) ∈Q(X).

2. We define the shifted x-binomial product U(µ,w,ρ,x) =
`

Ub
a (µ,w,ρ,x) ∈Q(X)

˘

a,b∈Zµ such that

Ub
a (µ,w,ρ,x) =

„

b
a

ȷw

xρ

B(µ,w,b−a,ρ,x).

We refer to µ , w, ρ , and x as the width, weight, base shift, and base of U(µ,w,ρ,x).

3. If e ∈ Zλ
≥0, then we define the pre-merged determinant

d(U)b
a(µ,w,ρ,e,x) =Ub

a (µ,w,ρ,x)−Ub
a∨(µ,w,ρ,x) ·∏x[1 : λ ]e ∈Q(X).

We call e the degree shift of d(U)b
a(µ,w,ρ,e,x). In particular, if x is flat and e ∈ Z≥0, then we define

d̃(U)b
a(µ,w,ρ,e,x) = d(U)b

a(µ,w,ρ,peq++ ι
λ−1(0),x).

We adopt the following notation to discuss shifted x-binomial products and pre-merged determinants by
polynomial degrees.

Definition 8.5. Let µ ∈ Z≥2, λ = ⌊ µ

2 ⌋, and a,b,w,ρ ∈ Zµ . Then, we define

Nb
a (µ,w,ρ) =

`

wiρi(bµ−i+1 −bi)(aµ−i+1 −ai)
˘

i∈JλK ∈ Zλ ,

nb
a(µ,w,ρ) = ∑Nb

a (µ,w,ρ),

hb
a(µ,w,ρ) =

⌊
nb

a(µ,w,ρ)
2

⌋
.

In particular, if ρ = ιµ(1), then let Nb
a (µ,w)=Nb

a (µ,w,ρ), nb
a(µ,w)= nb

a(µ,w,ρ), and hb
a(µ,w)= hb

a(µ,w,ρ).

We have the following degree differences of width-two shifted x-binomial products.

Lemma 8.6. Let a,b ∈ Z2 such that a,b−a,b−a∨ ≥ 0. Consider flat w,ρ ∈ Z2
≥1 and x = ι2(q) ∈Q(X)2.

Then, we have

degq

ˆ„

b
a

ȷw

xρ

˙

−degq

ˆ„

b
a∨

ȷw

xρ

˙

= nb
a(2,w,ρ), (8.1.1)

degq(U
b
a (2,w,ρ,x))−degq(U

b
a∨(2,w,ρ,x)) = nb

a(2,w). (8.1.2)
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Proof. By flat w and ρ , we have degq

´

“b
a

‰w
xρ

¯

= degq

´

“b1
a1

‰w1

qρ1

“b2
a2

‰w1

qρ1

¯

= ρ1w1(a1(b1 − a1)+ a2(b2 − a2))

and degq

´

“ b
a∨

‰w
xρ

¯

= ρ1w1(a2(b1 −a2)+a1(b2 −a1)), both of which have −a2
1 and −a2

2.
First, we deduce equation (8.1.1) by a1b1 +a2b2 −a2b1 −a1b2 = (b2 −b1)(a2 −a1).
Second, equation (8.1.2) holds as follows. By equation (8.1.1), we have

degq(U
b
a (2,w,ρ,x))− degq(U

b
a∨(2,w,ρ,x)) = degq

(„

b
a

ȷw

xρ

)
+ degq(B(2,w,b − a,ρ,x))

− degq

(„

b
a∨

ȷw

xρ

)
− degq(B(2,w,b − a∨,ρ,x))

= nb
a(2,w,ρ) + degq(B(2,w,b − a,ρ,x))

− degq(B(2,w,b − a∨,ρ,x)).

We obtain equation (8.1.2), since Lemma 8.2 gives

degq(B(2,w,b−a,ρ,x))−degq(B(2,w,b−a∨,ρ,x))

= degq(b
w1
b1−a1,ρ1

(q)bw1
b2−a2,ρ1

(q))−degq(b
w1
b1−a2,ρ1

(q)bw1
b2−a1,ρ1

(q))

=
w1(ρ1 −1)

2
·

˜

∑
i∈J2K

(bi −ai)(bi −ai +1)− (bi −a2−i+1)(bi −a2−i+1 +1)

¸

=−w1(ρ1 −1)
2

·

˜

∑
i∈J2K

(bi −a2−i+1)
2 − (bi −ai)

2

¸

=−(ρ1 −1)w1(b2 −b1)(a2 −a1).

We adopt the following notation to discuss the shifted x-binomial products and pre-merged determinants
of general widths.

Definition 8.7. Let µ ∈ Z≥3 and a ∈ Zµ . Also, suppose λ = ⌊ µ

2 ⌋ and e ∈ Zλ . Let χ(µ) = 2 if µ is even and
1 otherwise. Then, we define the following tuples:

O(a) = a[1 : λ −χ(µ)+1]++a[λ +2 : µ] ∈ Zµ−χ(µ);

C(a) = a[λ −χ(µ)+2 : λ +1] ∈ Zχ(µ);

O(µ,e) = e[1 : λ −χ(µ)+1] ∈ Zλ−χ(µ)+1;

C(µ,e) = e[λ : λ ] ∈ Zχ(µ)−1 if χ(µ) = 2.

We call O(a) and C(a) outer and center tuples of a. Also, we call O(µ,e) and C(µ,e) outer and center tuples
of e.

Then, we have the following lemma for shifted x-binomial products and pre-merged determinants.

Lemma 8.8. For µ ∈ Z≥3, suppose a,b ∈ Zµ . Let λ = ⌊ µ

2 ⌋.
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1. We have the following equations:

Ub
a (µ,w,ρ,x) =UO(b)

O(a) (µ −χ(µ),O(w),O(ρ),O(x)) ·UC(b)
C(a) (χ(µ),C(w),C(ρ),C(x));

Ub
a∨(µ,w,ρ,x) =UO(b)

O(a)∨(µ −χ(µ),O(w),O(ρ),O(x)) ·UC(b)
C(a)∨(χ(µ),C(w),C(ρ),C(x)).

2. In particular, if µ is odd, then

d(U)b
a(µ,ρ,w,e,x)=UC(b)

C(a) (χ(µ),C(w),C(ρ),C(x))·d(U)
O(b)
O(a)(µ−χ(µ),O(v),O(ρ),O(µ,e),O(x));

also, if µ is even, then

d(U)b
a(µ,ρ,w,e,x) = UC(b)

C(a) (χ(µ),C(w),C(ρ),C(x)) ·UO(b)
O(a) (µ − χ(µ),O(w),O(ρ),O(x))

− ∏x[λ : λ ]C(µ,e) ·UC(b)
C(a)∨(χ(µ),C(w),C(ρ),C(x))

· ∏x[1 : λ − 1]O(µ,e) ·UO(b)
O(a)∨(µ − χ(µ),O(w),O(ρ),O(x)).

Proof. Proof of Claim 1. Since O(w), O(ρ), O(x), and C(w), C(ρ), C(x) are palindromic, each factor in
equations of Claim 1 exists. Also,

a = O(a)[1 : λ −χ(µ)+1]++C(a)++O(a)[λ −χ(µ)+2 : µ −χ(µ)],

b = O(b)[1 : λ −χ(µ)+1]++C(b)++O(b)[λ −χ(µ)+2 : µ −χ(µ)].

We obtain Claim 1 by O(a∨) = O(a)∨ and C(a∨) = C(a)∨.
Proof of Claim 2. Claim 2 holds by Claim 1, since C(a) =C(a)∨ for odd µ .

We introduce the following notion to later discuss merged determinants by pre-merged ones.

Definition 8.9. Let µ ∈ Z≥2 and a,b ∈ Zµ . Consider a tuple ω = pµ,a,bq.

1. We call ω pre-fitting if ω satisfies the following conditions:

(a) a is non-negative and increasing;

(b) b is increasing;

(c) b1 < bµ and a1 < aµ ;

(d) a ≤ b.

We refer to Condition 1c as the end slope condition of ω .

2. We call ω tempered if a∨ ≤ b.

3. If µ ≥ 3, then we define the outer tuple Õ(ω) = pµ −χ(µ),O(a),O(b)q.

For example, if pµ,a,bq is pre-fitting and tempered, then 0 ≤ a1 ≤ a2 ≤ . . .≤ aµ ≤ b1 ≤ b2 ≤ . . .≤ bµ .
We adopt the term “pre-fitting” by the following statement.

Proposition 8.10. Suppose a gate s ≥ 0, l ∈ Z≥1, m,n ∈ Zl , and k ∈ Z2l . Let ω1 = ps, l,m,n,kq, a = ν(k),
b = ν(m,n,k), and ω2 = p2l,a,bq. Then, we have the following.
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1. If ω1 is fitting, then ω2 is pre-fitting.

2. If ω1 is wrapped, then ω2 is tempered.

Proof. Proof of Claim 1. Claim 1 follows from Claim 2 of Lemma 3.7, because the slope conditions of ω1
give the end slope condition of a and b.

Proof of Claim 2. Claim 2 holds by s ≥ 0, since b−a∨ = (m a k)++(n ‘ k) ∈ JsK2l by Lemma 7.18.

The converse of Claim 1 in Proposition 8.10 does not hold, because b−a ∈ JsK2l is not necessarily true.
Likewise, the converse of Claim 2 in Proposition 8.10 does not hold.

Furthermore, we state the following for outer tuples Õ(ω).

Lemma 8.11. Let µ ∈ Z≥3, a,b ∈ Zµ , and ω = pµ,a,bq.

1. If ω is pre-fitting, then Õ(ω) is pre-fitting.

2. If ω is tempered, then Õ(ω) is tempered.

Proof. Proof of Claim 1. Claim 1 holds, since a and O(a) (or b and O(b)) have the same end terms.
Proof of Claim 2. Claim 2 follows from O(b)≥ O(a∨) = O(a)∨.

We observe that equation (8.1.2) in Lemma 8.6 is independent on base shifts ρ . This independence
extends to the following shifted x-binomial products of general widths.

Proposition 8.12. Suppose a tempered pre-fitting ω = pµ,a,bq. Let x = ιµ(q). Then,

degq(U
b
a (µ,w,ρ,x))−degq(U

b
a∨(µ,w,ρ,x)) = nb

a(µ,w), (8.1.3)

nb
a(µ,w)> 0. (8.1.4)

Proof. We prove equation (8.1.3) by induction on µ . Suppose µ = 2. Then, w and ρ are flat. Lemma 8.6
gives equation (8.1.3), since a, b−a, and b−a∨ are non-negative for the tempered pre-fitting ω .

Suppose µ > 2. Since ω is tempered, Ub
a (µ,w,ρ,x) and Ub

a∨(µ,w,ρ,x) are non-zero for non-negative a,
b−a, and b−a∨. Also, Õ(ω) = pµ −χ(µ),O(a),O(b)q is tempered pre-fitting by Lemma 8.11. In particular,
C(a) = C(a)∨ for odd µ . Then, the induction on µ and Claim 1 of Lemma 8.8 give equation (8.1.3) by

degq(U
b
a (µ,w,ρ,x))− degq(U

b
a∨(µ,w,ρ,x)) =

nO(b)
O(a)(µ − χ(µ),O(w)) if µ is odd,

nO(b)
O(a)(µ − χ(µ),O(w)) + nC(b)

C(a)(χ(µ),C(w)) otherwise,

= nb
a(µ,w).

Since a and b are increasing, the end slope condition of ω implies inequality (8.1.4) by

nb
a(µ,w) = ∑

i∈J⌊ µ

2 ⌋K
wi(bµ−i+1 −bi)(aµ−i+1 −ai)≥ w1(bµ −b1)(aµ −a1)> 0.
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8.2 Positivity of pre-merged determinants
We obtain polynomials with positive integer coefficients by pre-merged determinants. For this, we recall the
following notions of q-polynomials.

Definition 8.13. Suppose f (q) = ∑i∈Z≥0
fiqi ∈ Q[q] and c( f ) = ( fi)i∈Jordq( f K,degq( f )). The q-polynomial

f is called palindromic if c( f ) is palindromic, unimodal if c( f ) is unimodal, and log-concave if c( f ) is
log-concave. Also, f is said to have a step if c( f ) has a step.

Hence, for example, f (q) ∈ Q[q] is unimodal if and only if f = 0 or fordq( f ) ≤ fordq( f )+1 ≤ . . . ≤ fi ≥
. . .≥ fdegq( f )−1 ≥ fdegq( f ) for some i ∈ Z. We now recall the well-known statement below on palindromic
and unimodal q-polynomials.

Proposition 8.14. ([Sta, Proposition 1]) For each palindromic and unimodal q-polynomials f (q),g(q) ∈
Q≥0[q], the following is a palindromic and unimodal q-polynomial:

f (q)g(q) ∈Q≥0[q].

The following extends Proposition 8.14 for the change of variable q 7→ qρ of ρ ∈ Z≥1. This is to construct
explicit merged-log-concave parcels for non-trivial base shifts.

Proposition 8.15. Suppose ρ ∈ Z≥1 and λ (q) = [ρ]q. Then, we have the following.

1. For each palindromic and unimodal q-polynomial h(q) ∈ Q≥0[q] and palindromic and unimodal
qρ -polynomial f (q) ∈Q≥0[qρ ], the following is a palindromic and unimodal q-polynomial:

f (q)λ (q)h(q).

2. λ (q) is the unique lowest-degree q-polynomial such that λ (0) = 1 with the above property.

Proof. Proof of Claim 1. First, a product of palindromic q-polynomials is a palindromic q-polynomial, since
palindromic q-polynomials φ(q),ψ(q) ∈Q[q] such that φ ,ψ ̸= 0 imply

∑
j1+ j2=i

φ j1ψ j2 = ∑
j1+ j2=i

φdegq(φ)− j1+ordq(φ)ψdegq(ψ)− j2+ordq(ψ) = ∑
j1+ j2=degq(φ)+degq(ψ)−i+ordq(φ)+ordq(ψ)

φ j1ψ j2 .

Second, we prove that µ(q) = f (q)λ (q) is a unimodal q-polynomial for ρ > 1, since µ(q) is a palindromic
q-polynomial by the above. This gives Claim 1 by Proposition 8.14. Let λ (q) = ∑0≤i≤ρ−1 λiqi and µ(q) =
f (q)λ (q) = ∑0≤i≤degq( f )+ρ−1 µiqi. Assume ordq( f ) = 0 for simplicity. Then, we need

µi+1 −µi ≥ 0 (8.2.1)

when 0 ≤ i ≤ degq( f )+ρ−1
2 −1. Since µi+1 −µi = ∑ j fi− j(λ j+1 −λ j), we have

µi+1 −µi = fi+1 − fi+1−ρ . (8.2.2)

Suppose

degq( f )
2

−1 < i ≤
degq( f )+ρ −1

2
−1.
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Since degq( f ) = ρk for some k ∈ Z, we have

ρk < 2i+2 ≤ ρ(k+1)−1.

This gives i+1 ̸≡ 0 (mod ρ). Since fi+1 = fi+1−ρ = 0 and equation (8.2.2), we deduce inequality (8.2.1) by
µi+1 −µi = 0. Suppose

0 ≤ i ≤
degq( f )

2
−1.

We then deduce inequality (8.2.1) by equation (8.2.2), since f (q) is a palindromic and unimodal q-polynomial.
Proof of Claim 2. Let λ ′(q) ∈ Q[q] such that λ ′(0) = 1 and degq(λ

′(q)) ≤ ρ − 1. Suppose that (1+
qρ)λ ′(q) is a palindromic and unimodal q-polynomial. Since λ ′(q) has no steps and degq λ ′(q) = ρ − 1,
Claim 2 follows.

We introduce the following rational functions to analyze pre-merged determinants.

Definition 8.16. Let a,b ∈ Z2 and w,ρ ∈ Z2
≥1. Then, we define

χa,b(w,ρ,q) =
„

b
a

ȷw

qρ1

[ρ1]q ∈ Z≥0[q],

κa,b(w,ρ,q) =
∏i∈J2K bwi

bi−a2,ρ1
(q)

[ρ1]q
∈Q(q).

Each q-binomial coefficient is a palindromic and unimodal q-polynomial [Oha, Syl]. This gives the
following for χa,b(w,ρ,q) by Claim 1 of Proposition 8.15.

Corollary 8.17. If b ≥ a ≥ 0, then χa,b(w,ρ,q)>q 0 is a palindromic and unimodal q-polynomial.

Proof. Since b ≥ a ≥ 0,
“b

a

‰

qρ1 >q 0. This leads to χa,b(w,ρ,q) >q 0 by [ρ1]q >q 0. Also, Claim 1 of

Proposition 8.15 implies that χa,b(w,ρ,q) is a palindromic and unimodal q-polynomial, since
“b1

a1

‰

qρ1
and

“b2
a2

‰

qρ1
are palindromic and unimodal qρ1 -polynomials.

Also, we have the following positivity of κa,b(w,ρ,q).

Lemma 8.18. If a,b ∈ Z2 satisfy b2 > a2 and b1 ≥ a2, then κa,b(w,ρ,q)>q 0.

Proof. The assertion holds, since Lemma 8.1 gives
b

w2
b2−a2 ,ρ1

(q)

[ρ1]q
=

∏h∈Jb2−a2K[ρ1]
w2
qh

[ρ1]q
>q 0 and bw1

b1−a2,ρ1
(q) >q

0.

Then, the following positivity holds by width-two pre-merged determinants.

Proposition 8.19. For a tempered pre-fitting ω = p2,a,bq, consider a flat w ∈ Z2
≥1 and e ∈ J0,nb

a(2,w)K. Let
x = ι2(q). Then, we have

d̃(U)b
a(2,w,ρ,e,x)>q 0. (8.2.3)

60



Proof. Since ω is tempered pre-fitting, we have

0 ≤ a1 < a2 ≤ b1 < b2. (8.2.4)

First, for ρ1 = 1 and e = 0, we prove inequality (8.2.3) by inequality (8.2.4). We assume w1 = 1, because
inequality (8.2.5) implies

“b
a

‰

q >q
“ b

a∨
‰

q, and hence multiplying the both sides give inequality (8.2.3) for
w1 ≥ 1. By the induction b2, we want

d̃(U)b
a(2,w,ρ,e,x) =

„

b
a

ȷ

q
−

„

b
a∨

ȷ

q
>q 0. (8.2.5)

The smallest possible b2 is 2 by inequality (8.2.4). Then, a1 = 0, a2 = 1, and b1 = 1. This yields
inequality (8.2.5) by the direct computation:

d̃(U)b
a(2,w,ρ,e,x) =

„

1
0

ȷ

q

„

2
1

ȷ

q
−

„

1
1

ȷ

q

„

2
0

ȷ

q
= q >q 0. (8.2.6)

Let b2 ≥ 2. By the q-Pascal identity, the first and second terms of inequality (8.2.5) give

„

b
a

ȷ

q
=

˜

„

b1 −1
a1 −1

ȷ

q
+qa1

„

b1 −1
a1

ȷ

q

¸

·

˜

„

b2 −1
a2 −1

ȷ

q
+qa2

„

b2 −1
a2

ȷ

q

¸

=

„

b1 −1
a1 −1

ȷ

q

„

b2 −1
a2 −1

ȷ

q
+qa1

„

b1 −1
a1

ȷ

q

„

b2 −1
a2 −1

ȷ

q

+qa2

„

b1 −1
a1 −1

ȷ

q

„

b2 −1
a2

ȷ

q
+qa1+a2

„

b1 −1
a1

ȷ

q

„

b2 −1
a2

ȷ

q
;

„

b
a∨

ȷ

q
=

„

b1 −1
a2 −1

ȷ

q

„

b2 −1
a1 −1

ȷ

q
+qa2

„

b1 −1
a2

ȷ

q

„

b2 −1
a1 −1

ȷ

q

+qa1

„

b1 −1
a2 −1

ȷ

q

„

b2 −1
a1

ȷ

q
+qa1+a2

„

b1 −1
a2

ȷ

q

„

b2 −1
a1

ȷ

q
.

Comparing the powers of q, we prove the following inequalities:
„

b−1
a−1

ȷ

q
−

„

b−1
a∨−1

ȷ

q
≥q 0; (8.2.7)

„

b−1
(a1,a2 −1)

ȷ

q
−

„

b−1
(a1,a2 −1)∨

ȷ

q
≥q 0; (8.2.8)

„

b−1
(a1 −1,a2)

ȷ

q
−

„

b−1
(a1 −1,a2)∨

ȷ

q
≥q 0; (8.2.9)

„

b−1
a

ȷ

q
−

„

b−1
a∨

ȷ

q
>q 0. (8.2.10)

In particular, inequality (8.2.10) gives the strictness of inequality (8.2.5).
We deduce inequality (8.2.7) by the induction for a1 ≥ 1 and by 0 ≥q 0 for a1 = 0. Also, inequality (8.2.8)

follows by the induction for a2 −1 > a1 and by 0 ≥q 0 for a2 −1 = a1.
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Assume b1 − 1 < a2. Then,
“b1−1

a2

‰

q
= 0. This gives inequality (8.2.9) by

“ b−1
pa1−1,a2q

‰

q
≥q 0. Also,

inequality (8.2.10) holds, because
“b−1

a

‰

q >q 0 by b−1 ≥ a in inequality (8.2.4).
Instead, assume b1 −1 ≥ a2. Then, inequality (8.2.9) holds by the induction for a1 ≥ 1 and by 0 ≥q 0

for a1 = 0. Also, inequality (8.2.10) follows from the induction. Therefore, we obtain inequality (8.2.5) for
ρ1 = 1 and e = 0.

Second, we prove inequality (8.2.3) for ρ1 ≥ 1 and e ∈ J0,nb
a(2,w)K. By inequality (8.2.4), we have

d = b−a1 ∈ Z2 and k = a2 −a1 ∈ Z such that

d > 0, (8.2.11)
k > 0. (8.2.12)

For λ ∈ Zk and α,β ∈ Z, let

E(λ ,w,α,β ,k) = β +w1 ∑
i∈JkK

λi(α − k+ i) ∈ Z.

Then, by d − k = b−a2 and Lemma 8.3, we have

d̃(U)b
a(2,w,ρ,e,x)

= bw1
b1−a2,ρ1

(q)bw1
b2−a2,ρ1

(q)

˜

„

b
a

ȷw

qρ1

bw1
b1−a1,ρ1

(q)

bw1
b1−a2,ρ1

(q)
−qe

„

b
a∨

ȷw

qρ1

bw1
b2−a1,ρ1

(q)

bw1
b2−a2,ρ

(q)

¸

= κa,b(w,ρ,q)

˜

χa,b(w,ρ,q)
bw1

b1−a1,ρ1
(q)

bw1
b1−a2,ρ1

(q)
−qe

χa∨,b(w,ρ,q)
bw1

b2−a1,ρ1
(q)

bw1
b2−a2,ρ1

(q)

¸

= κa,b(w,ρ,q)

¨

˝χa,b(w,ρ,q) ∑
λ∈J0,ρ1−1Kk

qE(λ ,w,d1,0,k)−χa∨,b(w,ρ,q) ∑
λ∈J0,ρ1−1Kk

qE(λ ,w,d2,e,k)

˛

‚. (8.2.13)

For λ ∈ J0,ρ1 −1Kk, we prove the following inequality:

χa,b(w,ρ,q)qE(λ ,w,d1,0,k)−χa∨,b(w,ρ,q)q
E(λ ,w,d2,e,k) >q 0. (8.2.14)

By Lemma 8.18 and equation (8.2.13), inequality (8.2.3) follows from inequality (8.2.14). By the change of
variable q 7→ qρ1 , inequality (8.2.5) implies

„

b
a

ȷw

qρ1

>qρ1

„

b
a∨

ȷw

qρ1

.

Multiplying [ρ1]q on the both sides, we induce

χa,b(w,ρ,q)−χa∨,b(w,ρ,q)>q 0. (8.2.15)

Furthermore, Lemma 8.6 gives

degq(χa,b(w,ρ,q))−degq(χa∨,b(w,ρ,q)) = degq

˜

„

b
a

ȷw

yρ

[ρ]q

¸

−degq

˜

„

b
a∨

ȷw

yρ

[ρ]q

¸

= degq

„

b
a

ȷw

yρ

−degq

„

b
a∨

ȷw

yρ

= nb
a(2,w,ρ). (8.2.16)
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Also,

ordq(χa,b(w,ρ,q))−ordq(χa∨,b(w,ρ,q)) = 0. (8.2.17)

Then, we prove the following inequality:

0 ≤ E(λ ,w,d2,e,k)−E(λ ,w,d1,0,k)≤ nb
a(2,w,ρ). (8.2.18)

By Corollary 8.17 with equation (8.2.15) and inequalities (8.2.16) and (8.2.17), inequality (8.2.14) follows
from inequality (8.2.18). The left-hand side of inequality (8.2.18) holds by d2 −d1 = b2 −b1 > 0 and λ ≥ 0.
The right-hand side of inequality (8.2.18) holds as follows. Since 0 ≤ e ≤ nb

a(2,w) = w1(b2 −b1)(a2 −a1),
inequalities (8.2.11) and (8.2.12) give

E(λ ,w,d2,e,k)−E(λ ,w,d1,0,k) = e+w1(d2 −d1)∑λi

≤ e+w1(d2 −d1)k(ρ1 −1)
≤ w1ρ1(b2 −b1)(a2 −a1)

= nb
a(2,w,ρ).

Remark 8.20. Suppose w1 = ρ1 = 1 and e= 0. For non-negative integers a1 < a2 ≤ b1 < b2, Proposition 8.19
restricts to the following q-polynomials with positive integer coefficients:

d̃(U)b
a(2,w,ρ,e,x) =

„

b1

a1

ȷ

q

„

b2

a2

ȷ

q
−

„

b1

a2

ȷ

q

„

b2

a1

ȷ

q
>q 0,

which are important for us to obtain almost strictly unimodal sequences.
The strict inequality above differs from the q-log-concavity of q-binomial coefficients in the pioneering

works [But, Kra, Sag]. Let us explain more precisely. Suppose non-negative integers b1 ≤ b2, a1 ≤ a2, k, and
λ ≤ d(a,b,k) := k(2((a2 −a1)+ k)+(b2 −b1)). Then, [Kra, Corollary 3] gives

T (a,b,k,λ ,q) :=
„

b1

a2

ȷ

q

„

b2

a1

ȷ

q
−qλ

„

b1

a2 + k

ȷ

q

„

b2

a1 − k

ȷ

q
≥q 0.

However, unlike d̃(U)b
a(2,w,ρ,e,x)= q in inequality (8.2.6), degq T (a,b,k,λ ,q)> 0 implies that T (a,b,k,λ ,q)

is not a monomial. Indeed, if
“b1

a2

‰

q

“b2
a1

‰

q

“ b1
a2+k

‰

q

“ b2
a1−k

‰

q
̸= 0, then

degq

˜

„

b1

a2

ȷ

q

„

b2

a1

ȷ

q

¸

−degq

˜

„

b1

a2 + k

ȷ

q

„

b2

a1 − k

ȷ

q

¸

= d(a,b,k)> 1.

Hence, T (a,b,k,λ ,q) is not a monomial, since
“b1

a2

‰

q

“b2
a1

‰

q
and

“ b1
a2+k

‰

q

“ b2
a1−k

‰

q
are palindromic and uni-

modal q-polynomials such that ordq

´

“b1
a2

‰

q

“b2
a1

‰

q

¯

= ordq

´

“ b1
a2+k

‰

q

“ b2
a1−k

‰

q

¯

= 0. If
“b1

a2

‰

q

“b2
a1

‰

q
= 0, then

“ b1
a2+k

‰

q

“ b2
a1−k

‰

q
= 0. Also, if

“ b1
a2+k

‰

q

“ b2
a1−k

‰

q
= 0, then degq T (a,b,k,λ ,q) > 0 implies that T (a,b,k,λ ,q)

is not a monomial, as it is a palindromic and unimodal q-polynomial.

We extend Proposition 8.19 after the following lemma.
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Lemma 8.21. Consider a shifted x-binomial product Ub
a (µ,w,ρ,x) with λ = ⌊ µ

2 ⌋ and e∈Zλ
≥0. Let x∈Q(X)µ

be ≻-admissible. Then, we have the following.

1. Ub
a (µ,w,ρ,x)>x 0 if and only if b ≥ a ≥ 0.

2. Ub
a (µ,w,ρ,x)≥x 0 and Ub

a (µ,w,ρ,x) ·∏x[1 : λ ]e ≥x 0.

Proof. Proof of Claim 1. Unless b ≥ a ≥ 0,
“b

a

‰w
xρ = 0. We deduce Claim 1, since

“b
a

‰w
xρ >x 0 by b ≥ a ≥ 0

and B(µ,w,b−a,ρ,x)>x 0 by Theorem 5.23 and Lemma 8.1.
Proof of Claim 2. Claim 2 holds by ∏x[1 : λ ]e ≥x 0.

Theorem 8.22. Suppose a pre-fitting ω = pµ,a,bq. Consider a ≻-admissible x ∈ Q(X)µ and w,ρ ∈ Zµ

≥1
such that x, w, and ρ are palindromic. For λ = ⌊ µ

2 ⌋, let e ∈ Zλ
≥0 such that e ≤ Nb

a (µ,w). Then, we have

d(U)b
a(µ,w,ρ,e,x)>x 0. (8.2.19)

Proof. Assume that ω is not tempered. Then, the assertion follows from Claim 1 of Lemma 8.21, because
Ub

a∨(µ,w,ρ,x) = 0 by b ̸≥ a∨ and d(U)b
a(µ,w,ρ,e,x) =Ub

a (µ,w,ρ,x)>x 0 by b ≥ a ≥ 0.
Hence, assume that ω is tempered. We prove inequality (8.2.19) by the induction on µ . When µ = 2,

Proposition 8.19 gives inequality (8.2.19). Suppose µ ≥ 3. Then, O(µ,e)≤ NO(b)
O(a) (µ −χ(µ),O(w)). Also,

Õ(ω) is tempered and pre-fitting by Lemma 8.11. Hence, the induction implies

d(U)
O(b)
O(a)(µ −χ(µ),O(w),O(ρ),O(µ,e),O(x))>x 0. (8.2.20)

Now, since b ≥ a ≥ 0 implies C(b)≥ C(a)≥ 0, Claim 1 of Lemma 8.21 gives

UC(b)
C(a) (χ(µ),C(w),C(ρ),C(x))>x 0. (8.2.21)

If µ is odd, then inequalities (8.2.20) and (8.2.21) give inequality (8.2.19) by Claim 2 of Lemma 8.8.
Instead, assume that µ is even. First, let C(a) or C(b) be flat. Then, 0 ≤ C(µ,e) ≤ NC(b)

C(a) (χ(µ),C(w)) =
ρλ wλ (bλ+1 −bλ )(aλ+1 −aλ ) = 0. Also, since C(x), C(w), and C(ρ) are flat, inequality (8.2.21) gives

∏x[λ : λ ]C(µ,e) ·UC(b)
C(a)∨(χ(µ),C(w),C(ρ),C(x)) =

„

C(b)
C(a)∨

ȷC(w)

C(x)C(ρ)
bwλ

bλ−aλ+1,ρλ
(xλ )b

wλ+1
bλ+1−aλ ,ρλ+1

(xλ+1)

=

„

C(b)
C(a)

ȷC(w)

C(x)C(ρ)
bwλ

bλ−aλ ,ρλ
(xλ )b

wλ+1
bλ+1−aλ+1,ρλ+1

(xλ+1)

=UC(b)
C(a) (χ(µ),C(w),C(ρ),C(x))>x 0.

Hence, inequality (8.2.19) follows from inequality (8.2.20) and Claim 2 of Lemma 8.8. Second, let 0 ≤
C(a)1 < C(a)2 ≤ C(b)1 < C(b)2. Then, d(U)

C(b)
C(a)(χ(µ),C(w),C(ρ),C(µ,e),C(x)) >x 0 by the induction.

Hence, we have

UC(b)
C(a) (χ(µ),C(w),C(ρ),C(x))>x ∏x[λ : λ ]C(µ,e) ·UC(b)

C(a)∨(χ(µ),C(w),C(ρ),C(x)).

Also, inequality (8.2.21) implies

UO(b)
O(a) (µ −χ(µ),O(w),O(ρ),O(x))>x ∏x[1 : λ −1]O(µ,e) ·UO(b)

O(a)∨(µ −χ(µ),O(w),O(ρ),O(x)).

Now, inequality (8.2.19) follows from Claim 2 of Proposition 5.6, Claim 2 of Lemma 8.8, and Claim 2 of
Lemma 8.21.
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In particular, if x = ιµ(q), then Theorem 8.22 gives d(U)b
a(µ,w,ρ,e,x)>q 0.

8.3 Merged-log-concavity by functional monomial indices
We give merged-log-concave parcels by the following σ -difference functions and functional monomial
indices.

Definition 8.23. Assume a gate s ≥ 0, l ∈ Z≥1, and w ∈ Zl
≥1. Suppose a function t : Zl →Q.

1. For m,n ∈ Zl and k ∈ Z2l , we define the σ -difference function

t∆(m,n,k) = t(m a k)+ t((n ‘ k)∨)− t(m)− t(n∨) ∈Q.

2. We call υ = ps, l,w, tq a functional monomial index if υ satisfies

t∆(m,n,k) ∈ Z, (8.3.1)

0 ≤ t∆(m,n,k)≤ nb
a(2l,w) (8.3.2)

for each wrapped fitting ps, l,m,n,kq with a = ν(k) and b = ν(m,n,k). We call s, l,w, and t the gate,
width, weight, and core function of υ . We refer to (8.3.1) and (8.3.2) as the integer monomial condition
and the sum monomial condition of υ .

We also define the following shifted x-binomial products, quasi-merged determinants, and proper media-
tors.

Definition 8.24. Suppose a gate s≥ 0, l ∈Z≥1, and w,ρ ∈Zl
≥1. Let µ = ps, l,w,≻,ρ,x,Xq for a ≻-admissible

x ∈Q(X)l . Consider a µ-mediator φ .

1. We define the shifted x-binomial product V (s, l,w,φ ,ρ,x) =
`

V b
a (s, l,w,φ ,ρ,x) ∈Q(X)

˘

a,b∈Z2l such
that

V b
a (s, l,w,φ ,ρ,x) =

„

b
a

ȷw⊔

(xρ )⊔
B(s,2l,w⊔,b−a,φ⊔,ρ⊔,x⊔,X).

We refer to s, l, w, φ , ρ , and x as the gate, width, weight, mediator, base shift, and base of
V (s, l,w,φ ,ρ,x).

2. Let a,b ∈ Z2l and e ∈ Zl
≥0. We define the quasi-merged determinant

d(V )b
a(s, l,w,φ ,ρ,e,x) =V b

a (s, l,w,φ ,ρ,x)−V b
a∨(s, l,w,φ ,ρ,x) ·∏xe ∈Q(X).

We call e the degree shift of d(V )b
a(s, l,w,φ ,ρ,e,x).

3. We call φ a proper µ-mediator (or a proper mediator for short) if

d(V )b
a(s, l,w,φ ,ρ,e,x)≻ 0

for each fitting ps, l,m,n,kq, a = ν(k), b = ν(m,n,k), and e ∈ Zl
≥0 such that e ≤ Nb

a (2l,w⊔).

4. If x is flat and e ∈ Z≥0, then let

d̃(V )b
a(s, l,w,φ ,ρ,e,x) = d(V )b

a(s, l,w,φ ,ρ,peq++ ι
l−1(0),x).
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Let us compare pre-merged and quasi-merged determinants.

Lemma 8.25. Let s = p0,∞q, l ∈ Z≥1, and e ∈ Zl
≥0. Consider a ≻-admissible x ∈Q(X)l and the canonical

l-mediator φ . Then, d(V )b
a(s, l,w,φ ,ρ,e,x) = d(U)b

a(2l,w⊔,ρ⊔,e,x⊔).

Proof. Since φ(x) is canonical,

B(2l,w⊔,b−a,ρ⊔,x⊔) = B(s, l,w,(b−a)[1 : l],((b−a)[l +1 : 2l])∨,φ ,ρ,x,X),

B(2l,w⊔,b−a∨,ρ⊔,x⊔) = B(s, l,w,(b−a∨)[1 : l],((b−a∨)[l +1 : 2l])∨,φ ,ρ,x,X).

These equations give the assertion, since

Ub
a (2l,w⊔,ρ⊔,x⊔) =

„

b
a

ȷw⊔

(xρ )⊔
B(2l,w⊔,b−a,ρ⊔,x⊔) =V b

a (s, l,w,φ ,ρ,x),

Ub
a∨(2l,w⊔,ρ⊔,x⊔) =

„

b
a∨

ȷw⊔

(xρ )⊔
B(2l,w⊔,b−a∨,ρ⊔,x⊔) =V b

a∨(s, l,w,φ ,ρ,x).

We demonstrate the existence of proper mediators.

Proposition 8.26. Suppose s1 = p0,∞q, l ∈ Z≥1, and w,ρ ∈ Zl
≥1. Let µ1 = ps1, l,w,≻,ρ,x,Xq for a ≻-

admissible x ∈Q(X)l . Let µ2 = ps2, l,w,≻,ρ,x,Xq for a gate s2 ≥ 0. Consider a µ1-mediator φ . Then, we
have the following.

1. If φ is the canonical l-mediator, then φ is a proper µ1-mediator.

2. If ρ = ι l(1), then φ is a proper µ1-mediator.

3. If φ is a proper µ1-mediator, then φ is a proper µ2-mediator.

Proof. Proof of Claim 1. Consider a fitting ps1, l,m,n,kq, a = ν(k), and b = ν(m,n,k). Then, p2l,a,bq is
pre-fitting by Claim 1 of Proposition 8.10. For each e ∈ Zl

≥0 such that e ≤ Nb
a (2l,w⊔), Theorem 8.22 and

Lemma 8.25 give the properness of φ :

d(V )b
a(s1, l,w,φ ,ρ,e,x) = d(U)b

a(2l,w⊔,ρ⊔,e,x⊔)≻ 0.

Proof of Claim 2. Claim 2 holds by Theorem 8.22, since Claim 1 of Lemma 4.2 implies

B(s1,2l,w⊔,b−a,φ⊔,ρ⊔,x⊔,X) = B(s1,2l,w⊔,b−a∨,φ⊔,ρ⊔,x⊔,X) = 1.

Proof of Claim 3. Suppose a fitting ps2, l,m,n,kq with a = ν(k) and b = ν(m,n,k). Then, we have

d(V )b
a(s2, l,w,φ ,ρ,e,x) =


d(V )b

a(s1, l,w,φ ,ρ,e,x)≻ 0 if b−a∨ ∈ Js2K2l ,
„

b
a

ȷw⊔

(xρ )⊔
B(s2,2l,w⊔,b−a,φ⊔,ρ⊔,x⊔,X)≻ 0 otherwise,

where the latter holds by the base-shift positivity of φ and µ1.
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Let us write merged-determinants by quasi-merged determinants.

Lemma 8.27. Suppose a parcel F = Λ(s, l,w,≻, fs,ρ,φ ,x,X). Assume a fitting ps, l,m,n,kq with a = ν(k)
and b = ν(m,n,k). Let y = xρ . Then, we have

( fs,m fs,n∨)
−1∆(F )(s, l,w,m,n,k,φ ,ρ,x,X)

= B(s, l,w,(b−a)[1 : l],((b−a)[l +1 : 2l])∨,φ ,ρ,x,X)
„

b
a

ȷw⊔

y⊔

− ( fs,m fs,n∨)
−1 fs,mak fs,(n‘k)∨B(s, l,w,(b−a∨)[1 : l],((b−a∨)[l +1 : 2l])∨,φ ,ρ,x,X)

„

b
a∨

ȷw⊔

y⊔
.

Proof. Claim 2 of Theorem 7.19 and Lemma 7.18 yield the assertion, since fs,m and fs,n∨ are invertible by
the ≻-positivity.

We now obtain the following merged-log-concave parcels by functional monomial indices.

Theorem 8.28. Let υ = ps, l,w, tq be a functional monomial index. Let x = ι l(q) for a ≻-admissible q ∈Q(X).
For µ = ps, l,w,>q,ρ,x,Xq, suppose a proper µ-mediator φ . Consider a parcel F =Λ(s, l,w,≻, fs,φ ,ρ,x,X)
such that

fs,m =

{
qt(m) for m ∈ JsKl ,

0 otherwise.

Then, for each fitting ps, l,m,n,kq with a = ν(k) and b = ν(m,n,k), we have

q−t(m)−t(n∨)∆(F )(s, l,w,m,n,k,φ ,ρ,x,X) = d̃(V )b
a(s, l,w,φ ,ρ, t∆(m,n,k),x)>q 0. (8.3.3)

In particular, F is ≻-merged-log-concave.

Proof. Lemma 8.27 gives the equation in (8.3.3), since ( fs,m fs,n∨)
−1 fs,mak fs,(n‘k)∨ = qt∆(m,n,k).

Let us prove the inequality in (8.3.3). The monomial conditions of υ give e(t,m,n,k) ∈ Zl
≥0 such that

e ≤ Nb
a (2l,w⊔) and ∑e(t,m,n,k) = t∆(m,n,k). Then, since φ is proper, the inequality in (8.3.3) holds by

d̃(V )b
a(s, l,w,φ ,ρ, t∆(m,n,k),x,X) = d(V )b

a(s, l,w,φ ,ρ,e(t,m,n,k),x,X)>q 0.

We have the merged-log-concavity of F by the inequality in (8.3.3) and the half >q-≻ implication,
because fs,m fs,n∨ = qt(m)+t(n∨) ≻ 0 by the ≻-positivity of fs.

If there is a ≻-admissible x ∈Q(X)l for some l ∈ Z≥1, then Claim 2 of Lemma 5.20 implies 1 ≻ 0 by
1 >x 0. Hence, we introduce the following notion of constant parcels.

Definition 8.29. Suppose a gate s ≥ 0 and l ∈ Z≥1. Let 1s,l =
`

1s,l,m ∈Q(X)
˘

m∈Zl such that

1s,l,m =

{
1 if m ∈ JsKl ,

0 otherwise.

Then, we define a constant parcel Λ(s, l,w,≻,r1s,l ,ρ,φ ,x,X) when r ∈Q satisfies r ≻ 0.
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These constant parcels yield merged-log-concave parcels for arbitrary gates, widths, positive weights, and
base shifts as follows.

Corollary 8.30. Consider a constant parcel F = Λ(s, l,w,≻,r1s,l ,ρ,φ ,x,X) with w ∈ Zl
≥1 and a proper

mediator φ . Then, F is ≻-merge-log-concave.

Proof. The assertion follows from Theorem 8.28 by the functional monomial indices of zero cores.

In particular, Claim 1 of Proposition 8.26 and Corollary 8.30 give the following explicit merged-log-
concave constant parcels.

Example 8.31. If F = Λ(s, l,w,≻,1s,l ,ρ,x,X) with w ∈ Zl
≥1, then

Fm =


1

(m)w
x

for m ∈ JsKl ,

0 otherwise.

8.4 Monomial indices and functional monomial indices
We realize monomial indices pl,w,γq as functional monomial indices ps, l,w, tq of infinite gates s. This gives
more explicit merged-log-concave parcels via Theorem 8.28, since 3l rational numbers determine the core
γ of a monomial index pl,w,γq. Furthermore, by Proposition 7.21, cut operators turn merged-log-concave
parcels of infinite gates into merged-log-concave parcels of any gates.

We state the following lemma on fitting tuples.

Lemma 8.32. Consider an infinite gate s ≥ 0 and l ∈ Z≥1. For k ∈ Z2l and m ∈ Zl , let µm,k = ps, l,m,m,kq.

1. Suppose k ∈ Z2l
≥1 and a flat m ∈ Zl with a = ν(k) and b = ν(m,m,k). Then, b j −bi = a j −ai > 0 for

each 1 ≤ i < j ≤ 2l.

2. Suppose k ∈ Z2l
≥1 and a flat m ∈ Zl .

(a) If m ∈ JsKl , then µm,k is fitting.

(b) If m ≥ σ(k)1 + s1, then µm,k is wrapped and fitting.

3. Let r ∈ Zl
≥1 and λ ∈ Zl . Then, we have k ∈ Z2l

≥1 with the following properties.

(a) For each i ∈ JlK, 0 < σ(k)i ≡ λi (mod ri).

(b) µm,k is wrapped and fitting for each flat m ∈ Zl such that m ≥ σ(k)1 + s1.

4. Let λ ∈ JlK and R ∈ Z≥1. Then, we have k ∈ Z2l
≥1 with the following properties.

(a) σ(k)i = 2(l − i)+1 for i ∈ Jλ +1, lK.

(b) σ(k)i = R+2(l − i) for i ∈ Jλ K.

(c) µm,k is wrapped and fitting for each flat m ∈ Zl such that m ≥ σ(k)1 + s1.

Proof. Proof of Claim 1. Claim 1 holds, since b j −bi = (a j +m1)− (ai +m1) = a j −ai by the flat m and
a j −ai = ∑k[i+1 : j]> 0 by k ∈ Z2l

≥1.
Proof of Claim 2. Claim 1 gives Claim 2a by a1 = k1 ≥ 0. Claim 2b holds as follows. First, µm,k is fitting

by Claim 2a, because m ∈ JsKl by σ(k)1 ≥ 0 and s2 = ∞. Second, µm,k is wrapped, because m ‘ k ∈ JsKl and
(m a k)i = mi −σ(k)i ≥ mi −σ(k)1 ≥ s1 by Lemma 3.9.
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Proof of Claim 3. Let us obtain k ∈ Z2l
≥1 with Property 3a. Let k[1 : l] = ι l(1) and kl+1 = p1rl +λl ∈ Z≥1

for some p1 ∈ Z≥1. Furthermore, we inductively put some pi ∈ Z≥1 for i ∈ J2, lK so that

kl+i = pirl−i+1 +λl−i+1 −∑k[l − i+2 : l + i−1] ∈ Z≥1. (8.4.1)

This is possible, since i ∈ J2, lK implies 2 ≤ l − i+ 2 < l + i− 1 < l + i ≤ 2l. It follows that i = l gives
σ(k)l = kl+1 ≡ λl (mod rl). Now, let i ∈ Jl −1K. Then,

2 ≤ l − i+1 ≤ l. (8.4.2)

This gives 2 ≤ l − (l − i+1)+2 < l +(l − i+1)−1 ≤ 2l −1 and (i+1)+1 ≤ 2l − (i+1)+1. Hence, we
have

∑k[l − (l − i+1)+2 : l +(l − i+1)−1] = ∑k[i+1 : 2l − i]

= ∑k[(i+1)+1 : 2l − (i+1)+1)]+ ki+1

= σ(k)i+1 + ki+1.

Therefore, since l − (l − i+1)+1 = i, the equation in (8.4.1) and inequality (8.4.2) imply

σ(k)i = ∑k[i+1 : 2l − i+1]

= σ(k)i+1 + ki+1 + kl+l−i+1

= σ(k)i+1 + ki+1 + pl−i+1ri +λi −σ(k)i+1 − ki+1

≡ λi (mod ri).

Then, Property 3a holds, since k ∈ Z2l
≥1 implies σ(k)> 0. Also, Claim 2b gives a flat m ∈ Zl in Property 3b.

Proof of Claim 4. Let k ∈ Z2l
≥1 such that ki = 1 for 2 ≤ i ̸= λ +1 ≤ 2l and kλ+1 = R. Then, Property 4a

holds, since i ∈ Jλ +1, lK gives

σ(k)i = ∑k[i+1 : 2l − i+1] = 2(l − i)+1

by λ +1 < i+1 ≤ 2l − i+1. We have Property 4b, because

σ(k)i = ∑k[i+1 : 2l − i+1] = (2l − i+1)− i−1+R = R+2(l − i)

by i+1 ≤ λ +1 ≤ 2l − i+1 for i ∈ Jλ K. Also, Claim 2b gives a flat m ∈ Zl in Property 4c.

Let us rewrite nb
a(2l,w).

Lemma 8.33. Let l ∈ Z≥1. Consider m,n ∈ Zl and k ∈ Z2l with a = ν(k) and b = ν(m,n,k). Then,
nb

a(2l,w) = ∑i∈JlK wiσ(k)i(nl−i+1 +σ(k)i −mi).

Proof. The statement holds by Lemma 3.8, since nb
a(2l,w) = ∑Nb

a (2l,w) for Nb
a (2l,w)i = wi(b2l−i+1 −

bi)(a2l−i+1 −ai).

This gives the σ -differences tγ,∆ below by quadratic polynomials tγ in Definition 1.11.

Lemma 8.34. Let l ∈ Z≥1 and γ ∈ ∏i∈JlKQ3. Suppose m,n ∈ Zl and k ∈ Z2l . Then, we have the following.

1. tγ,∆(m,n,k) = 2∑i∈JlK γi,1σ(k)i(nl−i+1 +σ(k)i −mi).

69



2. If each 2γi,1 ∈ Z, then tγ,∆(m,n,k) ∈ Z.

Proof. Proof of Claim 1. We have

tγ,∆(m,n,k) = tγ(m a k) + tγ((n ‘ k)∨)− tγ(m)− tγ(n∨)
= ∑

i∈JlK
tγ,i(mi − σ(k)i) + tγ,i(nl−i+1 + σ(k)i)− tγ,i(mi)− tγ,i(nl−i+1)

= ∑
i∈JlK, j∈J3K

γi, j(mi − σ(k)i)
3− j + γi, j(nl−i+1 + σ(k)i)

3− j − γi, jm
3− j
i − γi, jn

3− j
l−i+1

= ∑
i∈JlK

γi,1(−2miσ(k)i + σ(k)2
i ) + γi,1(2nl−i+1σ(k)i + σ(k)2

i )

Proof of Claim 2. Claim 2 follows from Claim 1.

We discuss the sum monomial condition of monomial indices by the following.

Lemma 8.35. Let l ∈ Z≥1 and u,w ∈Ql . Then, each h ∈ JlK satisfies

0 ≤ ∑
i∈JhK

ui ≤ ∑
i∈JhK

wi (8.4.3)

if and only if each decreasing κ ∈Ql
≥0 satisfies

0 ≤ ∑
i∈JlK

κiui ≤ ∑
i∈JlK

κiwi.

Proof. The if part holds by κ = ιh(1) ++ ι l−h(0). We prove the only if part. When l = 1, it holds by
0 ≤ u1 ≤ w1 and k1 ≥ 0. Assume l ≥ 2.

First, we prove 0 ≤ ∑i∈JlK κiui. The left-hand side of inequality (8.4.3) implies −ul ≤ ∑i∈Jl−1K ui, and
hence κlul ≥−∑i∈Jl−1K κlui by κl ∈Q≥0. The induction on l gives

∑
i∈JlK

κiui = ∑
i∈Jl−1K

κiui +κlul ≥ ∑
i∈Jl−1K

κiui − ∑
i∈Jl−1K

κlui = ∑
i∈Jl−1K

(κi −κl)ui ≥ 0,

since κ[1 : l −1]−κl ∈Ql
≥0 is decreasing.

Second, we obtain 0 ≤ ∑i∈JlK κi(wi −ui) as above, since

0 ≤ ∑
i∈JhK

(wi −ui)≤ ∑
i∈JhK

(wi −ui)

for each h ∈ JlK by the right-hand side of inequality (8.4.3).

We now obtain the following equivalence on monomial indices and functional monomial indices by
polynomials.

Theorem 8.36. Suppose an infinite gate s ≥ 0, l ∈ Z≥1, and w ∈ Zl
≥1. Consider ti(z) ∈Q[z] for each i ∈ JlK.

Also, let t(m) = ∑i∈JlK ti(mi) ∈Q for each m ∈ Zl . Then, the following statements are equivalent.

1. There is a functional monomial index φ = ps, l,w, tq.

2. There is a monomial index ψ = pl,w,γq such that t = tγ .

70



Proof. Let us prove Statement 1 by Statement 2. First, the integer monomial condition of φ follows from that
of ψ by Claim 2 of Lemma 8.34. Second, the sum monomial condition of φ holds as follows. Suppose a
fitting ps, l,m,n,kq. Then, Lemma 3.9 gives the decreasing pσ(k)i(nl−i+1 +σ(k)i −mi)qi∈JlK ∈ Zl

≥0. Then,
by Lemma 8.35, the sum monomial condition of ψ gives

0 ≤ 2 ∑
i∈JlK

γi,1σ(k)i(nl−i+1 +σ(k)i −mi)≤ ∑
i∈JlK

wiσ(k)i(nl−i+1 +σ(k)i −mi).

We obtain the sum monomial condition of φ by Lemma 8.33 and Claim 1 of Lemma 8.34.
Let us prove Statement 2 by Statement 1. First, we prove that each degz ti(z) ≤ 2 by contradiction.

Assume d = max(degz t1(z), . . . ,degz tl(z))> 2. Suppose all integers j1 < · · ·< ju such that t ji(z) = α ji,dzd +
α ji,d−1zd−1 + . . . and α ji,d ̸= 0. Also, for a flat m ∈ Zl , let

t ji,∆(m,m,k) = t ji((m a k) ji)+ t ji((m ‘ k)∨ji)− t ji(m ji)− t ji(m
∨
ji)

= t ji(m1 −σ(k) ji)+ t ji(m1 +σ(k) ji)− t ji(m1)− t ji(m1).

We deduce degm1
t ji,∆(m,m,k)≤ d −2, since for each λ ∈ J0,d −1K, both md−λ

1 and md−λ−1
1 vanish in

α ji,d−λ

´

(m1 −σ(k) ji)
d−λ +(m1 +σ(k) ji)

d−λ −md−λ

1 −md−λ

1

¯

.

Furthermore, we have

t∆(m,m,k) = 2md−2
1

ˆ

d
d −2

˙

∑
i∈JuK

α ji,dσ(k)2
ji + . . . . (8.4.4)

If λ ∈ JlK and R ∈Z≥1, then Claim 4 of Lemma 8.32 gives h(R,λ )∈Z2l
≥1 and a wrapped fitting µ(R,λ ) =

ps, l,g(R,λ ),g(R,λ ),h(R,λ )q for each flat g(R,λ )≥ σ(h(R,λ ))+ s1 such that

σ(h(R,λ ))i =

{
R+2(l − i) for i ∈ Jλ K,
2(l − i)+1 for i ∈ Jλ +1, lK.

For a large enough R ∈ Z≥1, we deduce

∑
i∈JuK

α ji,dσ(h(R,1))2
ji ̸= 0. (8.4.5)

Furthermore, for a(R,λ ) = ν(h(R,λ )) and b(g(R,λ ),R) = ν(g(R,λ ),g(R,λ ),h(R,λ )), Lemma 8.33 gives

nb(g(R,λ ),R)
a(R,λ ) (2l,w) = ∑

i∈JlK
wiσ(h(R,λ ))2

i , (8.4.6)

which is independent of g(R,λ ).
Therefore, since d > 2, equations (8.4.4) and (8.4.6) and inequality (8.4.5) imply that large R ∈ Z≥1 and

g(R,1) ∈ Zl violate the sum monomial condition

0 ≤ t∆(g(R,1),g(R,1),h(R,1))≤ nb(g(R,1),R)
a(R,1) (2l,w)

of φ . This gives γ ∈ ∏i∈JlKQ3 such that t = tγ .
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Second, we prove the integer monomial condition of ψ by contradiction. Suppose some j ∈ JlK such
that 2γ j,1 ̸∈ Z. For each i ∈ JlK, let yi ≥ 1 and 2γi,1 =

xi
yi

with coprime xi and yi. By Claim 3 of Lemma 8.32,
y = pyiqi∈JlK gives a flat g(y) ∈ Zl and wrapped fitting ps, l,g(y),g(y),h(y)q such that σ(h(y)) j ≡ 1 (mod y j)

and σ(h(y))i ≡ 0 (mod yi) if i ̸= j. Then, we have

2γ j,1σ(h(y))2
j ̸∈ Z,

2γi,1σ(h(y))2
i ∈ Z if i ̸= j.

However, this contradicts the integer monomial condition of φ , since t∆(g(y),g(y),h(y)) = ∑i 2γi,1σ(h(y))2
i

by Claim 1 of Lemma 8.34.
Third, we prove the sum monomial condition of ψ . For µ(R,λ ), a(R,λ ), and b(g(R,λ ),λ ) above,

Lemma 8.33 and Claim 1 of Lemma 8.34 yield

nb(g(R,λ ),λ )
a(R,λ ) (2l,w)− t∆(g(R,λ ),g(R,λ ),w) = ∑

i∈JλK
(wi − 2γi,1)(R + 2(l − i))2

+ ∑
i∈Jλ+1,lK

(wi − 2γi,1)(2(l − i) + 1)2.

Since w > 0, ∑i∈JλK wiσ(h(R,λ ))2
i = ∑i∈JλK wi(R+2(l − i))2 > 0. It follows that

lim
R→∞

nb(g(R,λ ),λ )
a(R,λ ) (2l,w)− t∆(g(R,λ ),g(R,λ ),w)

∑i∈JλK wiσ(h(R,λ ))2
i

= 1−
∑i∈JλK 2γi,1

∑i∈JλK wi
.

This limit has to be non-negative by nb(g(R,λ ),λ )
a(R,λ ) (2l,w)− t∆(g(R,λ ),g(R,λ ),w) ≥ 0 in the sum monomial

condition of φ . We derive

∑
i∈JλK

2γi,1 ≤ ∑
i∈JλK

wi. (8.4.7)

Similarly, limR→∞
t∆(g(R,λ ),g(R,λ ),w)
∑i∈JλK wiσ(h(R,λ ))2

i
=

∑i∈JλK 2γi,1

∑i∈JλK wi
≥ 0 by t∆(g(R,λ ),g(R,λ ),w) ≥ 0 in the sum monomial

condition of φ . We derive

0 ≤ ∑
i∈JλK

2γi,1. (8.4.8)

Therefore, the sum monomial condition of ψ follows, since we have inequalities (8.4.7) and (8.4.8) for each
λ ∈ JlK.

Remark 8.37. The proof above holds, since the flips n∨ and (n ‘ k)∨ in ∆(F )(s, l,w,m,n,k,φ ,ρ,x,X) kill
γi,2 in tγ,∆(m,n,k) by Claim 1 of Lemma 8.34.

Remark 8.38. Suppose the notation in Theorem 8.36 with l = 1. If φ is a functional monomial index, then
Theorem 8.36 implies t = tγ , and hence γ1,1 ≥ 0 by the sum monomial condition of ψ . Proposition 13.17 also
gives this inequality in some general setting, not necessarily of monomial indices.
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8.5 Monomial parcels
By monomial indices, we introduce the notion of monomial parcels to explicitly obtain more merged-log-
concave parcels.

Definition 8.39. Suppose an infinite gate s ≥ 0 and monomial index pl,w,γq. Let q ∈Q(X).

1. We define the t-monomials Ψs,γ,q =
`

Ψs,γ,q,m ∈Q(X)
˘

m∈Zl such that

Ψs,γ,q,m =

{
qtγ (m) if m ∈ JsKl ,

0 otherwise.

2. Let q be ≻-admissible. For each m ∈ JsKl , assume

Ψs,γ,q,m = qtγ (m) ≻ 0.

Suppose a proper ps, l,w,>q,ρ,x,Xq-mediator φ for x = ι l(q). Then, we define the monomial parcel

F = Λ(s, l,w,≻,Ψs,γ,q,φ ,ρ,x,X).

In particular, we call F qtγ (ι l (1))

qtγ (ι l (0))
-linear (or linear for simplicity) if (γi,1)i∈JlK = ι l(0). Also, we call F

qtγ (ι l (1))

qtγ (ι l (0))
-quadratic (or quadratic for simplicity) if (γi,1)i∈JlK ̸= ι l(0).

Explicitly, each m ∈ JsKl gives

Fm =
Ψs,γ,q,m

∏φ(x)m◦w · [m]!w
q
=

qtγ (m)

∏φ(x)m◦w · [m]!w
q
,

which is qtγ (m)

(m)w
q

for the canonical mediator φ . We now obtain the following q-polynomials with positive integer
coefficients.

Theorem 8.40. Consider a monomial parcel F = Λ(s, l,w,≻,Ψs,γ,q,φ ,ρ,x,X). For each fitting ps, l,m,n,kq

with a = ν(k) and b = ν(m,n,k), we have

q−tγ (m)−tγ (n∨)∆(F )(s, l,w,m,n,k,φ ,ρ,x,X) = d̃(V )b
a(s, l,w,φ ,ρ, tγ,∆(m,n,k),x)>q 0.

In particular, F is ≻-merged-log-concave.

Proof. Statements follow from Theorem 8.28 and Theorem 8.36.

If l = 1 and w = p1q, then the monomial conditions of pl,w,γq imply γ1,1 = 0 or γ1,1 = 1
2 . Hence,

suppose γ1 = pp0,0,0qq and γ2 =
`` 1

2 ,−
1
2 ,0

˘˘

with s = p0,∞q so that we have the linear and quadratic
Fi = Λ(s, l,w,≻,Ψs,γi,q,ρ,x,X) of i ∈ J2K. Then, for an indeterminate t, (±t;q)∓1

∞ are ∑m∈Zl
≥1

Fi,mtm1 of

i ∈ J2K by the Euler binomial identities.
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Example 8.41. For s = p0,∞q, l = 1, w = p1q, and γ = pp0,0,0qq, consider F = Λ(s, l,w,≻,Ψs,γ,q,x,X). Let
m = n = p2q and k = p1,1q. Then, we have a = ν(k) = p1,2q, b = ν(m,n,k) = p3,4q, mak = p1q, n‘k = p3q.
Hence, we obtain the following q-polynomial with positive integer coefficients:

∆(F )(s, l,w,m,n,k,x,X) =
(3)q(4)q

(1)q(2)q

ˆ

1
(2)q

· 1
(2)q

− 1
(1)q

· 1
(3)q

˙

=

„

3
1

ȷ

q

„

4
2

ȷ

q
−

„

3
2

ȷ

q

„

4
1

ȷ

q

= q6 +q5 +2q4 +q3 +q2.

Example 8.42. Let s = p0,∞q, l = 2, w = ι l(1), and γ = ι l(p0,0,0q). Suppose F = Λ(s, l,w,≻,Ψs,γ,q,x,X).
Also, let m= n= ι l(3) and k= ι2l(1) so that a= ν(k)= p1,2,3,4q, b= ν(m,n,k)= p4,5,6,7q, mak= p0,2q,
n ‘ k = p4,6q. Then, we have the following q-polynomial with positive integer coefficients:

∆(F )(s, l,w,m,n,k,x,X) = ∏
i∈J4K

(i + 3)q

(i)q
·

˜

1
(3)q(3)q

· 1
(3)q(3)q

− 1
(0)q(2)q

· 1
(4)q(6)q

¸

=

„

4
1

ȷ

q

„

5
2

ȷ

q

„

6
3

ȷ

q

„

7
4

ȷ

q
−

„

4
4

ȷ

q

„

5
3

ȷ

q

„

6
2

ȷ

q

„

7
1

ȷ

q

= q30 + 4q29 + 13q28 + 34q27 + 76q26 + 151q25 + 273q24

+ 452q23 + 695q22 + 999q21 + 1346q20 + 1710q19 + 2052q18 + 2330q17

+ 2506q16 + 2557q15 + 2470q14 + 2262q13 + 1958q12 + 1600q11 + 1229q10

+ 886q9 + 593q8 + 368q7 + 208q6 + 106q5 + 47q4 + 18q3 + 5q2 + q.

8.6 On the gap-free property of merged determinants
We adopt the following notation to discuss merged determinants of some monomial parcels.

Definition 8.43. Let f ∈Q[q].

1. We call f q-gap-free if fi ̸= 0 for each i ∈ Z such that ordq( f )≤ i ≤ degq( f ).

2. We write f >q,d g for g ∈Q[q] if f −g is q-gap-free and f −g >q 0.

We consider the change of variable q 7→ qρ by the gap-free property. Hence, we state the following
transitivity of the gap-free property by the base shift function bλ ,ρ(q).

Lemma 8.44. Let ρ,λ ∈ Z≥1. If f >qρ ,d 0, then f bλ ,ρ(q)>q,d 0.

Proof. If ρ = 1, then the statement follows from bλ ,ρ(q) = 1 in Lemma 8.1. Let ρ ≥ 2. We assume ordq( f ) =
0 for simplicity, replacing f by q−ordq( f ) f . If λ = 1, then the statement holds by bλ ,ρ(q) = [ρ]q in Lemma 8.1.
Let λ ≥ 2. Then, f bλ−1,ρ(q)>q,d 0 by the induction on λ . Therefore, f bλ ,ρ(q) = f bλ−1,ρ(q)[ρ]qλ >q,d 0

by ordq( f bλ−1,ρ(q)) = 0, since degq(bλ−1,ρ(q)) =
(ρ−1)λ (λ−1)

2 ≥ λ −1 by Lemma 8.2.

By the following poring, we discuss the binary relation >q,d .

Lemma 8.45. Q[q] is a strict >q,d-poring.
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Proof. First, the irreflexivity holds, as 0 >q,d 0 is false. Second, suppose f1 >q,d f2 >q,d f3. Then, for j ∈ J2K
and i ∈ Jordq( f j),degq( f j)K, we have ordq( f j)≤ ordq( f j+1), degq( f j)≥ degq( f j+1), and f j,i > f j+1,i. The
transitivity f1 >q,d f3 follows, since for i ∈ Jordq( f1),degq( f1)K, we have

ordq( f1)≤ ordq( f3),

degq( f1)≥ degq( f3),

f1,i > f3,i.

Third, if f1 >q,d f2 and f3 ∈Q[q], then the additivity follows from ( f1 + f3)− ( f2 + f3) = f1 − f2 >q,d 0. Fi-
nally, let f1, f2 >q,d 0. When i∈ Jordq( f1)+ordq( f2),degq( f1)+degq( f2)K, we have jk ∈ Jordq( fk),degq( fk)K
for k ∈ J2K such that j1 + j2 = i. The multiplicativity f1 f2 >q,d 0 follows from ( f1 f2)i ≥ f1, j1 f2, j2 > 0.

Hence, we have the following gap-free shifted x-binomial products.

Proposition 8.46. Let µ ∈ Z≥1 and x = ιµ(q). Consider a,b ∈ Zµ such that b ≥ a ≥ 0. Then, we have
Ub

a (µ,w,ρ,x)>q,d 0.

Proof. Since
“bi

ai

‰

qρi
>qρi ,d 0, we have Upbiq

paiq
(1,p1q ,pρiq ,pqq) =

“bi
ai

‰

qρi
bbi−ai,ρi(q) >q,d 0 by Lemma 8.44.

Hence, Lemma 8.45 gives the assertion, since Ub
a (µ,w,ρ,x) = ∏i∈JµKUpbiq

paiq
(1,p1q ,pρiq ,pqq)wi .

To discuss pre-merged determinants, we introduce the following notion on the tempered pre-fitting tuples.

Definition 8.47. Suppose υ = pµ,a,bq for µ ∈ Z≥2 and a,b ∈ Zµ .

1. We call υ strictly pre-fitting if 1 ≤ a1 < · · ·< aµ ≤ b1 < · · ·< bµ .

2. We call υ almost strictly pre-fitting if 0 ≤ a1 < · · ·< aµ ≤ b1 < · · ·< bµ .

Then, we conjecture the following q-gap-free property of pre-merged determinants. This implies the
q-gap-free property of merged determinants of some width-two monomial parcels by Lemma 8.25 and
Theorem 8.40.

Conjecture 8.48. Let µ = 2, w = ιµ(1), and x = ιµ(q). Suppose a flat ρ ∈ Zµ

≥1 and strictly pre-fitting
υ = pµ,a,bq. Let e ∈ J0,nb

a(µ,w)K. Then,

d̃(U)b
a(µ,w,ρ,e,x)>q,d 0.

Example 8.49. Conjecture 8.48 does not extend to almost strictly pre-fitting tuples. For example, if
w = ρ = ι2(1), a = p0,2q, b = p2,3q, and e = 1, then

d̃(U)b
a(2,w,ρ,e,x) =

„

2
0

ȷ

q

„

3
2

ȷ

q
−q

„

2
2

ȷ

q

„

3
0

ȷ

q
= q2 +1 ̸>q,d 0.

We obtain the following gap-free pre-merged determinants, assuming Conjecture 8.48 for the width-two
cases.

Theorem 8.50. Assume Conjecture 8.48. Let µ ∈ Z≥2 and x = ιµ(q). Consider a pre-fitting κ = pµ,a,bq

such that a > 0. Let e ∈ J0,nb
a(µ,w)K. Then, we have

d̃(U)b
a(µ,w,ρ,e,x)>q,d 0.
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Proof. If κ is not tempered, then Ub
a∨(µ,w,ρ,x) = 0 implies the assertion by Proposition 8.46. Hence, assume

that κ is tempered.
If µ = 2, then the assertion becomes Conjecture 8.48. Suppose an odd µ ≥ 3. Then, Claim 2 of Lemma 8.8

gives

d̃(U)b
a(µ,w,ρ,e,x) =UC(b)

C(a) (1,C(w),C(ρ),C(x)) · d̃(U)
O(b)
O(a)(µ −1,O(ρ),O(w),e,O(x)).

Also, 0≤ e≤ nb
a(µ,w) = nO(b)

O(a)(µ−1,O(w)). Therefore, the assertion holds by Lemma 8.45 and the induction

on µ , since UC(b)
C(a) (1,C(w),C(ρ),C(x))>q,d 0 by Proposition 8.46.

Suppose an even µ ≥ 2. Let µ = 2l. Consider E ∈ Zl
≥0 such that E ≤ Nb

a (µ,w) and ∑E = e. Then,
Claim 2 of Lemma 8.8 implies

d̃(U)b
a(µ,w,ρ,e,x)

=UC(b)
C(a) (2,C(w),C(ρ),C(x)) ·U

O(b)
O(a) (µ −2,O(w),O(ρ),O(x))−

∏x[l : l]C(µ,E) ·UC(b)
C(a)∨(2,C(w),C(ρ),C(x)) ·∏x[1 : l −1]O(µ,E)UO(b)

O(a)∨(µ −2,O(w),O(ρ),O(x)). (8.6.1)

Also, since O(a)∨ ≤ O(b) for the tempered κ and ∏x[1 : l −1]O(µ,E) is a q-monomial, the induction on µ

and Proposition 8.46 give

UO(b)
O(a) (µ −2,O(w),O(ρ),O(x))>q,d ∏x[1 : l −1]O(µ,E)UO(b)

O(a)∨(µ −2,O(w),O(ρ),O(x))>q,d 0. (8.6.2)

First, assume that C(a) or C(b) is flat. Then, Nb
a (µ,w)l = wl(bl+1 −bl)(al+1 −al) = 0 gives C(µ,E) =

p0q. Since C(b)≥ C(a)∨ = C(a) for the tempered κ and flat C(a), Proposition 8.46 implies

∏x[l : l]C(µ,E) ·UC(b)
C(a)∨(2,C(w),C(ρ),C(x)) =UC(b)

C(a) (2,C(w),C(ρ),C(x))>q,d 0.

Then, equation (8.6.1) and inequality (8.6.2) give the assertion by Claim 2b of Lemma 5.2 and Lemma 8.45.
Second, assume C(a)1 < C(a)2 and C(b)1 < C(b)2. We have C(b) ≥ C(a)∨ for the tempered κ and

C(µ,E)≤ NC(b)
C(a) (2,C(w)). The induction on µ and Proposition 8.46 give

UC(b)
C(a) (2,C(w),C(ρ),C(x))>q,d ∏x[l : l]C(µ,E)UC(b)

C(a)∨(2,C(w),C(ρ),C(x))>q,d 0.

Again, equation (8.6.1) and inequality (8.6.2) give the assertion by Claim 2d of Lemma 5.2 and Lemma 8.45.

8.7 On the almost log-concavity, unimodality, and palindromicity of pre-merged
determinants

We discuss the log-concavity, unimodality, and palindromicity by shifted x-binomial products and pre-merged
determinants, which allow odd widths unlike quasi-merged determinants. We adopt the following terminology
to avoid conjecturing upon Conjecture 8.48.

Definition 8.51. Let f ∈Q[q]. Let u( f ) = ( fλi)i∈JdK such that f = ∑i∈JdK fλiq
λi and each u( f )i ̸= 0. We call

the q-polynomial f almost palindromic if u( f ) is palindromic, almost unimodal if u( f ) is unimodal, and
almost log-concave if u( f ) is log-concave.
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8.7.1 On the almost log-concavity

We state the following almost log-concavity on shifted x-binomial products. It is well-known that q-binomial
coefficients are unimodal, but not necessarily log-concave.

Conjecture 8.52. Let λ ,δ ∈ Z≥1 and x = (q). Then, there exists hδ ,λ ∈ Z≥1 such that

U (b1)
(a1)

(1,
(
hδ ,λ

)
,(t) ,x) =

„

b1

a1

ȷhδ ,λ

qt
bb1−a1,t(q)

hδ ,λ

is a log-concave q-polynomial for any t ∈ Jλ K and 1 ≤ a1 < b1 ≤ δ .

Example 8.53. The q-polynomial

U (4)
(2) (1,(3) ,(1) ,(q))

„

4
2

ȷ3

q
= q12 + 3q11 + 9q10 + 16q9 + 27q8 + 33q7

+ 38q6 + 33q5 + 27q4 + 16q3 + 9q2 + 3q + 1

is log-concave, unlike

Up4q

p2q
(1,p1q ,p1q ,pqq) =

„

4
2

ȷ

q
= q4 +q3 +2q2 +q+1.

One can check that setting h30,20 = 3 supports Conjecture 8.52.

We then state the following analog on pre-merged determinants.

Conjecture 8.54. Let µ = 2, x = ιµ(q), and δ ,λ ∈ Z≥1. Then, there exists Hδ ,λ ∈ Z≥1 such that the
pre-merged determinant

d̃(U)b
a(µ, ι

µ(Hδ ,λ ), ι
µ(t),e,x)

is an almost log-concave q-polynomial whenever we have a strictly pre-fitting pµ,a,bq with b ≤ δ , e ∈
J0,nb

a(µ, ι
µ(Hδ ,λ ))K, and t ∈ Jλ K.

Example 8.55. The q-polynomial

d̃(U)
(3,4)
(1,2)(2, ι

2(3), ι2(1),0, ι2(q)) =
„

3
1

ȷ3

q

„

4
2

ȷ3

q
−

„

3
2

ȷ3

q

„

4
1

ȷ3

q

= q18 + 6q17 + 24q16 + 67q15 + 150q14 + 273q13 + 422q12 + 555q11

+633q10+622q9+531q8+387q7+241q6+123q5+51q4+15q3+3q2

is log-concave, unlike

d̃(U)
p3,4q

p1,2q
(2, ι2(1), ι2(1),0, ι2(q)) =

„

3
1

ȷ

q

„

4
2

ȷ

q
−

„

3
2

ȷ

q

„

4
1

ȷ

q
= q6 +q5 +2q4 +q3 +q2.

One can check that setting H20,10 = 3 supports Conjecture 8.54.

We also conjecture the following on higher-width pre-merged determinants.
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Conjecture 8.56. For µ ∈ Z≥4 and λ ∈ Z≥0, let pµ,a,bq be almost strictly pre-fitting. Then,

d̃(U)b
a(µ, ι

µ(1), ιµ(λ ),hb
a(µ, ι

µ(1)), ιµ(q))

is an almost log-concave q-polynomial.

Example 8.57. We have hp3,5,7q

p0,2,3q
(3, ι3(1)) = hp3,4,5,7q

p0,1,2,3q
(4, ι4(1)) = 6. The following q-polynomial

d̃(U)
(3,4,5,7)
(0,1,2,3)(4, ι

4(1), ι4(1),6, ι4(q)) = q21 + 3q20 + 8q19 + 17q18 + 31q17 + 50q16 + 74q15 + 98q14

+ 121q13 + 138q12 + 147q11 + 146q10 + 137q9 + 119q8

+ 97q7 + 73q6 + 50q5 + 31q4 + 17q3 + 8q2 + 3q + 1

is log-concave, unlike

d̃(U)
(3,5,7)
(0,2,3)(3, ι

3(1), ι3(1),6, ι3(q)) = q18 + 2q17 + 5q16 + 9q15 + 15q14 + 21q13 + 28q12 + 33q11 + 37q10

+ 38q9 + 37q8 + 33q7 + 28q6 + 21q5 + 15q4 + 9q3 + 5q2 + 2q + 1.

8.7.2 On the almost unimodality

Example 8.58. A pre-merged determinant does not have to be almost unimodal, because

d̃(U)
p2,5q

p0,2q
(2, ι2(1), ι2(1),3, ι2(q)) =

„

2
0

ȷ

q

„

5
2

ȷ

q
−q3

„

2
2

ȷ

q

„

5
0

ȷ

q
= 1+q+2q2 +q3 +2q4 +q5 +q6.

Even with the trivial degree shift,

d̃(U)
(11,14)
(0,6) (2, ι2(1), ι2(1),0, ι2(q)) =

„

11
0

ȷ

q

„

14
6

ȷ

q
−

„

11
6

ȷ

q

„

14
0

ȷ

q

is not unimodal either, as it is

(8.7.1)

q48 + q47 + 2q46 + 3q45 + 5q44 + 7q43 + 11q42 + 14q41 + 20q40 + 25q39 + 33q38 + 40q37

+51q36 +59q35 +71q34 +81q33 +94q32 +103q31 +115q30 +122q29 +132q28 +136q27

+ 141q26 + 140q25 + 141q24 + 135q23 + 130q22 + 120q21 + 111q20 + 98q19 + 87q18

+73q17+62q16+49q15+39q14+29q13+22q12+15q11+10q10+6q9+4q8+2q7+q6.

However, we conjecture the following for strictly pre-fitting tuples.

Conjecture 8.59. Let µ = 2. When pµ,a,bq is strictly pre-fitting,

d̃(U)b
a(µ, ι

µ(1), ιµ(1),0, ιµ(q))

is an almost unimodal q-polynomial.

Example 8.60. By (8.7.1), the q-polynomial d̃(U)
p11,14q

p0,6q
(2, ι2(1), ι2(1),0, ι2(q)) is not unimodal. However,

d̃(U)
p11,14q

p1,6q
(2, ι2(1), ι2(1),0, ι2(q))
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is unimodal, as it is

q58 + 2q57 + 4q56 + 7q55 + 12q54 + 19q53 + 30q52 + 44q51 + 64q50 + 89q49 + 122q48 + 161q47

+211q46 +268q45 +336q44 +411q43 +497q42 +587q41 +686q40 +784q39 +886q38 +982q37

+1076q36+1156q35+1229q34+1282q33+1322q32+1338q31+1339q30+1315q29+1277q28

+1216q27+1144q26+1055q25+961q24+856q23+753q22+647q21+548q20+452q19+367q18

+289q17 +224q16 +167q15 +122q14 +85q13 +58q12 +37q11 +23q10 +13q9 +7q8 +3q7 +q6.

We also conjecture the following on higher-width pre-merged determinants.

Conjecture 8.61. Let µ ∈ Z≥3 and λ ∈ Z≥1. When pµ,a,bq is almost strictly pre-fitting,

d̃(U)b
a(µ, ι

µ(1), ιµ(λ ),0, ιµ(q))

is an almost unimodal q-polynomial.

Example 8.62. By (8.7.1), d̃(U)
p11,14q

p0,6q
(2, ι2(1), ι2(1),0, ι2(q)) is not unimodal. However,

d̃(U)
p11,12,14q

p0,2,6q
(3, ι3(1), ι3(1),0, ι3(q))

is unimodal, as it is

q68 + 2q67 + 5q66 + 9q65 + 17q64 + 28q63 + 47q62 + 72q61 + 111q60 + 161q59 + 233q58

+ 322q57 + 443q56 + 588q55 + 775q54 + 993q53 + 1262q52 + 1565q51 + 1924q50 + 2315q49

+ 2761q48 + 3230q47 + 3744q46 + 4263q45 + 4809q44 + 5335q43 + 5862q42 + 6338q41

+ 6786q40 + 7153q39 + 7465q38 + 7671q37 + 7802q36 + 7813q35 + 7742q34 + 7552q33

+ 7286q32 + 6917q31 + 6492q30 + 5992q29 + 5465q28 + 4897q27 + 4333q26 + 3762q25

+ 3223q24 + 2705q23 + 2238q22 + 1810q21 + 1441q20 + 1118q19 + 853q18 + 631q17

+ 458q16 + 320q15 + 219q14 + 143q13 + 91q12 + 54q11 + 31q10 + 16q9 + 8q8 + 3q7 + q6.

8.7.3 On the almost palindromicity

Conjecture 8.63. Let µ ∈ Z≥3. If pµ,a,bq is almost strictly pre-fitting, then

d̃(U)b
a(µ, ι

µ(1), ιµ(1),0, ιµ(q))

is not an almost palindromic q-polynomial.

In particular, d̃(U)
pb1,b2q

pa1,a2q
(2, ι2(1), ι2(1),0, ι2(q)) would not be palindromic when a2 −a1 ≥ 2 and b2 −

b1 ≥ 2, since these a1,a2,b1,b2 give µ = 3 cases in Conjecture 8.63. Hence, if µ = 2, then we conjecture the
following, which provides infinitely many almost palindromic unimodal q-polynomials.

Conjecture 8.64. For λ ∈ Z≥0, let

M(λ ) =
{

µ ∈ Z4 | 0 ≤ µ(1)< µ(2)≤ µ(3)< µ(4) = λ
}
,

N(λ ) =
{

µ ∈ M(λ ) | d̃(U)
µ(3,4)
µ(1,2)(2, ι

2(1), ι2(1),0, ι2(q)) is not almost palindromic.
}
.

Then, O(λ ) = #(N(λ ))
#(M(λ )) satisfies 0 = O(3)< O(4)< O(5)< .. . .
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On base shifts, we have the following width-two pre-merged determinants.

Example 8.65. The pre-merged determinant

d̃(U)
p1,4q

p0,1q
(2, ι2(1), ι2(1),1, ι2(q)) = q3 +q2 +1

is palindromic, unlike

d̃(U)
(1,4)
(0,1)(2, ι

2(1), ι2(2),1, ι2(q)) = q13 + 2q12 + 2q11 + 4q10 + 5q9 + 5q8 + 6q7

+ 6q6 + 5q5 + 4q4 + 4q3 + 2q2 + q + 1.

However, we conjecture the following palindromicity transitivity on base shifts.

Conjecture 8.66. For µ ∈ Z≥3, let pµ,a,bq be almost strictly pre-fitting. Suppose λ ∈ Z≥1 and e ∈
J0,nb

a(µ, ι
µ(1))K. Then,

d̃(U)b
a(µ, ι

µ(1), ιµ(λ ),e, ιµ(q))

is an almost palindromic q-polynomial if and only if

d̃(U)b
a(µ, ι

µ(1), ιµ(λ + 1),e, ιµ(q))

is an almost palindromic q-polynomial.

9 Separable products
We introduce separable products on parcels to obtain more merged-log-concave parcels with increased widths.
For this, we first define the following truncations of fitting tuples.

Definition 9.1. Assume a fitting µ = ps, l1,m1,n1,k1q. Let λ ∈ T≤(2, l1) and l2 = λ2 −λ1 +1.

1. We define the truncation t(λ ,µ) = ps, l2,m2,n2,k2q such that

m2 = m1[λ1 : λ2], (9.0.1)
n2 = n1[l1 −λ2 +1 : l1 −λ1 +1], (9.0.2)

k2,1 = ∑k1[1 : λ1], (9.0.3)

k2[2 : l2] = k1[λ1 +1 : λ2], (9.0.4)

k2,l2+1 = ∑k1[λ2 +1 : 2l1 −λ2 +1], (9.0.5)

k2[l2 +2 : 2l2] = k1[2l1 −λ2 +2 : 2l1 −λ1 +1]. (9.0.6)

2. We define the outer truncation ot(l2,µ) = t(λ ,µ) if λ1 = 1.

3. We define the center truncation ct(l2,µ) = t(λ ,µ) if λ2 = l1.

These truncations have the following properties.

Proposition 9.2. For a fitting µ1 = ps, l1,m1,n1,k1q, suppose

µ2 = ps, l2,m2,n2,k2q = t(λ ,µ).

Let ai = ν(ki) and bi = ν(mi,ni,ki) for i ∈ J2K. Then, we have the following.
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1. There exist the following equations:

a2[1 : l2] = a1[λ1 : λ2]; (9.0.7)
a2[l2 +1 : 2l2] = a1[2l1 −λ2 +1 : 2l1 −λ1 +1]; (9.0.8)

b2[1 : l2] = b1[λ1 : λ2]; (9.0.9)
b2[l2 +1 : 2l2] = b1[2l1 −λ2 +1 : 2l1 −λ1 +1]. (9.0.10)

2. µ2 is fitting.

3. There exist the following equations:

σ(k2) = σ(k1)[λ1 : λ2]; (9.0.11)
m2 a k2 = (m1 a k1)[λ1 : λ2]; (9.0.12)

(n2 ‘ k2)
∨ = (n1 ‘ k1)

∨[λ1 : λ2]. (9.0.13)

4. If µ1 is wrapped, then µ2 is wrapped.

Proof. Proof of Claim 1. Since a2,1 = ∑k1[1 : λ1] = a1,λ1 by equation (9.0.3), equation (9.0.4) gives equa-
tion (9.0.7). Since a2,l2+1 = a1,2l1−λ2+1 by equation (9.0.5), equation (9.0.6) gives equation (9.0.8). By
b2 = a2 +m2 ++n2, equations (9.0.9) and (9.0.10) follow from equations (9.0.1), (9.0.2), (9.0.7), and (9.0.8).

Proof of Claim 2. First, the inclusion condition of µ1 imply that of µ2 by equations (9.0.1) and (9.0.2).
Second, the slope conditions of µ1 imply those those of µ2 by equations (9.0.7), (9.0.8), (9.0.9), and (9.0.10).

Proof of Claim 3. First, we obtain equation (9.0.11), since by equations (9.0.4), (9.0.5), and (9.0.6), each
i ∈ Jl2K satisfies

σ(k2)i = ∑k2[i+1 : 2l2 − i+1]

= ∑k2[i+1 : l2 +(l2 − i+1)]

= ∑k1[i+λ1 : 2l1 −λ2 +(l2 − i+1)]

= ∑k1[(i+λ1 −1)+1 : 2l1 − (i+λ1 −1)+1]

= σ(k1)i+λ1−1.

Second, equations (9.0.12) and (9.0.13) hold, because for each i ∈ Jl2K, equation (9.0.11) gives

(m2 a k2)i = m2,i −σ(k2)i

= m1,i+λ1−1 −σ(k1)i+λ1−1

= (m1 a k1)i+λ1−1,

(n2 ‘ k2)i = n2,i +σ(k2)l2−i+1

= n1,l1−λ2+i +σ(k1)l2−i+1+λ1−1

= n1,l1−λ2+i +σ(k1)l1−(l1−λ2+i)+1

= (n1 ‘ k1)l1−λ2+i.
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Third, for each i ∈ J0, l2 −1K, we now obtain

(n1 ‘ k1)
∨
λ1+i = (n1 ‘ k1)l1−(λ1+i)+1

= (n1 ‘ k1)l1−λ2+l2−i

= (n2 ‘ k2)l2−i

= (n2 ‘ k2)
∨
i+1.

Proof of Claim 4. Claim 4 follows from Claim 3.

We now have the following for center and outer truncations.

Corollary 9.3. Let κ ∈ Z3
≥1 such that κ3 = κ1 +κ2. For a fitting µ3 = ps,κ3,m3,n3,k3q, consider

µ1 = ot(κ1,µ3) = ps,κ1,m1,n1,k1q ,

µ2 = ct(κ2,µ3) = ps,κ2,m2,n2,k2q .

Let ai = ν(ki) and bi = ν(mi,ni,ki) for each i∈ J3K. Also, suppose ui ∈Zκi
≥0 and an indeterminate xi ∈Q(X)κi

for each i ∈ J3K. Then, we have the following.

1. µ1 is fitting.

2. There exist the following equations:

m1 = m3[1 : κ1]; (9.0.14)
n1 = n3[κ3 −κ1 +1 : κ3]; (9.0.15)
a1 = a3[1 : κ1]++a3[2κ3 −κ1 +1 : 2κ3]; (9.0.16)
b1 = b3[1 : κ1]++b3[2κ3 −κ1 +1 : 2κ3]; (9.0.17)

σ(k1) = σ(k3)[1 : κ1]; (9.0.18)
m1 a k1 = (m3 a k3)[1 : κ1]; (9.0.19)

(n1 ‘ k1)
∨ = (n3 ‘ k3)

∨[1 : κ1]. (9.0.20)

3. Furthermore, we have

„

b1

a1

ȷu⊔1

x⊔1

=

„

b3[1 : κ1]

a3[1 : κ1]

ȷu1

x1

„

b3[2κ3 −κ1 +1 : 2κ3]

a3[2κ3 −κ1 +1 : 2κ3]

ȷu∨1

x∨1

,

„

b1

a∨1

ȷu⊔1

x⊔1

=

„

b3[1 : κ1]

a3[2κ3 −κ1 +1 : 2κ3]∨

ȷu2

x2

„

b3[2κ3 −κ1 +1 : 2κ3]

a3[1 : κ1]∨

ȷu∨1

x∨1

.

4. µ2 is fitting.
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5. There exist the following equations:

m2 = m3[κ1 +1 : κ3];
n2 = n3[1 : κ3 −κ1];
a2 = a3[κ1 +1 : 2κ3 −κ1];
b2 = b3[κ1 +1 : 2κ3 −κ1];

σ(k2) = σ(k3)[κ1 +1 : κ3];
m2 a k2 = (m3 a k3)[κ1 +1 : κ3];

(n2 ‘ k2)
∨ = (n3 ‘ k3)

∨[κ1 +1 : κ3].

6. We have
„

b2

a2

ȷu⊔2

x⊔2

=

„

b3[κ1 +1 : κ3]

a3[κ1 +1 : κ3]

ȷu2

x2

„

b3[κ3 +1 : 2κ3 −κ1]

a3[κ3 +1 : 2κ3 −κ1]

ȷu∨2

x∨2

,

„

b2

a∨2

ȷu⊔2

x⊔2

=

„

b3[κ1 +1 : κ3]

a3[κ3 +1 : 2κ3 −κ1]∨

ȷu2

x2

„

b3[κ3 +1 : 2κ3 −κ1]

a3[κ1 +1 : κ3]∨

ȷu∨2

x∨2

.

7. Furthermore, we have
„

b3

a3

ȷ(u1++u2)
⊔

(x1++x2)⊔
=

„

b1

a1

ȷu⊔1

x⊔1

„

b2

a2

ȷu⊔2

x⊔2

,

„

b3

a∨3

ȷ(u1++u2)
⊔

(x1++x2)⊔
=

„

b1

a∨1

ȷu⊔1

x⊔1

„

b2

a∨2

ȷu⊔2

x⊔2

.

8. If µ3 is wrapped, then µ1 and µ2 are wrapped.

Proof. Proof of Claim 1. Let λ1 = 1 and λ2 = κ1 in Proposition 9.2. Claim 1 follows from Claim 2 of
Proposition 9.2.

Proof of Claim 2. First, Item 2 of Definition 9.1 gives equations (9.0.14) and (9.0.15). Second, Claim 1
of Proposition 9.2 implies equations (9.0.16) and (9.0.17). Third, Claim 3 of Proposition 9.2 imply equa-
tions (9.0.18), (9.0.19), and (9.0.20).

Proof of Claim 3. Claim 3 follows from equations (9.0.16) and (9.0.17).
We obtain Claims 4, 5, and 6 analogously, taking λ1 = κ3 −κ2 +1 and λ2 = κ3 in Proposition 9.2 instead.
Proof of Claim 7. Claim 7 follows from Claims 3 and 6.
Proof of Claim 8. Claim 8 holds by Claim 4 of Proposition 9.2.

We state the following compatibility of squaring orders on finite sets X1,X2,X3 of free indeterminates.

Lemma 9.4. Suppose X3 =X1∪X2. Then, squaring orders
{
≥OX3

,>OX3

}
on X3 are compatible to squaring

orders
{
≥OX1

,>OX1

}
on X1.

Proof. If f >OX1
0, then f >AX3

0 by X3 = X1 ∪X2. A similar argument holds for ≥OX1
and ≥AX3

.

By the following proposition, we define the separable products of parcels as parcels.
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Proposition 9.5. Suppose parcels Fi = Λ(s, li,≻i,wi, fi,s,φi,ρi,xi,Xi) for i ∈ J2K. For X3 = X1 ∪X2 and
l3 = l1 + l2, consider

f3,s =
`

f3,s,m = f1,s,m[1:l1] f2,s,m[l1+1:l3] ∈Q(X3)
˘

m∈Zl3 .

Let x3 = x1 ++ x2, w3 = w1 ++w2, ρ3 = ρ1 ++ ρ2, and φ3(x3) = φ1(x1)++ φ2(x2). For the squaring orders
Oi = {⪰i,≻i} on Xi of i ∈ J2K, assume squaring orders O3 = {⪰3,≻3} on X3 such that O3 Ţ O1,O2.

1. Then, there exists a parcel F3 = Λ(s, l3,≻3,w3, f3,s,φ3,ρ3,x3,X3).

2. For a fitting µ3 = ps, l3,m3,n3,k3q, let

µ1 = ps, l1,m1,n1,k1q = ot(l1,µ3),

µ2 = ps, l2,m2,n2,k2q = ct(l2,µ3).

Then, we have

∆(F3)(s, l3,w3,m3,n3,k3,φ3,ρ3,x3,X3) = ∏
i∈J2K

∆L(Fi)(s, li,wi,mi,ni,ki,φi,ρi,xi,Xi)

− ∏
i∈J2K

∆R(Fi)(s, li,wi,mi,ni,ki,φi,ρi,xi,Xi).

Proof. Proof of Claim 1. First, we prove that x3 is ≻3-admissible. If g >x3,i 0 for some i ∈ Jl3K, then g ≻1 0
or g ≻2 0 by x3 = x1 ++ x2 and the half >x j,i-≻ j implications of j ∈ J2K. We deduce f ≻3 0 by O3 Ţ O1,O2.
In particular, the half >x3,i-≻3 implication holds for each i ∈ Jl3K. Also, each i ∈ Jl3K satisfies the upper
condition of x3,i on X3 by X3 = X1 ∪X2 and Lemma 9.4. Therefore, x3 is ≻3-admissible.

Second, f3,s is ≻3-positive, because f3,s,m = f1,s,m[1:l1] f2,s,m[l1+1:l3] ≻3 0 if m ∈ JsKl3 .
Third, we prove that φ3 is a λ3-mediator for λ3 = ps, l3,w3,≻3,ρ3,x3,X3q. Since F1 and F2 are parcels,

φ3 and λ3 have the base positivity by φ3(x3) = φ1(x1)++φ2(x2) and Lemma 9.4. Furthermore, φ3 and λ3 have
the base-shift positivity, since m ∈ Js3Kl3 gives

B(s, l3,w3,m,φ3,ρ3,x3,X3) = ∏
i∈J2K

B(s, li,wi,ui,φi,ρi,xi,Xi)≻3 0

for u1 = m[1 : l1] ∈ JsKl1 and u2 = m[l1 +1 : l3] ∈ JsKl2 . Hence, φ3 is a λ3-mediator. Claim 1 follows now.
Proof of Claim 2. Let a3 = ν(k3) and b3 = ν(m3,n3,k3). Then, Claim 2 of Theorem 7.19 gives

∆(F3)(s, l3,w3,m3,n3,k3,φ3,ρ3,x3,X3)

= f3,s,m3 f3,s,n∨3
B(s, l3,w3,m3,n∨3 ,φ3,ρ3,x3,X3)

„

b3

a3

ȷw⊔
3

x⊔3

− f3,s,m3ak3 f3,s,(n3‘k3)∨B(s, l3,w3,m3 a k3,(n3 ‘ k3)
∨,φ3,ρ3,x3,X3)

„

b3

a∨3

ȷw⊔
3

x⊔3

.

Hence, Claims 2 and 5 of Corollary 9.3 give Claim 2 by Claim 7 of Corollary 9.3.

Definition 9.6. Under the assumption of Proposition 9.5, we define the separable product F1 ˝F2 of F1
and F2 such that

F1 ˝F2 = F3 = Λ(s, l3,≻3,w3, f3,s,φ3,ρ3,x3,X3).
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In particular, each m ∈ Zl3 satisfies

F3,m = F1,m[1:l1]F2,m[l1+1:l3].

In particular, separable products have the following merged-log-concavity.

Theorem 9.7. Let Fi =Λ(s, li,≻i,wi, fi,s,φi,ρi,xi,Xi) for i∈ J3K such that F3 =F1 ˝F2. Consider squaring
orders O′

i = {⪰′
i,≻′

i} on Xi for i ∈ J3K such that O′
3 Ţ O′

1,O
′
2. Let F2 be ⪰′

2-merged-log-concave. Then, we
have the following.

1. F3 is ≻′
3-merged-log-concave if F1 is ≻′

1-merged-log-concave.

2. F3 is ⪰′
3-merged-log-concave if F1 is ⪰′

1-merged-log-concave.

Proof. Proof of Claim 1. Suppose a fitting µ3 = ps, l3,m3,n3,k3q. Then, Claims 1 and 4 of Corollary 9.3 give
fitting ps, l1,m1,n1,k1q = ot(l1,µ3) and ps, l2,m2,n2,k2q = ct(l2,µ3). Also, for i ∈ J2K, let

Li = ∆L(Fi)(s, li,wi,mi,ni,ki,φi,ρi,xi,Xi),

Ri = ∆R(Fi)(s, li,wi,mi,ni,ki,φi,ρi,xi,Xi).

Then, the merged-log-concavity of F1 and F2 gives L1 ≻′
1 R1 and L2 ⪰′

2 R2. Now, Claim 4 of Theo-
rem 7.19 on F1 implies R1 ⪰1 0. Also, Claim 4 of Theorem 7.19 on F2 implies L2 ≻2 0, and either R2 ≻2 0
or R2 = 0. Hence, Corollary 5.7 gives Claim 1 by the compatibilities O′

3 Ţ O′
1,O

′
2 and O′

i Ţ Oi of i ∈ J2K.
Proof of Claim 2. Claim 2 holds by Claim 1d of Lemma 5.2, since Li ⪰′

3 Ri ⪰′
3 0 for i ∈ J2K.

For separable products of parcels Fi of i ∈ JdK, we write ˝i∈JdKFi for F1 ˝ . . . ˝ Fd . We state the
following remark.

Remark 9.8. Assume the notation in Theorem 9.7. Furthermore, for simplicity, let l1 = l2 = 1, X1 = X2,
x1 = x2 = ι l1(q), O1 = O2 = O3, and φ1 and φ2 be canonical mediators. Then, we obtain width-two merged-
log-concave parcels from width-one merged-log-concave parcels by l3 = 2 and Theorem 9.7.

However, a width-two monomial parcel does not have to be the separable product of width-one monomial
parcels. For instance, assume monomial indices pli,wi,γiq for i ∈ J3K such that γ3,1,1 > 0 > γ3,2,1. Then,
x3 = ι l3(q) gives

Λ(s, l3,w3,≻,Ψs,γ3,q,x3,X3) ̸= ˝i∈J2KΛ(s, li,wi,≻,Ψs,γi,q,xi,Xi),

because γ1,1,1,γ2,1,1 ≥ 0 by the sum monomial conditions of pl1,w1,γ1q and pl2,w2,γ2q.

We introduce the following multifold separable products for our later discussion.

Definition 9.9. Let F = Λ(s, l,≻,w, fs,φ ,ρ,x,X) and d ∈Z≥1. Then, we define the d-fold separable product

F ˝d = ˝i∈JdKF = Λ(s,dl,≻,w++d ,gs,φ
++d ,ρ++d ,x++d ,X)

such that gs,m = ∏λ∈JdK fs,m[(λ−1)l+1:λ l] for each m ∈ Zdl .
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10 Hadamard products
We introduce Hadamard products on parcels. This yields merged-log-concave parcels of higher weights from
those of lower weights. To define the products, we state the following by segment additions in Definition 2.4.

Proposition 10.1. Consider l1, l2 ∈ Z≥1 and λ ∈ T≤(2, l1) such that l2 = λ2 −λ1 +1. Let Fi = Λ(s, li,wi,≻i
, fi,s,φi,ρi,xi,Xi) for i ∈ J2K such that

x2 = x1[λ1 : λ2],

φ2(x2) = φ1(x1)[λ1 : λ2],

ρ2 = ρ1[λ1 : λ2].

Let Oi = {⪰i,≻i} on Xi for i ∈ J2K. Suppose squaring orders O3 = {⪰3,≻3} on X3 = X1 ∪X2 such that
O3 Ţ O1,O2. Also, let

w3 = w1 +λ w2 ∈ Zl1
≥0,

f3,s =
`

f3,s,m = f1,s,m f2,s,m[λ1:λ2] ∈Q(X3)
˘

m∈Zl1 .

Then, there is a parcel

F3 = Λ(s, l1,w3,≻3, f3,s,φ1,ρ1,x1,X3).

Proof. First, we prove that x1 is ≻3-admissible. Since F1 is a parcel, x1 is ≻1-admissible. This gives the half
>x1,i-≻3 implication for each x1,i by O3 Ţ O1. Therefore, x1 is ≻3-admissible by Lemma 9.4, because we
have the upper condition of each x1,i on X1.

Second, f3,s is ≻3-positive, because the compatibility O3 Ţ O1,O2 implies f3,s,m = f1,s,m f2,s,m[λ1:λ2] ≻3 0
for m ∈ JsKl1 by f1,s,m ≻1 0 and f2,s,m[λ1:λ2] ≻2 0.

Third, we prove that φ1 is a µ-mediator for µ = (s, l1,w3,≻3,ρ1,x1,X3). Now, φi(xi) is a mediator of
Fi for i ∈ J2K. Hence, we have φ1(x1)

w1,i
i >OX1

0 for each i ∈ Jl1K, and φ1(x1)
w2,i−λ1+1
i >OX2

0 for each
i ∈ Jλ1,λ2K. Hence, φ1 and µ have the base positivity, since Lemma 9.4 implies

φ1(x1)
w3,i
i =

φ1(x1)
w1,i
i φ1(x1)

w2,i−λ1+1
i >AX3

0 for each i ∈ Jλ1,λ2K,
φ1(x1)

w1,i
i >AX3

0 otherwise.

Also, φ1 and µ have the base-shift positivity, because each m ∈ JsKl1 satisfies

B(s, l1,w3,m,φ1,ρ1,x1,X3) = ∏
i∈Jl1K

φ1(x
ρ1,i
i )w3,imi [mi]!

w3,i

x
ρ1,i
i

φ1(xi)
w3,imi [mi]!

w3,i
xi

= B(s, l1,w1,m,φ1,ρ1,x1,X1) · B(s, l2,w2,m[λ1 : λ2],φ2,ρ2,x2,X2)

≻3 0.

Hence, φ1 is a µ-mediator. The assertion now follows.

We then define the following product as a parcel.
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Definition 10.2. Under the assumption in Proposition 10.1, we define the Hadamard product

F1 ◦λ F2 = F2 ◦λ F1 = F3 = Λ(s, l1,w3,≻3, f3,s,φ1,ρ1,x1,X3).

When F1 and F2 have the same widths, we simply write F1 ◦F2 = F2 ◦F1 for F1 ◦λ F2.

We have the following merged-log-concavity of Hadamard products.

Theorem 10.3. Let Fi = Λ(s, li,wi,≻1, fi,s,φi,ρi,xi,Xi) for i ∈ J3K such that

F3 = F1 ◦λ F2.

Consider squaring orders O′
i = {⪰′

i,≻′
i} on Xi for i ∈ J3K such that O′

3 Ţ O′
1,O

′
2. Let F2 be ⪰′

2-merged-log-
concave. Then, we have the following.

1. F3 is ≻′
3-merged-log-concave if F1 is ≻′

1-merged-log-concave.

2. F3 is ⪰′
3-merged-log-concave if F1 is ⪰′

1-merged-log-concave.

Proof. Proof of Claim 1. Assume a fitting µ1 = ps, l1,m1,n1,k1q. Then, Claim 2 of Proposition 9.2 gives
the fitting µ2 = ps, l2,m2,n2,k2q = t(λ ,µ1). Also, let µ3 = ps, l3,m3,n3,k3q = µ1. Suppose ai = ν(ki),
bi = ν(mi,ni,ki), and yi = xρi

i for i ∈ J3K. Furthermore, consider Li,Ri ∈Q(Xi) for i ∈ J3K such that

Li = ∆L(Fi)(s, li,wi,mi,ni,ki,φi,ρi,xi,Xi)

= fi,s,mi fi,s,n∨i
B(s, li,wi,mi,n∨i ,φi,ρi,xi,Xi)

„

bi

ai

ȷw⊔
i

y⊔i

,

Ri = ∆R(Fi)(s, li,wi,mi,ni,ki,φi,ρi,xi,Xi)

= fi,s,miaki fi,s,(ni‘ki)∨B(s, li,wi,mi a ki,(ni ‘ ki)
∨,φi,ρi,xi,Xi)

„

bi

a∨i

ȷw⊔
i

y⊔i

.

Let us prove

L1L2 = L3, (10.0.1)
R1R2 = R3. (10.0.2)

First, we establish

(10.0.3)B(s, l3,w3,m3,n∨3 ,φ3,ρ3,x3,X3) = ∏
i∈J2K

B(s, li,wi,mi,n∨i ,φi,ρi,xi,Xi).

Observe that each i ∈ Jλ K gives

b(s,w3,i,m3,i,φ3,i,ρ3,i,x3,i,X3) = b(s,w3,i,m1,i,φ1,i,ρ1,i,x1,i,X3)

=
φ1(y1,i)

m1,iw3,i [m1,i]
w3,i
y1,i

φ1(x1,i)
m1,iw3,i [m1,i]

w3,i
x1,i

=
φ1(y1,i)

m1,iw1,i [m1,i]
w1,i
y1,i

φ1(x1,i)
m1,iw1,i [m1,i]

w1,i
x1,i

·
φ2(y2,i−λ1+1)

m2,i−λ1+1w2,i−λ1+1 [m2,i−λ1+1]
w2,i−λ1+1
y2,i−λ1+1

φ2(x2,i−λ1+1)
m2,i−λ1+1w2,i−λ1+1 [m2,i−λ1+1]

w2,i−λ1+1
x2,i−λ1+1

= b(s,w1,i,m1,i,φ1,i,ρ1,i,x1,i,X1)

· b(s,w2,i−λ1+1,m2,i−λ1+1,φ2,i−λ1+1,ρ2,i−λ1+1,x2,i−λ1+1,X2).
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Similarly, since n∨2 = n∨1 [λ1 : λ2], each i ∈ Jλ K yields

b(s,w3,i,(n∨3 )i,φ3,i,ρ3,i,x3,i,X3) = b(s,w3,i,(n∨1 )i,φ1,i,ρ1,i,x1,i,X3)

= b(s,w1,i,(n∨1 )i,φ1,i,ρ1,i,x1,i,X1)

· b(s,w2,i−λ1+1,(n
∨
2 )i−λ1+1,φ2,i−λ1+1,ρ2,i−λ1+1,x2,i−λ1+1,X2).

Hence, equation (10.0.3) follows.
Second, by Claim 3 of Proposition 9.2, we analogously obtain

(10.0.4)B(s, l1,w3,m3 a k3,(n3 ‘ k3)
∨,φ3,ρ3,x3,X3) = ∏

i∈J2K
B(s, li,wi,mi a ki,(ni ‘ ki)

∨,φi,ρi,xi,Xi).

Third, since w3 = w1 +λ w2, Claim 1 of Proposition 9.2 implies

„

b1

a1

ȷw⊔
1

y⊔1

„

b2

a2

ȷw⊔
2

y⊔2

=

„

b3

a3

ȷw⊔
3

y⊔3

, (10.0.5)

„

b1

a∨1

ȷw⊔
1

y⊔1

„

b2

a∨2

ȷw⊔
2

y⊔2

=

„

b3

a∨3

ȷw⊔
3

y⊔3

. (10.0.6)

Therefore, equation (10.0.1) holds by equations (10.0.3) and (10.0.5). Also, equation (10.0.2) holds by
equations (10.0.4) and (10.0.6).

We obtain the ≻′
3-merged-log-concavity of F3 as follows. We have L1 ≻′

1 R1 and L2 ⪰′
2 R2 by the

merged-log-concavities of F1 and F2. Then, by O′
3 Ţ O′

1,O
′
2, Claim 4 of Theorem 7.19 gives L1 ≻′

3 R1 ⪰′
3 0,

L2 ≻′
3 0, L2 ⪰′

3 R2, and either R2 ≻′
3 0 or R2 = 0. Hence, equations (10.0.1) and (10.0.2) imply the ≻′

3-
merged-log-concavity L3 ≻′

3 R3 of F3 by Corollary 5.7.
Proof of Claim 2. Because L1 ⪰′

1 R1 and L2 ⪰′
2 R2, Claim 2 follows from Claim 1d of Lemma 5.2.

Hence, we obtain the following higher-weight strictly merged-log-concave parcels from weight-zero
non-strictly merged-log-concave parcels.

Corollary 10.4. Let d ∈ Z≥1. For each i ∈ JdK, let Fi = Λ(s, li,≻i, fi,s,Xi) be ⪰i-merged-log-concave.
Assume squaring orders O = {⪰,≻} on X= ∪i∈JdKXi such that O Ţ {⪰i,≻i} for each i ∈ JdK. Furthermore,
consider

G = Λ(s, l,≻,gs,X) = F1 ˝F2 ˝ . . .˝Fd .

Then, we have the following.

1. For each w ∈ Zl
≥0, if Λ(s, l,w,≻,ks,φ ,ρ,x,X) is a ⪰-merged-log-concave parcel, then we obtain the

≻-merged-log-concave parcel

Λ(s, l,w,≻,ksgs,φ ,ρ,x,X).

2. For each w ∈ Zl
≥1, if φ is a proper ps, l,w,≻,ρ,x,Xq-mediator, then we obtain the ≻-merged-log-

concave parcel

Λ(s, l,w,≻,gs,φ ,ρ,x,X).
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Proof. Proof of Claim 1. Claim 1 follows from Claim 1 of Theorem 10.3, because

G = Λ(s, l,p0q ,≻,gs,φ ,ρ,x,X)

is ⪰-merged-log-concave by Claim 2 of Theorem 9.7.
Proof of Claim 2. We have the constant parcel

Λ(s, l,w,≻,1s,l ,φ ,ρ,x,X),

which is ≻-merged-log-concave by Corollary 8.30. Hence, Claim 1 gives Claim 2.

Remark 10.5. Assume an infinite gate s ≥ 0 with l = 1 and w ∈ Zl
≥1. In Claim 2 of Corollary 10.4,

Λ(s, l,w,≻, fs,x,X) is ≻-merged-log-concave, if the weight-zero Λ(s, l,≻, fs,X) is ⪰-merged-log-concave.
However, the converse does not hold (see Section 1.9). For example, the positive-weight parcel

Λ(s, l,w,>q,Ψs,pp 1
2 ,0,0qq,q,x,X)

is >q-merged-log-concave, but the weight-zero parcel

Λ(s, l,>q,Ψs,pp 1
2 ,0,0qq,q,X)

is not ≥q-merged-log-concave by equation (1.0.1).

If there is ≻-admissible x ∈Q(X)l for some l ∈ Z≥1, then 1 ≻ 0 by Claim 2 of Lemma 5.20. In particular,
we have the constant parcel Λ(s, l,≻,1s,l ,X). Hence, we introduce the following multifold Hadamard products
for our later discussion.

Definition 10.6. Suppose F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) and d ∈ Z≥0. We define the d-fold Hadamard
product F ◦d such that

F ◦d =

{
Λ(s, l,dw,≻, f d

s ,φ ,ρ,x,X) if d ≥ 1,
Λ(s, l,≻,1s,l ,X) otherwise.

11 Weight-zero merged-log-concavity
First, we compare the weight-zero merged-log-concavity with the strong q-log-concavity and q-log-concavity
in Definition 1.3. In particular, strong q-log-concave polynomials are weight-zero ≥q-merged-log-concave
parcels in a suitable setting. Hence, strongly q-log-concave polynomials give higher-weight merged-log-
concave parcels by Corollary 10.4. Second, we discuss some analogs of conjectures in Section 8 by
q-numbers. Third, we give log-concavity conjectures on weight-zero parcels of q-Starling polynomials,
Ramanujan polynomials, and Bessel polynomials.

11.1 Strong q-log-concavity
To compare the weight-zero merged-log-concavity with the strong q-log-concavity, we introduce an interme-
diate notion by the following fitting tuples.

Lemma 11.1. Let l ∈ Z≥1. Suppose n,m ∈ JsKl such that n∨ ≥ m and m++(n+1) ∈ Z2l is increasing. Then,
µ = ps, l,m,n,kq is fitting for k = ι l(0)++ p1q++ ι l−1(0).
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Proof. Let a = ν(k) and b = ν(m,n,k). Then, a = ι l(0)++ ι l(1) and b = m++(n+1). This deduces the slope
conditions of µ , since n∨ ≥ m implies bl = ml < n1 +1 = bl+1.

Taking fitting ps, l,m,n,kq that have the smallest σ(k)1, we introduce the following intermediate notion
by parcels and squaring orders.

Definition 11.2. Let l ∈ Z≥1 and F = Λ(s, l,≻, fs,X). Suppose squaring orders O′ = {⪰′,≻′} Ţ {⪰,≻}.

1. F is strongly ≻′-multi-log-concave if

FmFn∨ −Fm−1F(n+1)∨ ≻′ 0

whenever n,m ∈ JsKl , n∨ ≥ m, and m++(n+1) ∈ Z2l is increasing.

2. F is strongly ⪰′-multi-log-concave if

FmFn∨ −Fm−1F(n+1)∨ ⪰′ 0

whenever n,m ∈ JsKl , n∨ ≥ m, and m++(n+1) ∈ Z2l is increasing.

We state the following telescoping lemma to compare the strong multi-log-concavity and the merged-log-
concavity.

Lemma 11.3. Let l ∈ Z≥1 and F = Λ(s, l,≻, fs,X). Then, F is strongly ≻′-multi-log-concave if and only if

FmFn∨ −Fm−kF(n+k)∨ ≻′ 0 (11.1.1)

whenever m,n ∈ JsKl , n∨ ≥ m, k ∈ Z≥1, and m++(n+ k) is increasing.

Proof. The if part holds by k = 1. We prove the only if part, assuming inequality (11.1.1) for k = 1. Let
m,n ∈ JsKl such that n∨ ≥ m and m++(n+1) is increasing.

First, suppose i ∈ Z≥0 such that m− i ≥ s1 and n+ i ≤ s2. Then, m− i,n+ i ∈ JsKl . Also, n∨ ≥ m
implies (n+ i)∨ = n∨+ i ≥ m− i. Furthermore, since (m− i)++(n+ i+ 1) is increasing, Fm−iF(n+i)∨ −
Fm−i−1F(n+i+1)∨ ≻′ 0.

Second, suppose i ∈ Z≥0 such that m− i < s1 or n+ i > s2. Then, m− i− 1 < s1 or n+ i+ 1 > s2.
Consequently, Fm−iF(n+i)∨ −Fm−i−1F(n+i+1)∨ = 0. In particular, each k ∈ Z≥1 yields

FmFn∨ −Fm−kF(n+k)∨ = ∑
i∈J0,k−1K

(Fm−iF(n+i)∨ −Fm−i−1F(n+i+1)∨)

⪰′ FmFn∨ −Fm−1F(n+1)∨

≻′ 0.

We have the following comparison by Lemma 11.1 and the telescoping lemma.

Proposition 11.4. Let l ∈ Z≥1 and F = Λ(s, l,≻, fs,X). Then, we have the following.

1. F is strongly ≻′-multi-log-concave if F is ≻′-merged-log-concave.

2. F is strongly ⪰′-multi-log-concave if F is ⪰′-merged-log-concave.
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Furthermore, assume l = 1. Then, we have the following.

(a) F is ≻′-merged-log-concave if and only if F is strongly ≻′-multi-log-concave.

(b) F is ⪰′-merged-log-concave if and only if F is strongly ⪰′-multi-log-concave.

Proof. Proof of Claim 1. Consider m,n ∈ JsKl such that n∨ ≥ m and m ++ (n + 1) ∈ Z2l is increasing.
Let µ = ps, l,m,n,kq for k = ι l(0)++ p1q++ ι l−1(0). By Lemma 11.1, we deduce ∆(F )(s, l,m,n,k,X) =
fs,m fs,n∨ − fs,mak fs,(n‘k)∨ ≻′ 0. Claim 1 follows, since m a k = m−1 and n ‘ k = n+1.

Proof of Claim 2. We obtain Claim 2 analogously, replacing ≻′ with ⪰′.
Proof of Claim (a). First, we prove the only if part. By Lemma 3.10, F is ≻′-merged-log-concave if and

only if

∆(F )(s, l,m,n,k,X) = fs,m fs,n − fs,m−k2 fs,n+k2 ≻
′ 0 (11.1.2)

whenever

m,n ∈ JsKl , k = pk1,k2q ≥ p0,1q , and n1 + k2 > m1. (11.1.3)

Therefore, we obtain the strong ≻′-multi-log-concavity of F , since conditions (11.1.3) for k2 = 1 imply
m,n ∈ JsKl such that n∨ ≥ m and m++(n+1) is increasing.

Second, we prove the if part. Consider m,n,k that satisfy conditions (11.1.3). If n ≥ m, then inequal-
ity (11.1.2) holds by Lemma 11.3. If n < m, then let m′ = n, n′ = m, and k′2 = n1 + k2 −m1 ∈ Z≥1. We
derive

n′ > m′,

m′− k′2 = n− (n+ k2 −m) = m− k2,

n′+ k′2 = m+(n+ k2 −m) = n+ k2.

Lemma 11.3 implies inequality (11.1.2), since

fs,m fs,n − fs,m−k2 fs,n+k2 = fs,m′ fs,n′ − fs,m′−k′2
fs,n′+k′2

.

Proof of Claim (b). Claim (b) follows from an analogous argument, where we replace ⪰′ with ≻′.

For our convenience, we adopt the following notation.

Definition 11.5. If f = p fm ∈Q(X)qm∈Z1 , then let Unt( f ) =
`

fpiq
˘

i∈Z. Conversely, if f = p fi ∈Q(X)qi∈Z,
then let Tup( f ) = p fiqpiq∈Z1 .

We obtain the following comparison between the strong q-log-concavity and the width-one and weight-
zero merged-log-concavity.

Corollary 11.6. Assume a gate s ≥ 0 and >q-admissible q ∈ Q(X). Let fs = p fs,i ∈ Z≥0[q]qi∈Z such that
fs,i >q 0 for i ∈ JsK. Also, let gs = Tup( fs), l = 1, and F = Λ(s, l,>q,gs,X). Then, fs is strongly q-log-
concave if and only if F is ≥q-merged-log-concave.

Proof. The assertion follows from Claim (b) of Proposition 11.4, since the strong ≥q-multi-log-concavity of
F is equivalent to the strong q-log-concavity of fs by l = 1.
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11.2 q-log-concavity
We state the following lemma to compare the q-log-concavity with the merged-log-concavity.

Lemma 11.7. Let l ∈ Z≥1 and m ∈ Zl . Then, m is flat if m∨ ≥ m and m++(m+1) ∈ Z2l is increasing.

Proof. Since m++(m+1) is increasing, we have m1 ≤ . . .≤ ml ≤ m1 +1. Also, m1 ≥ ml by m∨ ≥ m.

By these flat tuples, we give the following intermediate notation as before for the strong q-log-concavity.

Definition 11.8. Let l ∈ Z≥1 and F = Λ(s, l,≻, fs,X). Suppose squaring orders {⪰′,≻′} Ţ {⪰,≻}.

1. F is ≻′-multi-log-concave if

FmFm −Fm−1Fm+1 ≻′ 0

for any flat m ∈ JsKl .

2. F is ⪰′-multi-log-concave if

FmFm −Fm−1Fm+1 ⪰′ 0

for any flat m ∈ JsKl .

We have the following comparison between the multi-log-concavity and the merged-log-concavity.

Proposition 11.9. Let l ∈ Z≥1 and F = Λ(s, l,≻, fs,X). Then, we have the following.

1. F is ≻′-multi-log-concave if F is ≻′-merged-log-concave.

2. F is ⪰′-multi-log-concave if F is ⪰′-merged-log-concave.

Proof. By Lemma 11.7, the strong ≻′-multi-log-concavity and the strong ⪰′-multi-log-concavity imply the
≻′-multi-log-concavity and the ⪰′-multi-log-concavity, respectively. Claims 1 and 2 follow from Claims 1
and 2 of Proposition 11.4.

Furthermore, we have the following comparison between the q-log-concavity the merged-log-concavity.

Corollary 11.10. Let l = 1. Suppose a ≥q-merged-log-concave F = Λ(s, l,>q, fs,X) such that fs =
p fs,m ∈ Z≥0[q]qm∈Zl . Then, gs = Unt( fs) is q-log-concave.

Proof. Since l = 1, the assertion holds by Claim 2 of Proposition 11.9.

In particular, if F is >q-merged-log-concave, then g2
s,i −gs,i−1gs,i+1 >q 0 for i ∈ JsK, which give almost

strictly unimodal sequences.
It is possible to modify the notion of merged-log-concavity to completely extend the q-log-concavity and

strong q-log-concavity. However, in this manuscript, a parcel demands the ≻-positivity of its numerators to
give unimodal sequences and almost unimodal sequences in Definitions 1.1 and 1.17. Also, we compute
merged determinants by fitting tuples to obtain polynomials with positive integer coefficients.
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11.3 On some analogs of conjectures in Section 8
We introduce the following weight-zero parcels.

Definition 11.11. Assume a gate s ≥ 1, l ∈ Z≥1, and q ∈Q(X). Let χs,l,q =
`

χs,l,q,m ∈ Z≥0[q]
˘

m∈Zl such that

χs,l,q,m =

{
[m]q if m ∈ JsKl ,

0 otherwise.

If q is ≻-admissible, then we call Λ(s, l,≻,χs,l,q,X) a q-number parcel.

We confirm some analogs of Conjectures 8.48 and 8.59 by the q-number parcels. For this, we adopt the
following integer notation.

Definition 11.12. Suppose m1,n1,λ ∈ Z. Then, let

I(λ ,m1,n1) = min(λ +1,m1,n1,m1 +n1 −1−λ ) ∈ Z.

We examine these integers I(λ ,m1,n1) for the products of q-numbers.

Lemma 11.13. Let m1,n1 ∈ Z≥1 and λ ∈ Z.

1. If m1 ≤ n1, then

I(λ ,m1,n1) =


λ +1 if λ ∈ J0,m1 −1K, (11.3.1)
m1 if λ ∈ Jm1 −1,n1 −1K, (11.3.2)
m1 +n1 −1−λ if λ ∈ Jn1 −1,m1 +n1 −2K. (11.3.3)

2. We have [m1]q[n1]q = ∑λ∈J0,m1+n1−2K I(λ ,m1,n1)qλ .

3. Assume n1 + k2 > m1 for some k2 ∈ Z≥1.

(a) We have I(λ ,m1,n1)≥ I(λ ,m1 − k2,n1 + k2).

(b) If m1 − k2 ≥ 1, then there is λ ∈ Z such that

m1 +n1 −2 ≥ n1 −1 ≥ λ ≥ m1 − k2 ≥ 0, (11.3.4)
I(λ ,m1,n1)> I(λ ,m1 − k2,n1 + k2). (11.3.5)

Proof. Proof of Claim 1. First, if λ ∈ J0,m1 −1K, then equation (11.3.1) follows from

λ +1 ≤ m1 ≤ n1 ≤ n1 +m1 − (λ +1) = m1 +n1 −1−λ .

Second, if λ ∈ Jm1 −1,n1 −1K, then equation (11.3.2) follows from

m1 ≤ λ +1 ≤ n1,

m1 +n1 − (1+λ )≥ m1.

Third, if λ ∈ Jn1 −1,m1 +n1 −2K, then equation (11.3.3) holds by

λ +1 ≥ n1 ≥ m1 ≥ m1 +n1 −1−λ .
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Proof of Claim 2. We have

[m1]q[n1]q = ∑
t1∈J0,m1−1K,t2∈J0,n1−1K

qt1+t2 . (11.3.6)

Assume n1 ≥ m1 without loss of generality. For λ ∈ Z, suppose pt1, t2q in equation (11.3.6) such that
λ = t1 + t2. Claim 1 implies Claim 2, since the right-hand sides of equations (11.3.1), (11.3.2), and (11.3.3)
coincide with the following numbers of choices of pt1, t2q.

First, if λ ∈ J0,m1 −1K, then λ ≤ n1 −1 gives the λ +1 choices pλ ,0q ,pλ −1,1q , . . . ,p0,λ q. Second, if
λ ∈ Jm1−1,n1−1K, then m1 ≥ 1 gives the m1 choices pm1 −1,λ − (m1 −1)q , . . . ,p0,λ q. Third, if λ ∈ Jn1−
1,m1 +n1 −2K, then we have the m1 +n1 −1−λ choices pm1 −1,λ − (m1 −1)q , . . . ,pλ − (n1 −1),n1 −1q,
since

0 ≤ n1 −m1 ≤ (λ +1)−m1 = λ − (m1 −1)≤ n1 −1,
λ − (n1 −1)≤ m1 −1.

Proof of Claim 3a. If m1 ≤ n1, then m1 − k2 < m1 ≤ n1. If m1 > n1, then m1 > n1 > m1 − k2. In either
case, we have

I(λ ,m1,n1)≥ min(λ +1,m1 − k2,n1 + k2,m1 +n1 −1−λ ) = I(λ ,m1 − k2,n1 + k2).

Proof of Claim 3b. First, we have λ ∈ Z in inequality (11.3.4), since m1 ≥ k2 +1 ≥ 1 gives m1 +n1 −2 ≥
n1 −1 and n1 > m1 − k2 gives n1 −1 ≥ m1 − k2.

Second, we prove that inequality (11.3.4) implies inequality (11.3.5). In inequality (11.3.4), we have
n1 −1 ≥ λ . This gives

n1 ≥ λ +1,
m1 +n1 −1−λ ≥ m1 > m1 − k2.

Also, in inequality (11.3.4), we have λ ≥ m1 − k2. This gives

λ +1 > m1 − k2.

By m1 > m1 − k2 and n1 + k2 > n1, we deduce

I(λ ,m1,n1)> m1 − k2 = I(λ ,m1 − k2,n1 + k2).

Suppose F = Λ(s, l,≻,χs,l,q,X). Then, F is ≥q-merged-log-concave by Claim 2 of Theorem 9.7,
Corollary 11.6, and the strong q-log-concavity of q-numbers [Sag, Lemma 2.1]. Furthermore, we prove the
following >q-merged-log-concavity of F by palindromic unimodal merged determinants. In particular, these
merged determinants we confirm an analog of Conjecture 8.59.

Proposition 11.14. For l ∈ Z≥1, let F = Λ(s, l,≻,χs,l,q,X). Suppose a fitting µ = ps, l,m,n,kq. Then, we
have the following.

1. ∆(F )(s, l,m,n,k,X)>q 0.

2. ∆(F )(s, l,m,n,k,X) is a palindromic unimodal q-polynomial.
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Proof. Assume that µ is unwrapped. This implies ∆(F )(s, l,m,n,k,X) = χs,l,q,mχs,l,q,n. Then, Claim 1 holds
by m,n ≥ 1. Also, Claim 2 holds by Claim 1 of Proposition 8.15. Let us assume that µ is wrapped.

Proof of Claim 1. First, assume l = 1. Since µ is wrapped, Lemma 3.10 implies

n1 + k2 > m1 > m1 − k2 ≥ s1 ≥ 1. (11.3.7)

Claim 1 holds by equation (11.3.8), since Claims 2 and 3 of Lemma 11.13 give

[m1]q[n1]q = ∑
λ∈J0,m1+n1−2K

I(λ ,m1,n1)qλ

>q ∑
λ∈J0,m1+n1−2K

I(λ ,m1 − k2,n1 + k2)qλ

= [m1 − k2]q[n1 + k2]q.

Second, Claim 1 for l ∈ Z≥1 follows from Claim 1 of Theorem 9.7.
Proof of Claim 2. By Claim 1 of Proposition 8.15, χs,l,q,mχs,l,q,n and χs,l,q,makχs,l,q,n‘k are palindromic

unimodal q-polynomials. Also,

ordq(χs,l,q,mχs,l,q,n) = 0 = ordq(χs,l,q,makχs,l,q,n‘k),

degq(χs,l,q,mχs,l,q,n) = ∑m+∑n−2l = degq(χs,l,q,makχs,l,q,n‘k).

We deduce Claim 2, since ∆(F )(s, l,m,n,k,X) is a difference of the palindromic unimodal q-polynomials
with the same orders and degrees.

As in the following, ∆(F )(s, l,m,n,k,X) is not necessarily a log-concave q-polynomial.

Example 11.15. Let l = 2, m = p5,2q, n = p2,5q, and k = p0,0,1,0q. Then, by m a k = p4,1q and n ‘ k =
p3,6q, F = Λ(s, l,≻,χs,l,q,X) gives the following unimodal and non-log-concave q-polynomial:

∆(F )(s, l,m,n,k,X) = [5]q[2]q[5]q[2]q − [4]q[1]q[6]q[3]q

= q9 +2q8 +3q7 +5q6 +6q5 +5q4 +3q3 +2q2 +q.

But, when l = 1, we state the following log-concave q-polynomials for F = Λ(s, l,≻,χs,l,q,X). Further-
more, the gap-free property of these q-polynomials confirms an analog of Conjecture 8.48.

Proposition 11.16. For l = 1, let F = Λ(s, l,≻,χs,l,q,X). Suppose a fitting µ = ps, l,m,n,kq. Then, we have
the following.

1. ∆(F )(s, l,m,n,k,X) is a log-concave q-polynomial.

2. ∆(F )(s, l,m,n,k,X)>q,d 0.

Proof. We have

∆(F )(s, l,m,n,k,X) = χs,l,q,mχs,l,q,n −χs,l,q,m−k2 χs,l,q,n+k2 . (11.3.8)

If µ is unwrapped, then ∆(F )(s, l,m,n,k,X) = χs,l,q,mχs,l,q,n. This gives Claims 1 and 2 by Claims 1
and 2 of Lemma 11.13. Let us assume that µ is wrapped.
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Proof of Claim 1. For each λ ∈ Z, we define

P(λ ,m1,n1,k2) = I(λ ,m1,n1)− I(λ ,m1 − k2,n1 + k2),

δ (P)(λ ,m1,n1,k2) = P(λ ,m1,n1,k2)
2 −P(λ −1,m1,n1,k2)P(λ +1,m1,n1,k2).

For λ ∈ J0,m1 +n1 −2K, we prove

δ (P)(λ ,m1,n1,k2)≥ 0. (11.3.9)

First, assume m1 ≤ n1. Claim 1 of Lemma 11.13 and inequality (11.3.7) give I(λ ,m1,n1), I(λ ,m1 −
k2,n1 + k2), and P(λ ,m1,n1,k2) in Figure 4.

λ

Ipλ ,m1,n1q

m1 ´ 1 n1 ´ 11

m1

J0,0K

λ

Ipλ ,m1 ´ k2,n1 ` k2q

m1 ´ k2 ´ 1 n1 ` k2 ´ 11

m1 ´ k2

J0,0K

λJ0,0K

k2

Ppλ ,m1,n1,k2q

Figure 4: P(λ ,m1,n1,k2) when m1 ≤ n1
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By Figure 4, we derive the following equation:

P(λ ,m1,n1,k2) =



0 if λ ∈ J0,m1 − k2 −1K,
λ +1−m1 + k2 if λ ∈ Jm1 − k2 −1,m1 −1K,
k2 if λ ∈ Jm1 −1,n1 −1K,
n1 + k2 −1−λ if λ ∈ Jn1 −1,n1 + k2 −1K,
0 if λ ∈ Jn1 + k2 −1,m1 +n1 −2K.

(11.3.10)

By equation (11.3.10), m1 < n1 implies the following equation:

δ (P)(λ ,m1,n1,k2) =



0 if λ ∈ J0,m1 − k2 −1K,
1 if λ ∈ Jm1 − k2,m1 −2K,
k2 if λ = m1 −1,
0 if λ ∈ Jm1,n1 −2K,
k2 if λ = n1 −1,
1 if λ ∈ Jn1,n1 + k2 −2K,
0 if λ ∈ Jn1 + k2 −1,m1 +n1 −2K.

If m1 = n1, then we have the following equation:

δ (P)(λ ,m1,n1,k2) =



0 if λ ∈ J0,m1 − k2 −1K,
1 if λ ∈ Jm1 − k2,m1 −2K,
2k2 −1 if λ = m1 −1 = n1 −1,
1 if λ ∈ Jn1,n1 + k2 −2K,
0 if λ ∈ Jn1 + k2 −1,m1 +n1 −2K.

Therefore, inequality (11.3.9) follows from k2 ≥ 1 for the fitting µ .
Second, assume m1 > n1. Then, Claim 1 of Lemma 11.13 and inequality (11.3.7) give I(λ ,m1,n1),

I(λ ,m1 − k2,n1 + k2), and P(λ ,m1,n1,k2) in Figure 5.
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λ

Ipλ ,m1,n1q

n1 ´ 1 m1 ´ 11

n1

J0,0K

λ

Ipλ ,m1 ´ k2,n1 ` k2q

m1 ´ k2 ´ 1 n1 ` k2 ´ 11

m1 ´ k2

J0,0K

λ

n1 ´ m1 ` k2

J0,0K

Ppλ ,m1,n1,k2q

Figure 5: P(λ ,m1,n1,k2) when m1 > n1

By Figure 5, we have the following equation:

P(λ ,m1,n1,k2) =



0 if λ ∈ J0,m1 − k2 −1K,
λ +1−m1 + k2 if λ ∈ Jm1 − k2 −1,n1 −1K,
n1 −m1 + k2 if λ ∈ Jn1 −1,m1 −1K,
n1 + k2 −1−λ if λ ∈ Jm1 −1,n1 + k2 −1K,
0 if λ ∈ Jn1 + k2 −1,m1 +n1 −2K.

(11.3.11)
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Furthermore, equation (11.3.11) gives the following equation:

δ (P)(λ ,m1,n1,k2) =



0 if λ ∈ J0,m1 − k2 −1K,
1 if λ ∈ Jm1 − k2,n1 −2K,
n1 + k2 −m1 if λ = n1 −1,
0 if λ ∈ Jn1,m1 −2K,
n1 + k2 −m1 if λ = m1 −1,
1 if λ ∈ Jm1,n1 + k2 −2K,
0 if λ ∈ Jn1 + k2 −1,m1 +n1 −2K.

This gives inequality (11.3.9) by n1 + k2 > m1 for the fitting µ .
Proof of Claim 2. Claim 2 follows from Claim 1 of Proposition 11.14 and Claim 1.

11.4 Log-concavity conjectures on some weight-zero parcels
We state log-concavity conjectures on some weight-zero parcels, motivated by Propositions 11.14 and 11.16.

In Z≥0[q], we recall the q-Starling polynomials of the first kind c(κ,λ ,q) and the second kind S(κ,λ ,q).
For each κ ∈ Z≥0 and λ ∈ Z, the delta function δκ,λ defines

c(κ,λ ,q) =

{
c(κ −1,λ −1,q)+ [κ −1]qc(κ −1,λ ,q) if κ ≥ 1,
δκ,λ if κ = 0,

S(κ,λ ,q) =

{
S(κ −1,λ −1,q)+ [λ ]qS(κ −1,λ ,q) if κ ≥ 1,
δκ,λ if κ = 0.

The sequences pc(κ,λ ,q)q
λ∈Z and pS(κ,λ ,q)q

λ∈Z are strongly q-log-concave [Sag, Theorems 2.4 and 2.5].
Since c(κ,λ ,q)>q 0 and S(κ,λ ,q)>q 0 for κ ≥ λ ≥ 1, we define the following parcels.

Definition 11.17. Let l ∈ Z≥1, κ ∈ Z≥1, and s = p1,κq. Then, let

cs,l,q =

˜

cs,l,q,m = ∏
i∈JlK

c(κ,mi,q) ∈ Z[q]

¸

m∈Zl

,

Ss,l,q =

˜

Ss,l,q,m = ∏
i∈JlK

S(κ,mi,q) ∈ Z[q]

¸

m∈Zl

.

Suppose that q is >q-admissible on X. Then, we call Λ(s, l,>q,cs,l,q,X) and Λ(s, l,>q,Ss,l,q,X) q-Stirling
parcels of the first and second kinds.

We conjecture the following log-concavity on the merged determinants of q-Stirling parcels.

Conjecture 11.18. Suppose q-Stirling parcels F = Λ(s, l,>q,cs,l,q,X) and G = Λ(s, l,>q,Ss,l,q,X). Then,
for each fitting ps, l,m,n,kq, ∆(F )(s, l,m,n,k,X) and ∆(G )(s, l,m,n,k,X) are log-concave q-polynomials.

Example 11.19. For l = 1 and s = p1,3q, let F = Λ(s, l,>q,cs,l,q,X) and G = Λ(s, l,>q,Ss,l,q,X). Suppose
m = p2q, n = p1q, and k = p0,2q, which give m a k = p0q and n ‘ k = p3q. Then, we have the following
non-palindromic and log-concave q-polynomials:

∆(F )(s, l,m,n,k,X) = c(3,2,q)c(3,1,q) = q2 +3q+2;
∆(G )(s, l,m,n,k,X) = S(3,2,q)S(3,1,q) = q+2.
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For λ ∈ Z≥0, we recall the Ramanujan and Bessel polynomials Rλ+1(q) and Bλ (q) in Z≥0[q] such that

Rλ+1(q) =

λ (1+q)Rλ (q)+q2 dRλ (q)
dq

if λ ∈ Z≥1,

1 if λ = 0,

Bλ (q) = ∑
κ∈J0,λK

(λ +κ)!
(λ −κ)!κ!

qκ

2κ
.

The sequences pRλ (q)qλ∈Z≥1
and pBλ (q)qλ∈Z≥0

are strongly q-log-convex [CWY, Corollaries 3.2 and 3.3].
We define the following parcels by pRλ (q)qλ∈Z≥1

and pBλ (q)qλ∈Z≥0
.

Definition 11.20. Suppose l ∈ Z≥1 and gates s1 ≥ 1 and s2 ≥ 0. Then, let Rs1,l,q =
`

Rs1,l,q,m ∈ Z[q]
˘

m∈Zl

and Bs2,l,q =
`

Bs2,l,q,m ∈ Z[q]
˘

m∈Zl such that

Rs1,l,q,m =

∏
i∈JlK

Rmi(q) for m ∈ Js1Kl ,

0 otherwise,

Bs2,l,q,m =

∏
i∈JlK

Bmi(q) for m ∈ Js2Kl ,

0 otherwise.

If q is >q-admissible on X, then we call Λ(s, l,>q,Rs1,l,q,m,X) and Λ(s, l,>q,Bs2,l,q,m,X) Ramanujan and
Bessel parcels.

We conjecture the following log-concavity on the merged determinants of Ramanujan and Bessel parcels.

Conjecture 11.21. For s = p1,∞q, suppose F = Λ(s, l,>q,Rs,l,q,X) and G = Λ(s, l,>q,Bs,l,q,X). Then,
∆(F )(s, l,m,n,k,X) and ∆(G )(s, l,m,n,k,X) are log-concave q-polynomials for each fitting ps, l,m,n,kq.

Example 11.22. For l = 1 and s = p1,∞q, let F = Λ(s, l,>q,Rs,l,q,X) and G = Λ(s, l,>q,Bs,l,q,X). If
m = p3q, n = p2q, and k = p0,2q, then m a k = p1q and n ‘ k = p4q. Furthermore, we have the following
log-concave q-polynomials:

−∆(F )(s, l,m,n,k,X) =−(R(3,q)R(2,q)−R(1,q)R(4,q)) = 12q3 +18q2 +12q+4;

−∆(G )(s, l,m,n,k,X) =−(B(3,q)B(2,q)−B(1,q)B(4,q)) = 60q5 +120q4 +72q3 +19q2 +2q.

12 Almost strictly unimodal sequences and Young diagrams
We introduce the notion of fitting paths to connect fitting tuples. Also, we introduce the notion of flip-invariant
parcels. Then, we obtain almost strictly unimodal sequences along fitting paths by the merged-log-concavity
of flip-invariant parcels. In particular, Young diagrams give infinite-length almost strictly unimodal sequences.

12.1 Strict log-concavity and merged-log-concavity
The strict log-concavity of positive real numbers implies the almost strict unimodality. But, this implication
does not always extend to the merged-log-concavity of parcels. A reason is that ‘ and a do not cancel as +
and −. Let us explain the distinction of the log-concave notions on positive real numbers and parcels with
more detail.
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Suppose a strictly log-concave sequence r = pri ∈ R>0qi∈JsK. Then, j−1, j+2 ∈ JsK give

r2
j − r j−1r j+1 > 0,

r2
j+1 − r jr j+2 > 0. (12.1.1)

Furthermore, r is almost strictly unimodal by r j
r j−1

>
r j+1

r j
>

r j+2
r j+1

. However, inequality (12.1.1) does not
always extend to merged-log-concave parcels.

For instance, consider a ≻′-merged-log-concave F =Λ(s, l,w,≻, fs,φ ,ρ,x,X). Then, fitting ps, l,m,m,kq

and ps, l,m ‘ k,m ‘ k,kq yield

ϒ(s, l,w,m,m,k,φ ,ρ,x,X)(FmFm∨ −FmakF(m‘k)∨)≻′ 0,

ϒ(s, l,w,m ‘ k,m ‘ k,k,φ ,ρ,x,X)(Fm‘kF(m‘k)∨ −F(m‘k)akF((m‘k)‘k)∨)≻′ 0.

However, in general, we do not have F(m‘k)ak = Fm, which corresponds to

r( j+1)−1 = r j (12.1.2)

in inequality (12.1.1).

Example 12.1. Suppose s = p0,∞q, l = 2, m = p0,1q, and k = p0,0,2,1q. Then, ps, l,m,m,kq and (s, l,m ‘

k,m ‘ k,k) are fitting by ν(k) = p0,0,2,3q and ν(m,m,k) = p0,1,2,4q. But, σ(k) = p3,2q implies

(m ‘ k)a k = (m+σ(k)∨)−σ(k) = p0,1q ̸= m.

12.2 Fitting paths
Suppose a fitting ps, l,m,m,kq. We achieve (m ‘ k)a k = m if and only if

σ(k) = σ(k)∨. (12.2.1)

But, equation (12.2.1) forces

k[2 : 2l] = ι
l−1(0)++ pλ q++ ι

l−1(0) (12.2.2)

for some λ ∈ Z≥1, since ki > 0 of i ̸= l +1,1 makes σ(k)l < σ(k)l + ki ≤ σ(k)1. To establish an analog of
equation (12.1.2) for more general k, we define the following notion of fitting paths.

Definition 12.2. Suppose a width-two gate θ . Consider a sequence P = pPi = ps, l,mi,ni,kiqqi∈JθK such that
Pθ1 and Pθ2 are fitting tuples, kθ1 and kθ2 are σ -equivalent, and mθ2 = (nθ1 ‘ kθ1)

∨.

1. For mθ1 and nθ1 , assume the equation mθ1 = nθ1 .

(a) We call P a fitting path of type e-e if mθ2 = nθ2 .

(b) We call P a fitting path of type e-f if mθ2 = n∨
θ2

.

2. For mθ1 and nθ1 , assume the flipped equation m∨
θ1

= nθ1 .

(a) We call P a fitting path of type f-e if mθ2 = nθ2 .

(b) We call P a fitting path of type f-f if mθ2 = n∨
θ2

.
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3. We call P a fitting path P of type free if mi = ni = m∨
i for each i ∈ JθK.

We define the notion of fitting paths of general lengths.

Definition 12.3. Let θ be a gate. Consider a sequence P = pPi = ps, l,mi,ni,kiqqi∈JθK such that Q j =

pPiqi∈J j, j+1K is a fitting path for each j ∈ Jθ1,θ2 −1K.

1. We call P a fitting path.

2. We call P a fitting path of type A if Q j has the same type A for all j ∈ Jθ1,θ2 −1K.

We refer to s, l, θ , and pki,1qi∈JθK of P as the gate, width, length, free-path parameters of P.
If θ is of infinite-width, then we say that P is of infinite-length. If θ is of width-n and n ≥ 2, then we say

that P is of length-n. If θ is of width-one and Pθ1 is fitting, then we call P a fitting path of length-one.

On the terminology of the free-path parameters of P, see Remark 3.5.

Example 12.4. Let s = p0,∞q, l = 1, m1 = p1q, and k1 = p0,1q. Then, µ1 = ps, l,m1,m1,k1q is fitting by

ν(k1) = p0,1q ,

ν(m1,m1,k1) = ν(k1)+m1 ++m1 = p1,2q .

Also, let m2 = (m1 ‘ k1)
∨ = p2q and k2 = k1. Then, µ2 = ps, l,m2,m2,k2q is fitting by

ν(m2,m2,k2) = ν(k2)+m2 ++m2 = p2,3q .

By l = 1, we deduce that pµiqi∈J1,2K is a fitting path of type free.

Example 12.5. We have the following fitting path with different but equivalent supports. Let s = p0,∞q,
l = 2, m1 = p0,3q, and k1 = p0,4,4,4q. Then, µ1 = ps, l,m1,m∨

1 ,k1q is fitting, since

ν(k1) = p0,4,8,12q ,

ν(m1,n1,k1) = ν(k1)+m1 ++m∨
1 = p0,7,11,12q .

If we were to continue with k1, either ps, l,(m∨
1 ‘ k1)

∨,m∨
1 ‘ k1,k1q or ps, l,(m∨

1 ‘ k1)
∨,(m∨

1 ‘ k1)
∨,k1q

has to be fitting. However, neither of them is fitting, since m∨
1 ‘ k1 = p3,0q+ p4,12q = p7,12q implies

ν((m∨
1 ‘ k1)

∨,m∨
1 ‘ k1,k1) = ν(k1)+ p12,7q++ p7,12q = p12,11,15,24q ,

ν((m∨
1 ‘ k1)

∨,(m∨
1 ‘ k1)

∨,k1) = ν(k1)+ p12,7q++ p12,7q = p12,11,20,19q .

Instead, let k2 = p0,7,4,1q ̸= k1. Not only are k1 and k2 equivalent, but also µ2 = ps, l,m2,n2,k2q =
ps, l,(m∨

1 ‘ k1)
∨,m1 ‘ k1,k2q is fitting, since

ν(k2) = p0,7,11,12q ,

ν(m2,n2,k2) = ν(k2)+ p12,7q++ p7,12q = p12,14,18,24q .

In particular, pµiqi∈J2K is a fitting path of type f-f with different but equivalent k1 and k2.

Since we do not demand equation (12.2.1) on the fitting tuples of fitting paths, we introduce the following
notion of parcels to obtain an analog of equation (12.1.2).
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Definition 12.6. Let F = Λ(s, l,w,≻, fs,φ ,ρ,x,X). We call F flip-invariant at r ∈ OX if each m ∈ Zl

satisfies

Fm(r) = Fm∨(r).

We simply call F flip-invariant if F is flip-invariant at every r ∈ OX.

We have the following flip-invariant parcels.

Lemma 12.7. Suppose F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) and r ∈ OX such that x, φ(x), and w are palindromic
tuples, and fs,m(r) = fs,m∨(r) for each m ∈ Zl . Then, F is flip-invariant at r.

Proof. Since Fm = fm
∏φ(x)m◦w·[m]!w

x
for each m ∈ JsKl , the statement follows.

In particular, the following monomial parcels are flip-invariant.

Proposition 12.8. Suppose a monomial index pl,w,γq with palindromic w, pγi,1qi∈JlK, and pγi,2qi∈JlK. Then, a
monomial parcel Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X) is flip-invariant.

Proof. The statement follows from Lemma 12.7.

For further discussion, we state the following equations on the σ -plus and σ -minus.

Lemma 12.9. Let l ∈ Z≥1, m ∈ Zl , and k,k′ ∈ Z2l . Then, we have the following equations.

(m ‘ k)∨ = m∨ a (−k), (12.2.3)
(m a k)∨ = m∨ ‘ (−k), (12.2.4)

m ‘ k ‘ k′ = m ‘ (k+ k′), (12.2.5)
m a k a k′ = m a (k+ k′), (12.2.6)

(m ‘ k)∨ a k = m∨, (12.2.7)
(m a k)∨ ‘ k = m∨, (12.2.8)

m a k ‘ k′ = m ‘ k′ a k. (12.2.9)

Proof. First, we obtain equation (12.2.3) by

(m ‘ k)∨ = m∨+(σ(k)∨)∨ = m∨−σ(−k) = m∨ a (−k).

Replacing m and k with m∨ and −k, we deduce equation (12.2.4) from equation (12.2.3).
Second, we obtain equation (12.2.5) by

m ‘ k ‘ k′ = m+σ(k)∨+σ(k′)∨ = m+σ(k+ k′)∨ = m ‘ (k+ k′).

Similarly, equation (12.2.6) follows from σ(k)+σ(k′) = σ(k+ k′).
Third, we have equation (12.2.7), since equations (12.2.3) and (12.2.6) give

(m ‘ k)∨ a k = m∨ a (−k)a k = m∨.

Similarly, equation (12.2.8) holds by equations (12.2.4) and (12.2.5).
Finally, we have equation (12.2.9), since

m a k ‘ k′ = m−σ(k)+σ(k′)∨ = m+σ(k′)∨−σ(k) = m ‘ k′ a k.
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We derive the following analog of equation (12.1.2) by fitting paths and flip-invariant parcels.

Proposition 12.10. Consider a fitting path P = pPi = ps, l,mi,ni,kiqqi∈JθK and flip-invariant parcel F =

Λ(s, l,w,≻, fs,φ ,ρ,x,X) at r ∈ OX. Then, each j ∈ Jθ1 +1,θ2K satisfies

Fm jak j(r) = Fn j−1(r) = Fm j−1(r). (12.2.10)

Proof. First, we have m j = (n j−1 ‘ k j−1)
∨ or m j = (n∨j−1 ‘ k j−1)

∨, since P is a fitting path. Then, equa-
tions 12.2.3 and 12.2.6 of Lemma 12.9 imply m j a k j = n j−1 or n∨j−1. This equation gives the left-hand side
of equation (12.2.10) by the flip-invariance of F .

Second, we have m j−1 = n j−1 or n∨j−1 for the fitting path P. The right-hand side of equation (12.2.10)
holds again by the flip-invariance of F .

12.3 Positivity of ring shift factors
We generalize inequality (1.6.2) by the ring shift factors in Definition 6.1. We state the following lemma to
obtain the generalization by mediators and q-numbers, which factorize the ring shift factors.

Lemma 12.11. The set C =
{

f ∈Q(X) | f >OX
0
}

is a group under multiplications.

Proof. Clearly, 1 ∈C. If g ∈C2, then Frac(g)(r) = Frac(g(r))> 0 for each r ∈ OX.

We state the following >OX
-positivities of mediators and q-numbers.

Proposition 12.12. Suppose a µ = ps, l,w,≻,ρ,x,Xq-mediator φ .

1. If m ∈ Zl
≥0 and λ ∈ Zl

≥1, then

∏φ(x)m◦w >OX
0, (12.3.1)

[m]!w
xλ >OX

0. (12.3.2)

2. If m ∈ JsKl , then

∏φ(xρ)m◦w >OX
0.

3. Suppose a fitting ps, l,m,n,kq with a = ν(k) and b = ν(m,n,k). Then, it follows that

∏(φ(xρ)⊔)(b−a)◦w⊔
>OX

0.

Proof. Proof of Claim 1. First, the base positivity of φ and µ implies inequality (12.3.1) by Lemma 12.11.
Second, we prove inequality (12.3.2). By λ ≥ 1, each i ∈ JlK implies [mi]!

wi

x
λi
i

>xi 0. This gives [m]!w
xλ
≻ 0

by the half >x-≻ implication in Claim 2 of Lemma 5.20. By the half ≻->OX
implication, we deduce

inequality (12.3.2).
Proof of Claim 2. By the compatibility >OX

Ţ≻, the base-shift positivity of φ and µ implies

B(s, l,w,m,φ ,ρ,x,X)>OX
0.
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Then, we have

B(s, l,w,m,φ ,ρ,x,X) = ∏
i∈JlK

φ(xρi
i )wimi [mi]!

wi

x
ρi
i

φ(x)wimi [mi]!
wi
xi

=
∏φ(xρ)m◦w · [m]!w

xρ

∏φ(x)m◦w · [m]!w
x

>OX
0.

Therefore, Claim 2 follows from Lemma 12.11 and Claim 1.
Proof of Claim 3. Claim 2 gives Claim 3, since m,n∨ ∈ JsKl satisfy

∏(φ(xρ)⊔)(b−a)◦w⊔
= ∏(φ(xρ)⊔)(m++n)◦w⊔

= ∏φ(xρ)m◦w ·∏φ(xρ)n∨◦w.

We obtain the generalization of inequality (1.6.2) by the ring shift factors.

Corollary 12.13. Suppose a fitting µ = ps, l,m,n,kq. Then,

ϒ(s, l,w,m,n,k,φ ,ρ,x,X)>OX
0.

Proof. Let a = ν(k) and b = ν(m,n,k). By the slope conditions of µ , we have a,b ≥ 0. We deduce the
assertion by Item 2 of Definition 6.1, Lemma 12.11, and Claims 1 and 3 of Proposition 12.12.

12.4 Almost strictly unimodal sequences by the merged-log-concavity
We discuss almost strictly unimodal sequences by fitting paths and the merged-log-concavity. We introduce
the following notation along fitting paths.

Definition 12.14. Let θ be a gate. Consider the pair ζ = pP,F q of a fitting path P = pps, l,mi,ni,kiqqi∈JθK
and parcel F = Λ(s, l,w,≻, fs,φ ,ρ,x,X). Let r ∈ OX.

1. We define the extended gate e(θ) = pθ1 −1,θ2 +1q ∈ Ẑ2.

2. We define the path-parcel sequence u(ζ ,r) = pu(ζ ,r)i ∈ Rqi∈Je(θ)K such that

u(ζ ,r)i =


Fmθ1 akθ1

(r) if i = θ1 −1,

Fni(r) if i ∈ Jθ1,θ2K,
Fnθ2‘kθ2

(r) if i = θ2 +1 < ∞.

By the ends of parcel-path sequences, we define the notion of wrapped fitting paths.

Definition 12.15. Suppose a fitting path P = pps, l,mi,ni,kiqqi∈JθK. We call P wrapped if P satisfies the
following conditions:

mθ1 a kθ1 ∈ JsKl ; (12.4.1)

nθ2 ‘ kθ2 ∈ JsKl when θ2 < ∞. (12.4.2)

We refer to (12.4.1) and (12.4.2) as the lower inclusion condition and the upper inclusion condition of P.

We state the following lemma for a later reference.
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Lemma 12.16. If r = pri ∈ R>0qi∈JsK is strictly log-concave, then r is almost strictly unimodal.

Proof. Let j−1, j+1 ∈ JsK. The strict log-concavity of r reads r2
j − r j−1r j+1 > 0. Then, by r j−1,r j > 0, we

have r j
r j−1

>
r j+1

r j
. Since r j

r j−1
≤ 1 implies r j−1 ≥ r j > r j+1 > .. . , the assertion follows.

Since each ≻-merged-log-concavity gives the >OX
-merged-log-concavity by the half ≻->OX

implication,
we state the following short almost strictly unimodal sequences by the >OX

-merged-log-concavity.

Lemma 12.17. Consider a length-one fitting path P = pps, l,mi,ni,kiqqi∈JθK and r ∈ OX. Let F = Λ(s, l,w,≻
, fs,φ ,ρ,x,X) be >OX

-merged-log-concave and flip-invariant at r. Let ζ = pP,F q. Then, we have the
following.

1. u(ζ ,r) is strictly log-concave.

2. u(ζ ,r)> 0 is almost strictly unimodal if P is wrapped.

Proof. Proof of Claim 1. Suppose θ = p1,1q without loss of generality. By e(θ) = p0,2q, we want to prove
the strict log-concavity of the following sequence:

u(ζ ,r)0 = Fm1ak1(r); (12.4.3)
u(ζ ,r)1 = Fn1(r); (12.4.4)
u(ζ ,r)2 = Fn1‘k1(r). (12.4.5)

By the >OX
-merged-log-concavity of F , we have

∆(F )(s, l,w,m1,n1,k1,φ ,ρ,x,X) = ϒ(s, l,w,m1,n1,k1,φ ,ρ,x,X) ·det(F ,m1,n1,k1)>OX
0

By Lemma 12.11 and Corollary 12.13, we deduce

det(F ,m1,n1,k1) = Fm1Fn∨1
−Fm1ak1F(n1‘k1)∨ >OX

0.

Also, m1 = n∨1 or m1 = n1 for the fitting path P. Since F is flip-invariant at r, we obtain

Fn1(r)Fn1(r)−Fm1ak1(r)Fn1‘k1(r)>OX
0.

Claim 1 follows, since u(ζ ,r)2
1 −u(ζ ,r)0u(ζ ,r)2 > 0 by equations (12.4.3), (12.4.4), and (12.4.5).

Proof of Claim 2. Claim 2 holds by Lemma 12.16 and Claim 1, because m1 a k1 ∈ JsKl and n1 ‘ k1 ∈ JsKl

imply u(ζ ,r)0,u(ζ ,r)2 > 0 by equations (12.4.3) and (12.4.5).

Moreover, we obtain the following almost strictly unimodal sequences by general fitting paths.

Theorem 12.18. Consider a fitting path P = pPi = ps, l,mi,ni,kiqqi∈JθK. Assume that F = Λ(s, l,w,≻
, fs,φ ,ρ,x,X) is >OX

-merged-log-concave and flip-invariant at r ∈ OX. Let ζ = pP,F q. Then, we have the
following.

1. u(ζ ,r) is strictly log-concave.

2. u(ζ ,r)> 0 is almost strictly unimodal if P is wrapped.
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Proof. Proof of Claim 1. For each λ ∈ JθK, consider the length-one fitting path Qλ = pPiqi∈Jλ ,λK. Let
κλ = pQλ ,F q. Then, we prove the following equations:

u(κλ ,r)λ−1 = u(ζ ,r)λ−1; (12.4.6)
u(κλ ,r)λ = u(ζ ,r)λ ; (12.4.7)

u(κλ ,r)λ+1 = u(ζ ,r)λ+1. (12.4.8)

These equations imply Claim 1 by Claim 1 of Lemma 12.17 on u(κλ ,r).
First, we prove equation (12.4.6). If λ −1 ̸∈ JθK, then

u(κλ ,r)λ−1 = Fmλ akλ
(r) = u(ζ ,r)λ−1.

If λ −1 ∈ JθK, then Proposition 12.10 gives

u(κλ ,r)λ−1 = Fmλ akλ
(r) = Fnλ−1(r) = u(ζ ,r)λ−1.

Second, equation (12.4.7) holds, since λ ∈ JθK implies

u(κλ ,r)λ = Fnλ
(r) = u(ζ ,r)λ .

Third, we prove equation (12.4.8). If λ +1 ̸∈ JθK, then equation (12.4.8) follows from

u(κλ ,r)λ+1 = Fnλ ‘kλ
(r) = u(ζ ,r)λ+1.

If λ +1 ∈ JθK, then mλ+1 = (nλ ‘ kλ )
∨, which is nλ+1 or n∨

λ+1. By the flip-invariance of F , we deduce

u(κλ ,r)λ+1 = Fnλ ‘kλ
(r) = Fnλ+1(r) = u(ζ ,r)λ+1.

Proof of Claim 2. Since P is wrapped, we have

u(ζ ,r)θ1−1 = Fmθ1 akθ1
(r)> 0,

u(ζ ,r)θ2+1 = Fnθ2 ‘kθ2
(r)> 0 if θ2 < ∞.

Claim 2 follows from Lemma 12.16.

12.5 Infinite-length fitting paths
We introduce the following sequences to obtain infinite-length fitting paths, which in turn give infinite-length
almost strictly unimodal sequences in Theorem 12.18.

Definition 12.19. Let l ∈ Z≥1. Let λ ∈ Z3
≥0 such that l ≥ λ1 ≥ 1 and λ2 ≥ 1. Suppose infinite gates s ≥ 0

and θ = p1,∞q ∈ Ẑ2. Let t = pti ∈ Z≥0qi∈JθK. Then, we define the sequence

Ps,l,λ ,t =
`

Ps,l,λ ,t,i = ps, l,mi,ni,kiq
˘

i∈JθK

for mi,ni ∈ Zl
≥0 and ki ∈ Z2l

≥0 as follows.

1. If λ1 = l, then

mi = ni = ι
l(λ2 +λ3 + s1)+(i−1)ι l(λ2),

ki = ι
l(0)++ pλ2q++ ι

l−1(0)+ ptiq++ ι
2l−1(0).
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2. If λ1 < l, then

mi = ni = ι
λ1(λ2)++ ι

l−λ1(0)+(i−1)ι l(2λ2)+ ι
l(λ3 + s1),

ki = ι
λ1(0)++ pλ2q++ ι

l−λ1−1(0)++ pλ2q++ ι
λ1−1(0)++ pλ2q++ ι

l−λ1−1(0)+ ptiq++ ι
2l−1(0).

When t = ιJθK(0) = pti = 0qi∈JθK, let Ps,l,λ = Ps,l,λ ,t for simplicity.

We prove that Ps,l,λ ,t is an infinite-length fitting path. In particular, for each Ps,l,λ ,t,i, we verify the slope
conditions, which allow non-strict inequalities on ν(ki) and ν(mi,ni,ki).

For Item 1 of Definition 12.19, we have the following.

Proposition 12.20. Assume l ∈ Z≥1 and λ ∈ Z3 such that

λ1 = l, λ2 ≥ 1, λ3 ≥ 0. (12.5.1)

Then, Ps,l,λ ,t =
`

Ps,l,λ ,t,i = ps, l,mi,ni,kiq
˘

i∈JθK is an infinite-length fitting path of type free such that

ν(ki) = ι
l(0)++ ι

l(λ2)+ ti. (12.5.2)

Proof. For simplicity, let t = ιJθK(0). First, we prove that each Ps,l,λ ,i is fitting. We have m1,n1 ≥ s1 by
condition (12.5.1). This gives mi,ni ∈ JsKl , since s is an infinite gate. Also, we obtain equation (12.5.2), since

ki = ι
l(0)++ pλ2q++ ι

l−1(0).

This gives

ν(mi,ni,ki) = ι
l(λ2 +λ3 + s1)++ ι

l(2λ2 +λ3 + s1)+(i−1)ι2l(λ2). (12.5.3)

Each Ps,l,λ ,i is fitting by equations (12.5.2) and (12.5.3), since condition (12.5.1) implies the slope conditions
on ν(ki) and ν(mi,ni,ki).

Second, we prove that Qi =
`

Qi,κ = Ps,l,λ ,i+κ

˘

κ∈J0,1K is a fitting path of type free for each i ∈ JθK. Since

σ(ki) = ι l(λ2), we have

(ni ‘ ki)
∨ = ι

l(λ2 +λ3 + s1)+ iι l(λ2) = mi+1.

We deduce that each Qi is a fitting path of type free, since mi+κ = ni+κ = m∨
i+κ

for κ ∈ J0,1K.

Example 12.21. Let s = p0,∞q, l ∈ Z≥1, and λ = pl,1,0q. Then, θ = p1,∞q gives the infinite-length fitting
path Ps,l,λ =

`

Ps,l,λ ,i = ps, l,mi,ni,kiq
˘

i∈JθK of type free such that each i ∈ JθK satisfies

mi = ni = ι
l(i),

ki = ι
l(0)++ p1q++ ι

l−1(0).

In particular, this appears in equation (12.2.2).

For Item 2 of Definition 12.19, we have the following.
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Proposition 12.22. Suppose l ∈ Z≥1 and λ ∈ Z3 such that

1 ≤ λ1 < l, λ2 ≥ 1, λ3 ≥ 0. (12.5.4)

Consider Ps,l,λ ,t =
`

Ps,l,λ ,t,i = ps, l,mi,ni,kiq
˘

i∈JθK. Also, let

L(l,λ1) = min(λ1 −1, l −λ1 −1),
H(l,λ1) = max(λ1 −1, l −λ1 −1).

Then, the following statements hold.

1. We have

σ(ki)l− j =


λ2 if j ∈ J0,L(l,λ1)K,
2λ2 if j ∈ JL(l,λ1)+1,H(l,λ1)K,
3λ2 if j ∈ JH(l,λ1)+1, l −1K.

2. Ps,l,λ ,t is an infinite-length fitting path of type e-e such that

ν(ki) = ι
λ1(0)++ ι

l−λ1(λ2)++ ι
λ1(2λ2)++ ι

l−λ1(3λ2)+ ti (12.5.5)

for each i ∈ JθK.

Proof. For simplicity, let t = ιJθK(0).
Proof of Claim 1. If λ1 −1 > 0 and l −λ1 −1 > 0, then the statement is clear. Let us suppose otherwise.

First, let λ1 −1 = 0. If l −λ1 −1 = 0, then

ki = ι
λ1(0)++ pλ2q++ pλ2q++ pλ2q .

Claim 1 follows, since L(l,λ1) = H(l,λ1) = 0. If l −λ1 −1 > 0, then

ki = ι
λ1(0)++ pλ2q++ ι

l−λ1−1(0)++ pλ2q++ pλ2q++ ι
l−λ1−1(0).

Claim 1 holds by L(l,λ1) = 0 < H(l,λ1) = l −λ1 −1.
Second, let λ1 −1 > 0 and l −λ1 −1 = 0. Then,

ki = ι
λ1(0)++ pλ2q++ pλ2q++ ι

λ1−1(0)++ pλ2q .

This gives Claim 1 by L(l,λ1) = 0 < H(l,λ1) = λ1 −1.
Proof of Claim 2. We prove that each Ps,l,λ ,i = ps, l,mi,ni,kiq is fitting. Since s is an infinite gate,

mi,ni ∈ JsKl . Then, we obtain equation (12.5.5), ignoring ++ιλ1−1(0) or ++ι l−λ1−1(0) in ki when λ1 −1 = 0
or l −λ1 −1 = 0. Also, we have

ν(mi,ni,ki) = ι
l(λ2 +λ3 + s1)++ ι

l(3λ2 +λ3 + s1)+(i−1)ι2l(2λ2). (12.5.6)

By equations (12.5.5) and (12.5.6), condition (12.5.4) gives the slope conditions on ν(ki) and ν(mi,ni,ki). It
follows that each Ps,l,λ ,i is fitting.
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For each i ∈ JθK, we prove that Qi =
`

Qi,κ = Ps,l,λ ,i+κ

˘

κ∈J0,1K is a fitting path of type e-e. First, assume
L(l,λ1) = l −λ1 −1. Since λ1 −1− (l −λ1 −1) = 2λ1 − l ≥ 0, Claim 1 gives

σ(ki) = ι
l−λ1(3λ2)++ ι

2λ1−l(2λ2)++ ι
l−λ1(λ2).

Then, l −λ1 +2λ1 − l = λ1 implies

ni ‘ ki = ι
l−λ1(2λ2)++ ι

λ1(3λ2)+ ι
l(λ3 + s1)+(i−1)ι l(2λ2).

By (ni ‘ ki)
∨ = mi+1, we deduce that each Qi is a fitting path of type e-e.

Second, assume L(l,λ1) = λ1 −1. Since l −λ1 −1− (λ1 −1) = l −2λ1 ≥ 0, Claim 1 yields

σ(ki) = ι
λ1(3λ2)++ ι

l−2λ1(2λ2)++ ι
λ1(λ2).

Furthermore, λ1 + l −2λ1 = l −λ1 gives

ni ‘ ki = ι
l−λ1(2λ2) ++ ι

λ1(3λ2) + ι
l(λ3 + s1) + (i − 1)ι l(2λ2).

Since (ni ‘ ki)
∨ = mi+1, each Qi is a fitting path of type e-e.

Example 12.23. Let s = p0,∞q, l = 3, and λ = p1,1,0q. Then, θ = p1,∞q gives the infinite-length fitting
path Ps,l,λ =

`

Ps,l,λ ,i = ps, l,mi,ni,kiq
˘

i∈JθK of type e-e such that each i ∈ JθK satisfies

mi = ni = p1,0,0q+2i−2,
ki = p0,1,0,1,1,0q .

12.6 Triplet scalings and sums of fitting paths
To construct more fitting paths, we introduce the following triplet scalings and sums.

Definition 12.24. Suppose a gate s and l ∈ Z≥1.

1. Assume a tuple T = ps, l,α,β ,γq such that α,β ∈ Zl and γ ∈ Z2l . Let λ ∈ Z. Then, we define the
triplet scaling

λ ⊙T = ps, l,λα,λβ ,λγq .

2. For each i ∈ J2K, assume a tuple Pi = ps, l,mi,ni,kiq such that mi,ni ∈ Zl and ki ∈ Z2l . Then, we define
the triplet sum

P1 ` P2 = ps, l,m1 +m2,n1 +n2,k1 + k2q .

In particular, we obtain the following fitting tuples.

Lemma 12.25. Consider fitting tuples Pj = ps, l,m j,n j,k jq for j ∈ J2K. Suppose λ ∈ Z2 such that

λ1,λ2 ≥ 0 and λ1 +λ2 > 0. (12.6.1)

Let P3 = λ1 ⊙P1 ` λ2 ⊙P2 = ps, l,m3,n3,k3q. Then, P3 is fitting, provided m3,n3 ∈ JsKl .
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Proof. Let ai = ν(ki) and bi = ν(mi,ni,ki) for i ∈ J3K. Then, we have

a3 = λ1ν(k1)+λ2ν(k2)

= λ1a1 +λ2a2,

b3 = a3 +m3 ++n3

= a3 +(λ1m1 +λ2m2)++(λ1n1 +λ2n2)

= λ1a1 +λ2a2 +λ1m1 ++λ1n1 +λ2m2 ++λ2n2

= λ1b1 +λ2b2.

Thus, the slope conditions of P1 and P2 imply those of P3 by inequalities (12.6.1). This gives the statement by
m3,n3 ∈ JsKl .

We now introduce the following triplet scalings and sums on tuple sequences.

Definition 12.26. Suppose gates s and θ . Let l ∈ Z≥1.

1. Consider a sequence T = pTi = ps, l,αi,βi,γiqqi∈JθK with αi,βi ∈ Zl and γi ∈ Z2l . Let λ ∈ Z. Then, we
define the triplet scaling

λ ⊙T = pλ ⊙Tiqi∈JθK .

2. For each j ∈ J2K, consider a sequence Pj = pPj,i = ps, l,m j,i,n j,i,k j,iqqi∈JθK with m j,i,n j,i ∈ Zl and

k j,i ∈ Z2l . Then, we define the triplet sum

P1 ` P2 = pP1,i ` P2,iqi∈JθK .

For example, suppose an infinite gate s ≥ 0 and λ = pλ1,λ2,0q ∈ Z3 such that s1 = 0 and λ1,λ2 ∈ Z≥1.
This gives Ps,l,λ = λ2 ⊙Ps,l,pλ1,1,0q.

We now prove the following strict inequality on the ladders of fitting paths.

Lemma 12.27. Assume a fitting path P = pps, l,mi,ni,kiqqi∈J1,2K. Then, we have

n1 = m1 < m∨
2 or n1 = m∨

1 < m∨
2 .

In particular, we have

∑m1 = ∑n1 < ∑m2 = ∑n2.

Proof. Since P is a fitting path, n1 = m1 or n1 = m∨
1 . If n1 = m1, then σ(k)> 0 gives

m1 < m1 ‘ k1 = n1 ‘ k1 = m∨
2 .

If n1 = m∨
1 , then

m∨
1 < m∨

1 +σ(k1)
∨ = n1 +σ(k1)

∨ = n1 ‘ k1 = m∨
2 .

The latter statement follows from m2 = n2 or m∨
2 = n2.
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Then, we obtain fitting paths by triplet scalings and sums.

Proposition 12.28. Assume λ ∈ Z2
≥1 such that

λ1,λ2 ≥ 0 and λ1 +λ2 > 0. (12.6.2)

Let θ = p1,2q. Consider fitting paths Pj = pPj,i = ps, l,m j,i,n j,i,k j,iqqi∈JθK for j ∈ J2K such that P1 and P2

have the same type A. Also, suppose m3,2,n3,2 ∈ JsKl and

P3 = λ1 ⊙P1 ` λ2 ⊙P2 = pP3,i = ps, l,m3,i,n3,i,k3,iqqi∈JθK .

Then, P3 is a fitting path of the type A.

Proof. Lemma 12.25 implies that P3,2 is fitting. Hence, let us prove that P3,1 is fitting. Thus, we confirm
m3,1,n3,1 ∈ JsKl . By inequalities (12.6.2), we have

m3,1 ≥ m1,1 or m2,1, (12.6.3)
n3,1 ≥ n1,1 or n2,1. (12.6.4)

Also, since P1 and P2 are fitting paths, Lemma 12.27 yields

m3,1 = λ1m1,1 +λ2m2,1 <

{
λ1m1,2 +λ2m2,2 = m3,2 if A is type f-e or f-f,
λ1m∨

1,2 +λ2m∨
2,2 = m∨

3,2 if A is type e-e or e-f.

Thus, m3,1 ∈ JsKl by m3,2 ∈ JsKl and inequality (12.6.3). Also, n3,1 ∈ JsKl by m3,2 ∈ JsKl and inequality (12.6.4),
because Lemma 12.27 gives

n3,1 = λ1n1,1 +λ2n2,1 < λ1m∨
1,2 +λ2m∨

2,2 = m∨
3,2.

Hence, P3,1 is fitting by Lemma 12.25.
Let us prove that P3 is a fitting path of the type A. We have

m3,2 = (n3,1 ‘ k3,1)
∨, (12.6.5)

since
n3,1 ‘ k3,1 = (λ1n1,1 + λ2n2,1) ‘ (λ1k1,1 + λ2k2,1)

= λ1(n1,1 ‘ k1,1) + λ2(n2,1 ‘ k2,1)

= λ1m∨
1,2 + λ2m∨

2,2

= m∨
3,2.

For instance, assume that P1 and P2 have the type e-e. Then, we have m3,1 = n3,1 by m1,1 = n1,1 and
m2,1 = n2,1, and m3,2 = n3,2 by m1,2 = n1,2 and m2,2 = n2,2. Thus, P3 is of type e-e by equation (12.6.5).
Similar discussions hold for the other types.
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12.7 Infinite-length fitting paths of Young diagrams
By box counting, we prove that Young diagrams give explicit infinite-length fitting paths. We adopt the
following notation.

Definition 12.29. Suppose p,λ ∈ Z≥1.

1. ξ ∈ Zp
≥1 is called a Young diagram (or a partition of ∑ξ ) if ξ is decreasing.

2. We write Y (p,λ ) for the set of Young diagrams ξ ∈ Zp
≥1 such that ξ1 ≤ λ .

By Definition 2.1, we use the following notation for the box counting of Y (p,λ ).

Definition 12.30. Let ξ ∈ Y (p, l), λ ∈ Z, and λ ′ ∈ Z≥1.

1. Let L≤λ (ξ ) = ∑i≤λ Li(ξ ) ∈ Z≥0.

2. Let L(λ ,ξ ) = 2L≤λ−1(ξ )+Lλ (ξ ) ∈ Z≥0.

3. Let z(λ ′,λ ,ξ ) = λ + pL≤0(ξ ),L≤1(ξ ), . . . ,L≤λ ′−1(ξ )q ∈ Zλ ′
.

Moreover, we define the following sequence of fitting tuples.

Definition 12.31. Let h ∈ Z≥0 and ξ ∈ Y (p, l). Consider λi ∈ Z3
≥0 for i ∈ JpK such that λ1 = pξ1,1,hq

and λi = pξi,1,0q for i ∈ J2, pK. Also, suppose an infinite gate s ≥ 0. Let l ∈ Z≥1, θ = p1,∞q, and t =
pti ∈ Z≥0qi∈JθK. Then, we define the sequence

Ps,l,ξ ,t,h = Ps,l,λ1,t ` Ps,l,λ2 ` · · ·` Ps,l,λp .

We call h the base height of Ps,l,ξ ,t,h. If each ti = 0, then we also write Ps,l,ξ ,h for Ps,l,ξ ,t,h.

Then, we realize the following infinite-length fitting paths Ps,l,ξ ,t,h.

Theorem 12.32. Consider a Young diagram ξ ∈ Y (p, l). Then, Ps,l,ξ ,t,h = pps, l,mi,ni,kiqqi∈JθK is an infinite-
length fitting path of type e-e. Moreover, each i ∈ JθK satisfies

mi = ni = p+ s1 +h− z(l,0,ξ )+(i−1)ι l(L(l,ξ )), (12.7.1)
ν(ki) = z(l,0,ξ )++ z(l,L(l,ξ ),ξ )+ ti. (12.7.2)

Proof. The former statement holds by Propositions 12.20, 12.22, and 12.28.
We prove equations (12.7.1) and (12.7.2). Suppose s1 = h = 0 and each ti = 0 for simplicity. Thus, let

λ j = pξ j,1,0q for j ∈ JpK. Also, consider the fitting path Ps,l,λ j =
´´

s, l,mλ j ,i,nλ j ,i,kλ j ,i

¯¯

i∈JθK
for j ∈ JpK.

Then, Propositions 12.20 and 12.22 give the following equations:

mλ j ,i = nλ j ,i =

{
ι

l(1)+(i−1)ι l(1) if ξ j = l,

ι
ξ j(1)++ ι

l−ξ j(0)+(i−1)ι l(2) if ξ j < l;
(12.7.3)

ν(kλ j ,i) =

{
ι

l(0)++ ι
l(1) if ξ j = l,

ι
ξ j(0)++ ι

l−ξ j(1)++ ι
ξ j(2)++ ι

l−ξ j(3) if ξ j < l.
(12.7.4)
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Thus, equation (12.7.1) holds by equation (12.7.3), since each κ ∈ JlK satisfies

m1,κ = n1,κ = ∑
j∈JpK

mλ j ,1,κ = ∑
u∈Jκ,lK

Lu(ξ ).

Also, equation (12.7.2) holds, since equation (12.7.4) gives

ν(ki) = ι
l(0)++ ι

l(Ll(ξ ))+ ∑
κ∈Jl−1K

ι
κ(0)++ ι

l−κ(Lκ(ξ ))++ ι
κ(2Lκ(ξ ))++ ι

l−κ(3Lκ(ξ )).

Theorem 12.32 gives not only infinitely many polynomials with positive integer coefficients by Young
diagrams and the merged-log-concavity, but also infinite-length almost strictly unimodal sequences by
Theorem 12.18. Also, z(l,0,ξ ) and p− z(l,0,ξ ) in Theorem 12.32 count boxes of Young diagrams in p× l
rectangles as in the following examples.

Example 12.33. Let l = 4, p = 2, ξ = p3,1q, s = p0,∞q, and h = 0. Then, there exists the infinite-length
fitting path Ps,l,ξ ,h = pps, l,mi,ni,kiqqi∈JθK such that each i ∈ JθK satisfies

mi = ni = p2,1,1,0q+(i−1)ι l(4), (12.7.5)
ν(ki) = p0,1,1,2,4,5,5,6q . (12.7.6)

To explain these equations by p− z(l,0,ξ ) and z(l,0,ξ ), consider the following Young diagram of ξ :

.

Then, p− z(l,0,ξ ) corresponds to the following box counting:

2 1 1 0
,

where 2,1,1,0 indicate the numbers of boxes in the vertical direction. Furthermore, equation (12.7.5) follows
from Theorem 12.32, since L≤l−1(ξ ) = 2 and Ll(ξ ) = 0 gives L(l,ξ ) = 4.

Moreover, in the p× l rectangle, ξ gives the following complementary Young diagram:

.

Then, z(l,0,ξ ) corresponds to the following box counting:

0 1 1 2 ,

where 0,1,1,2 are the numbers of boxes in the vertical direction. Thus, equation (12.7.6) follows.

When ξ1 = l, we have the following example.
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Example 12.34. Let l = 3, p = 2, ξ = p3,1q, s = p0,∞q, and h = 0. Then, there is the infinite-length fitting
path Ps,l,ξ ,h = pps, l,mi,ni,kiqqi∈JθK such that each i ∈ JθK satisfies

mi = ni = p2,1,1q+(i−1)ι l(3), (12.7.7)
ν(ki) = p0,1,1,3,4,4q . (12.7.8)

To explain these equations, we have the following Young diagram of ξ :

.

Thus, p− z(l,0,ξ ) corresponds to the following box counting:

2 1 1
,

where 2,1,1 are the numbers of boxes in the vertical direction. This gives equation (12.7.7) by Theorem 12.32,
since L≤l−1(ξ ) = 1 and Ll(ξ ) = 1.

Furthermore, in the p× l rectangle, ξ has the following complementary Young diagram:

.

Then, z(l,0,ξ ) corresponds to the following box counting:

0 1 1
,

where 0,1,1 are the numbers of boxes in the vertical direction. Hence, we obtain equation (12.7.8).

Remark 12.35. Let l ∈ Z≥1, p = 1, ξ = plq, s = p0,∞q, and h = 0. Then, there is the infinite-length fitting
path Ps,l,ξ ,h = pps, l,mi,ni,kiqqi∈JθK such that each i ∈ JθK satisfies

mi = ni = iι l(1),

ν(ki) = ι
l(0)++ ι

l(1).

Furthermore, suppose a parcel F = Λ(s, l,≻, fs,X) and i ∈ JθK. Then, since σ(k) = ι l(1), the ≻′-multi-
log-concavity

FmiFmi −Fmi−1Fmi+1 ≻′ 0

coincides with the ≻′-merged-log-concavity

FmiFn∨i
−FmiakiF(ni‘ki)∨ ≻′ 0.

We now obtain infinite-length almost strictly unimodal sequences by the following lemma.
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Lemma 12.36. Suppose P = Ps,l,ξ ,t,h = pps, l,mi,ni,kiqqi∈JθK. Then, P is wrapped when

h ≥ 3L≤l−1(ξ ). (12.7.9)

Proof. Since s is infinite, P has the upper inclusion condition. Let us confirm that inequality (12.7.9) gives the
lower inclusion condition m1 ak1 ≥ s1 of P. Let a1 = ν(k1) and p = L≤l−1(ξ )+Ll(ξ ). Then, Theorem 12.32
gives

σ(k1)1 = a1,2l − t1 = L(l,ξ )+L≤l−1(ξ ) = 3L≤l−1(ξ )+Ll(ξ ) = 2L≤l−1(ξ )+ p.

Thus, since m1 ≥ s1 +h+ p−L≤l−1(ξ ) by Theorem 12.32, we obtain

m1 a k1 ≥ s1 +h+ p−L≤l−1(ξ )−σ(k1)1 = s1 +h−3L≤l−1(ξ ).

In particular, inequality (12.7.9) gives the lower inclusion condition of P.

Proposition 12.37. Let P = Ps,l,ξ ,h = pps, l,mi,ni,kiqqi∈JθK. Suppose that F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) is
≻-merged-log-concave and flip-invariant at some r ∈ OX. Let ζ = pP,F q. Then, we have the following.

1. u(ζ ,r) is infinite-length and strictly log-concave.

2. u(ζ ,r) or −u(ζ ,r) is infinite-length and almost strictly unimodal if h ≥ 3L≤l−1(ξ ).

Proof. Proof of Claim 1. Claim 1 is of Theorems 12.18 and 12.32.
Proof of Claim 2. Lemma 12.36 and Claim 1 imply Claim 2.

13 Almost strictly unimodal sequences and critical points
We have the notions of increasing, decreasing, and hill sequences of real numbers. Also, we adopt the
following notion of infinite-length sequences, extending the notion of hill sequences to asymptotic cases.

Definition 13.1. Consider a strictly increasing sequence r = pri ∈ Rqi∈JθK for an infinite gate θ . Then, r is
an asymptotic hill if

lim
i→∞

ri+1

ri
= 1.

Using the notions of almost strictly unimodal sequences, we have the following boundary sequences,
which satisfy two of the notions simultaneously:

• hill and increasing sequences;

• hill and decreasing sequences;

• asymptotically hill and increasing sequences.

By these boundary sequences, we consider critical points on the variation of almost strictly unimodal
sequences. We also obtain real algebraic sets of the critical points in a suitable setting.
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13.1 Increasing, hill, and decreasing sequences
Since hill sequences have at least three terms in Definition 1.1, we state the following classification of almost
strictly unimodal sequences.

Lemma 13.2. Let r = pri ∈ Rqi∈JsK be almost strictly unimodal with s2 − s1 ≥ 2. Let δ be the mode of r.

1. If δ = s2, then r is strictly increasing.

2. If δ = s1 and rδ > rδ+1, then r is strictly decreasing.

3. In other cases, r is a hill.

Proof. Proof of Claim 1. If s2 < ∞, then r = priqi≤δ
is strictly increasing. If s2 = ∞, then rδ and rδ+1 are

non-existent.
Proof of Claim 2. Claim 2 holds, since priqi>δ

is strictly decreasing.
Proof of Claim 3. If s1 < δ < s2, then δ <∞ gives hill sequences. If δ = s1 and rδ = rδ+1, then s2−s1 ≥ 2

gives hill sequences.

We establish the following criteria for some boundary sequences.

Proposition 13.3. Consider an almost strictly unimodal r = pri ∈ Rqi∈JsK such that s2 − s1 ≥ 2. Then, we
have the following.

1. r is a hill and decreasing sequence if and only if rs1 = rs1+1.

2. r is a hill and increasing sequence if and only if r satisfies the following conditions:

s2 < ∞; (13.1.1)
rs2−1 = rs2 . (13.1.2)

Proof. Assume the mode δ of r.
Proof of Claim 1. First, the if part follows, because s2 − s1 ≥ 2 gives rs1 = rs1+1 > rs1+2 > .. . , which

is a hill and decreasing sequence. Second, the only if part holds as follows. If s1 < δ ≤ s2, then r is not
decreasing by rs1 < rs1+1. If s1 = δ , then rδ = rδ+1 by Claim 2 of Lemma 13.2.

Proof of Claim 2. First, the if part holds, since s2 − s1 ≥ 2 gives · · · < rs2−2 < rs2−1 = rs2 , which is
increasing and hill. Second, let us prove the only if part. If s2 = ∞, then r is not increasing when δ < ∞, or
strictly increasing when δ = ∞ by Claim 1. Hence, inequality 13.1.1 holds. Also, the strictly decreasing part
priqi>δ

has to be trivial. It follows that δ = s2 −1 by Claim 1 of Lemma 13.2. We obtain equation (13.1.2)
for the increasing r.

13.2 Critical points on almost strictly unimodal sequences
We first introduce the notion of merged pairs.

Definition 13.4. Assume a wrapped fitting path P = pps, l,mi,ni,kiqqi∈JθK and a parcel F = Λ(s, l,w,≻
, fs,φ ,ρ,x,X) that is flip-invariant and >OX

-merged-log-concave. Then, we call the tuple pP,F q a pθ ,Xq-
merged pair.

Suppose a pθ ,Xq-merged pair ξ = pP,F q and r ∈ OX. Then, we define the following critical points on
u(ξ ,r), which is an almost strictly unimodal sequence by Theorem 12.18.
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Definition 13.5. Suppose a pθ ,Xq-merged pair ζ = pP,F q. Let r ∈ OX.

1. We call r a front critical point of ζ if u(ζ ,r) is a hill and decreasing sequence.

2. We call r a rear critical point of ζ if u(ζ ,r) is a hill and increasing sequence.

We employ the term “front critical point”, since u(ζ ,r) is a hill and decreasing sequence when its front
terms satisfy u(ζ ,r)θ1−1 = u(ζ ,r)θ1 by Proposition 13.3. Similarly, we employ the term “rear critical point”,
since u(ζ ,r) of θ2 < ∞ is a hill and increasing sequence when its rear terms satisfy u(ζ ,r)θ2 = u(ζ ,r)θ2+1.

Rear critical points are only for finite-length fitting paths, since we do not have hill and increasing
infinite-length sequences among almost strictly unimodal sequences. But, suppose an infinite gate θ . Then,
there is a pθ ,Xq-merged pair λ = pP,G q with b1,b2,b3 ∈ OX such that

• u(λ ,r) is a hill if b1 ≤ r < b2, and

• u(λ ,r) is a strictly increasing sequence if b2 ≤ r ≤ b3.

We compute such a merged pair in some detail in Section 14.2.
For infinite-length merged pairs, let us introduce the following notion of asymptotic critical points, which

is analogous to the notion of rear critical points.

Definition 13.6. Suppose a pθ ,Xq-merged pair ζ = pP,F q of an infinite gate θ . We call r ∈OX an asymptotic
critical point of ζ if

lim
j→∞

u(ζ ,r) j+1

u(ζ ,r) j
= 1.

By the asymptotic critical points, we obtain asymptotic hills.

Proposition 13.7. For a pθ ,Xq-merged pair ζ = pP,F q, assume an asymptotic critical point r ∈ OX. Then,
u(ζ ,r) is an asymptotic hill.

Proof. We prove that u(ζ ,r) is strictly increasing. Assume that u(ζ ,r) is a hill or decreasing sequence.
This gives λ ∈ JθK such that u(ζ ,r)λ > u(ζ ,r)λ+1 > .. . . Since u(ζ ,r) > 0 is strictly log-concave by
Theorem 12.18, we have 1 ≥ u(ζ ,r)λ+1

u(ζ ,r)λ

>
u(ζ ,r)λ+2
u(ζ ,r)λ+1

> .. . against r being an asymptotic critical point.

13.3 Parcel ratios and vanishing constraints of parcel numerators
Suppose a merged pair pP,F q with an infinite-length P = pps, l,mi,ni,kiqqi∈JθK. Then, we discuss parcel

ratios
Fni‘ki

Fni
by almost strictly unimodal sequences and polynomials. This gives certain vanishing constraints

on parcel numerators.
We state the lemma below on infinite-length fitting paths.

Lemma 13.8. Assume an infinite-length fitting path P = pps, l,mi,ni,kiqqi∈JθK. Then, limi→∞ ni, j = ∞ for
each j ∈ JlK. In particular, s is an infinite gate.

Proof. Let i ∈ JθK such that i ≥ θ1 +1. Then, ni is ni−1 ‘ ki−1 or (ni−1 ‘ ki−1)
∨. Thus, ni ≥ i−θ1 ∈ Z≥1 by

σ(k)≥ 1 and nθ1 ≥ 0. So, we have the former assertion. This also gives the latter assertion by the inclusion
condition of each fitting tuple of P.

We also have the following lemma on parcel ratios.
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Lemma 13.9. Consider a merged pair pP,F q such that P = pps, l,mi,ni,kiqqi∈JθK and F = Λ(s, l,w,≻
, fs,φ ,ρ,x,X). Let ψ be the l-canonical mediator and κ = kθ1 . For each j ∈ JθK, let

G( j,x) = ∏
i∈JlK,λ∈Jσ(κ)∨i K

(1− x
n j,i+λ

i )wi .

Then, we have the following.

1. If j ∈ JθK, then

Fn j‘k j

Fn j

=
fs,n j‘κ

fs,n j

· ∏ψ(x)σ(κ)∨◦w

∏φ(x)σ(κ)∨◦w
· 1

G( j,x)
.

2. If P is infinite-length, then lim j→∞ G( j,x)|x=px1(r),...,xl(r)q= 1 for each r ∈ OX.

Proof. Proof of Claim 1. For equivalent supports k j and κ , σ(k j) = σ(κ) and n j ‘ k j = n j ‘ κ . Then, since
n j ‘ k j −n j = σ(κ)∨, we obtain

Fn j‘k j

Fn j

=
∏φ(x)n j◦w · [n j]!w

x

fs,n j

·
fs,n j‘k j

∏φ(x)(n j‘k j)◦w · [n j ‘ k j]!w
x

=
fs,n j‘κ

fs,n j

· 1
∏φ(x)σ(κ)∨◦w

·
[n j]!w

x

[n j ‘ κ]!w
x

=
fs,n j‘κ

fs,n j

· ∏ψ(x)σ(κ)∨◦w

∏φ(x)σ(κ)∨◦w
·

[n j]!w
x

∏i∈JlK(1− xi)
σ(κ)∨i ·wi · [n j ‘ κ]!w

x
.

Thus, Claim 1 holds, since

∏
i∈JlK

(1− xi)
σ(κ)∨i ·wi ·

[n j ‘ κ]!w
x

[n j]!w
x

= ∏
i∈JlK

(1− xi)
σ(κ)∨i ·wi · [n j,i +1]wi

xi
. . . [n j,i +σ(κ)∨i ]

wi
xi

= ∏
i∈JlK

(1− x
n j,i+1
i )wi . . .(1− x

n j,i+σ(κ)∨i
i )wi .

Proof of Claim 2. Claim 2 holds by Lemma 13.8, since 0 < xi(r)< 1 by Claim 1 of Lemma 5.22.

We introduce the following notion of tame parcels and tame factors to discuss asymptotic critical points
by polynomials.

Definition 13.10. Assume F =Λ(s, l,w,≻, fs,φ ,ρ,x,X) and an infinite-length fitting path P= pps, l,mi,ni,kiqqi∈JθK.

1. We call F tame along P by t ∈Q(X) if t ≥OX
0 and

t(r) = lim
i→∞

fs,ni‘ki

fs,ni

(r)

for each r ∈ OX. We call this t the tame factor of F along P.
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2. Let F be tame along P by t ∈Q(X). Then, let AIr(X)(ζ ),AIr(X)(t,ζ ) ∈Q[X]2 such that

AIr(X)(ζ ) = Ir(X)(∏φ(x)σ(κ)∨◦w),

AIr(X)(t,ζ ) = Ir(X)(t ·∏ψ(x)σ(κ)∨◦w).

Let us state the following polynomials of rational functions by squaring orders.

Lemma 13.11. For f ∈Q(X), consider Ir(X)( f ) ∈Q[X]2.

1. f ≥OX
0 if and only if there exists f (r) = Frac(Ir(X)( f )(r)) ∈ R≥0 for each r ∈ OX.

2. f >OX
0 if and only if there exists f (r) = Frac(Ir(X)( f )(r)) ∈ R>0 for each r ∈ OX.

3. Suppose a squaring order ≻ on X. If f 2 ≻ 0, then (∏ Ir(X)( f ))(r) ̸= 0 for each r ∈ OX.

Proof. Proof of Claim 1. Assume f ≥OX
0. Then, Ir(X)( f )1(r) ̸= 0 for each r ∈ OX, since f (r) ∈ R must

exist. Thus, the only if part holds. The if part is clear.
Proof of Claim 2. We obtain Claim 2 similarly, replacing ≥ with >.

Proof of Claim 3. Claim 3 follows from Claim 2, since f 2 =
Ir(X)( f )2

2
Ir(X)( f )2

1
>OX

0 by >OX
Ţ≻.

On merged pairs and almost strictly unimodal sequences, we then prove the following limit properties,
which are independent to mediators.

Proposition 13.12. Consider a merged pair ζ = pP,F q with F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) and an infinite-
length P = pps, l,mi,ni,kiqqi∈JθK. Let ψ be the l-canonical mediator and κ = kθ1 .

1. Suppose lim j→∞
fs,n j‘k j

fs,n j
(r) = 0 for some r ∈ OX. Then, we have

lim
j→∞

Fn j‘k j

Fn j

(r) = 0. (13.3.1)

In particular, u(ζ ,r) is a hill or decreasing sequence such that

lim
i→∞

u(ζ ,r)i = 0. (13.3.2)

2. For each r ∈ OX, lim j→∞
fs,n j‘k j

fs,n j
(r) = ∞ does not hold.

3. Let F be tame along P by t ∈Q(X) and r ∈ OX. Then, we have

(a) lim j→∞
Fn j‘k j

Fn j
(r) = t(r) · ∏ψ(x(r))σ(κ)∨◦w

∏φ(x(r))σ(κ)∨◦w ∈ R≥0;

(b) det(AIr(X)(ζ ),AIr(X)(t,ζ ))(r) = 0 if and only if lim j→∞
Fn j‘k j

Fn j
(r) = 1.

Proof. Proof of Claim 1. First, we obtain equation (13.3.1) from Claim 1 of Proposition 12.12 and
Lemma 13.9. Second, we obtain equation (13.3.2) as follows. The path-parcel sequence u(ζ ,r) is al-
most strictly unimodal by Theorem 12.18, and of positive real numbers by Definition 13.4. Therefore,
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equation (13.3.1) gives λ ∈ JθK such that
`

u(ζ ,r) j = Fn j(r)
˘

j≥λ
is strictly decreasing. This gives v ∈ R≥0

such that lim j→∞ u(ζ ,r) j = v. If v > 0, then lim j→∞
u(ζ ,r) j+1

u(ζ ,r) j
= 1 against equation (13.3.1).

Proof of Claim 2. Let us assume otherwise. Then, Lemma 13.9 and Claim 1 of Proposition 12.12 imply
lim j→∞

u(ζ ,r) j+1
u(ζ ,r) j

= ∞. However, because u(ζ ,r) is strictly log-concave by Theorem 12.18, each j ∈ JθK
satisfies ∞ >

u(ζ ,r) j+1
u(ζ ,r) j

>
u(ζ ,r) j+2
u(ζ ,r) j+1

> .. . .
Proof of Claim 3a. Since t ≥OX

0, Claim 3a holds by Lemma 13.9 and Claim 1 of Proposition 12.12.
Proof of Claim 3b. Claim 1 of Proposition 12.12 gives ∏φ(x)σ(κ)∨◦w >OX

0. Thus, Claim 3a implies

lim
j→∞

Fn j‘k j

Fn j

(r) = 1

if and only if

t(r) ·∏ψ(x(r))σ(κ)∨◦w = ∏φ(x(r))σ(κ)∨◦w.

Since t ·∏ψ(x)σ(κ)∨◦w ≥OX
0 by Claim 1 of Proposition 12.12, we obtain Claim 3b by Claims 1 and 2 of

Lemma 13.11.

We introduce the following notation.

Definition 13.13. Assume λ ∈ Z≥1, h ∈ Z, l = 1, and s = p0,∞q. Then, let

π(λ ,h) = Ps,l,ιλ (1),h.

Let π(λ ) = π(λ ,0) for simplicity.

We then have the following explicit description of π(λ ,h).

Lemma 13.14. Let λ ∈ Z≥1, h ∈ Z, l = 1, s = p0,∞q, and θ = p1,∞q.

1. We have π(λ ,h) = pps, l,mi,ni,kiqqi∈JθK with ai = ν(ki) and bi = ν(mi,ni,ki) such that each i ∈ JθK
satisfies

ai = ki = p0,λ q ∈ Z2l ,

bi = pλ i+h,λ (i+1)+hq ∈ Z2l ,

mi = ni = pλ i+hq ∈ Zl .

2. We have m1 a k1 = phq ∈ Zl .

3. π(λ ,h) is wrapped if and only if h ∈ Z≥0. In particular, π(λ ) is wrapped.

Proof. Proof of Claim 1. We have ιλ (1) ∈ Y (λ , l) and ai = ν(ki) = ki by ai,1 = 0. Thus, Claim 1 holds by
Theorem 12.32, since

z(l,0, ιλ (1)) =
´

L0(ι
λ (1))

¯

= p0q ,

L(l, ιλ (1)) = pλ q .

Proof of Claim 2. Claim 2 follows from σ(ki) = pλ q.
Proof of Claim 3. We obtain Claim 3, because π(λ ,h) is wrapped if and only if phq ∈ J0,∞Kl by Claim 2,

and π(λ ) = π(λ ,0).
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We introduce the notation below for π(λ ) and parcels.

Definition 13.15. Suppose a parcel F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) and λ ∈ Z≥1. Then, we define the tuple

Ωλ (F ) = pπ(λ ),F q .

In particular, let Ω(F ) = Ω1(F ).

Then, we obtain the following vanishing constraint on parcel numerators.

Proposition 13.16. Let p ∈ Z. For each h ∈ Z≥0, suppose uh ∈ Z≥2, vh ∈ Z≤−1, λh,0,0 ∈ Z, and finitely many
non-zero λh,i, j ∈ Z of i ∈ Z≥1 and j ∈ Z̸=0 with the following conditions:

1. i ≤ uh and j ≥ vh if i ∈ Z≥1 and j ∈ Z≤−1 satisfy λh,i, j ̸= 0;

2. uh+1 ≥ uh and vh+1 ≤ vh;

3. limh→∞ λh,uh,vh = p;

4. limh→∞ ∑i∈Z≥1, j∈Z̸=0,pi, jq̸=puh,vhq

∣∣λh,i, j
∣∣yh = limh→∞ λh,0,0yh = 0 if 0 < y < 1.

Let s= p0,∞q, l = 1, and q be ≻-admissible. Consider a ≻′-merged-log-concave F =Λ(s, l,w,≻, fs,φ ,ρ,x,X)
such that each phq ∈ JsKl satisfies

fs,phq = λh,0,0 + ∑
i∈Z≥1, j∈Z̸=0

λh,i, jq jhi ∈Q(X).

Then, we obtain

λh,uh,vh = 0

for infinitely many h ∈ Z≥0.

Proof. Suppose r ∈ OX and h ∈ Z≥2. First, we prove

lim
h→∞

λh,0,0q(r)−vhhuh = 0. (13.3.3)

Claim 1 of Lemma 5.22 gives

0 < q(r)< 1. (13.3.4)

Also, since −vh ∈ Z≥1, each i ∈ Z≥1 satisfies

−vhhi ≥ h. (13.3.5)

Thus, inequalities (13.3.4) and (13.3.5) and Assumption 4 give equation (13.3.3).
Second, let p(i, j,h) = jhi − vhhuh for i ∈ Z≥1 and j ∈ Z̸=0. When λh,i, j ̸= 0 and pi, jq ̸= puh,vhq, we

prove

p(i, j,h)≥ h. (13.3.6)

Assumption 1 gives the following three cases:
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• if j ∈ Z≥1, then inequality (13.3.5) implies p(i, j,h)≥−vhhuh ≥ h;

• if j ∈ Jvh,−1K and i ∈ Juh − 1K, then huh−i − 1 ≥ 1 and inequality (13.3.5) imply p(i, j,h) ≥ vhhi −
vhhuh =−vhhi(huh−i −1)≥−vhhi ≥ h;

• if j ∈ Jvh +1,−1K and i = uh, then j− vh ≥ 1 yields p(i, j,h) = huh( j− vh)≥ h.

Third, let π(1) = pps, l,mi,ni,kiqqi∈JθK with U(h,q) = q−vhhuh fs,nh and V (h,q) =U(h,q)−λh,0,0q−vhhuh −
λh,uh,vh . Then, Assumption 4 yields

lim
h→∞

V (h,q(r)) = 0, (13.3.7)

because Claim 1 of Lemma 13.14 and inequalities (13.3.4) and (13.3.6) give

|V (h,q(r))| ≤ ∑
i∈Z≥1, j∈Z̸=0,pi, jq ̸=puh,vhq

∣∣∣λh,i, jq(r)p(i, j,h)
∣∣∣≤ ∑

i∈Z≥1, j∈Z̸=0,pi, jq̸=puh,vhq

∣∣λh,i, j
∣∣q(r)h.

Finally, we prove the assertion by contradiction. Assumption 3 implies limh→∞ λh,uh,vh = p ̸= 0. We
deduce limh→∞ U(h,q(r)) = p ̸= 0 by equations (13.3.3) and (13.3.7). In particular,

lim
h→∞

U(h+1,q(r))
U(h,q(r))

= 1. (13.3.8)

Also, inequality (13.3.5) and Assumption 2 imply

vhhuh − vh+1(h+1)uh+1 ≥ vhhuh − vh(h+1)uh ≥−vhuhhuh−1 ≥ h,

since −vh(h+1)uh =−vhhuh − vhuhhuh−1 − . . . . Then, inequality (13.3.4) yields

lim
h→∞

q(r)vh+1(h+1)uh+1

q(r)vhhuh = lim
h→∞

1
q(r)vhhuh−vh+1(h+1)uh+1 = ∞.

Therefore, because
fs,nh‘kh

fs,nh
=

fs,nh+1
fs,nh

, equation (13.3.8) gives

lim
h→∞

fs,nh‘kh

fs,nh

(r) = lim
h→∞

q(r)vh+1(h+1)uh+1

q(r)vhhuh · lim
h→∞

U(h+1,q(r))
U(h,q(r))

= ∞.

This contradicts Claim 2 in Proposition 13.12, since Ω(F ) is a merged pair by Claim 3 of Lemma 13.14.

Also, we obtain the following vanishing constraint on parcel numerators without assuming t-monomials
(see Remark 8.38). Compared to Proposition 13.16, the following allows j ∈Q ̸=0 and takes λi, j ∈Q, which
is independent to m ∈ Zl .

Proposition 13.17. Assume finitely many non-zero λ0,0,λi, j ∈ Q for i ∈ Z≥1 and j ∈ Q ̸=0. Let s = p0,∞q,
l = 1, and q be ≻-admissible. Consider a ≻′-merged-log-concave F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) such that
each phq ∈ JsKl satisfies

fs,phq = λ0,0 + ∑
i∈Z≥1, j∈Q̸=0

λi, jq jhi ∈Q(X).

Then, we have

λi, j = 0

for each i ∈ Z≥2 and j ∈Q<0.
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Proof. We prove the assertion by contradiction. Hence, suppose the largest u ∈ Z≥2 such that there exists
j ∈Q<0 with λu, j ̸= 0, and the smallest v ∈Q<0 such that λu,v ̸= 0. Let π(1) = pps, l,mi,ni,kiqqi∈JθK, h ∈Z≥2,
and r ∈ OX.

First, suppose p(i, j,h) = jhi − vhu for i ∈ Z≥1 and j ∈ Q̸=0. Then, by Claim 1 of Lemma 13.14, we
consider

U(h,q) = q−vhu
fs,nh = λ0,0q−vhu

+λu,v + ∑
i∈Z≥1, j∈Q̸=0,pi, jq̸=pu,vq

λi, jqp(i, j,h).

Since u∈Z≥2 and v∈Q<0, limh→∞−vhu =∞. Hence, if λi, j ̸= 0 and pi, jq ̸= pu,vq, then limh→∞ p(i, j,h)=∞,
as we have the only three cases: j > 0; 0 > j > v and i = u; and, 0 > j and 1 ≤ i < u. In particular, since
0 < q(r)< 1 by Claim 1 of Lemma 5.22, we have

lim
h→∞

U(h,q(r)) = λu,v. (13.3.9)

Second, u ∈ Z≥2 and v ∈Q<0 imply vhu −v(h+1)u ≥−vuhu−1 ≥−vh > 0, since −v(h+1)u =−vhu −
vuhu−1 − . . . . Hence, we have

lim
h→∞

q(r)v(h+1)u

q(r)vhu = lim
h→∞

1
q(r)vhu−v(h+1)u = ∞.

Then, since λu,v ̸= 0, equation (13.3.9) yields

lim
h→∞

fs,nh‘kh

fs,nh

(r) = lim
h→∞

q(r)v(h+1)u

q(r)vhu · lim
h→∞

U(h+1,q(r))
U(h,q(r))

= ∞.

This contradicts Claim 2 in Proposition 13.12, since Ω(F ) is a merged pair by Claim 3 of Lemma 13.14.

13.4 Merged pairs and critical points
By front, rear, and asymptotic critical points of merged pairs, we discuss the variation of almost strictly
unimodal sequences. Also, we obtain real algebraic sets not only of front and rear critical points, but also of
asymptotic critical points by tame factors. Moreover, we introduce the notion of semi-phase transitions and
phase transitions by these critical points. In particular, we obtain front phase transitions by monomial parcels
of general lengths.

First, we introduce the notion of path-parcel differences.

Definition 13.18. Suppose a pθ ,Xq-merged pair ζ = pP,F q such that F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) and
P = pps, l,mi,ni,kiqqi∈JθK. Assume the canonical l-mediator ψ . Then, we define the following rational
functions:

1. FD(ζ ) = Fmθ1 akθ1
−Fnθ1

;

2. RD(ζ ) = Fnθ2
−Fnθ2 ‘kθ2

, if P is finite-length;

3. AD(ζ ) = ∏φ(x)σ(κ)∨◦w − t ·∏ψ(x)σ(κ)∨◦w, if F is tame along P by t ∈Q(X).

We call FD(ζ ),RD(ζ ), and AD(ζ ) front, rear, and asymptotic path-parcel differences.

Then, we obtain the following variation of almost strictly unimodal sequences.
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Theorem 13.19. Suppose a pθ ,Xq-merged pair ζ = pP,F q with r ∈ OX.

1. Then, we have the following.

(a) u(ζ ,r) is a strictly decreasing sequence if FD(ζ )(r)> 0.

(b) u(ζ ,r) is a hill and decreasing sequence if FD(ζ )(r) = 0.

(c) u(ζ ,r) is a two-sided hill or strictly increasing sequence if FD(ζ )(r)< 0.

2. Suppose that P is finite-length. Then, we have the following.

(a) u(ζ ,r) is a two-sided hill or strictly decreasing sequence if RD(ζ )(r)> 0.

(b) u(ζ ,r) is a hill and increasing sequence if RD(ζ )(r) = 0.

(c) u(ζ ,r) is a strictly increasing sequence if RD(ζ )(r)< 0.

3. Suppose that F is tame along P. Then, we have the following.

(a) u(ζ ,r) is a two-sided hill or strictly decreasing sequence if AD(ζ )(r)> 0.

(b) u(ζ ,r) is an asymptotic hill if AD(ζ )(r) = 0.

(c) u(ζ ,r) is a strictly increasing sequence if AD(ζ )(r)< 0.

Proof. Let P = pps, l,mi,ni,kiqqi∈JθK.
Proof of Claim 1. The first and second terms of u(ζ ,r) are Fmθ1 akθ1

(r) and Fnθ1
(r). Thus, Claim 1a

holds by Claim 1 of Proposition 13.3, because u(ζ ,r) is almost strictly unimodal by Theorem 12.18. Claims 1b
and 1c hold similarly.

Proof of Claim 2. The penultimate and last terms of u(ζ ,r) are Fnθ2
(r) and Fnθ2 ‘kθ2

(r). Thus, Claim 2a
holds by Claim 2 of Proposition 13.3 and Theorem 12.18. We obtain Claims 2b and 2c similarly.

Proof of Claim 3. Claims 3a and 3c follow from Claim 1 of Proposition 12.12, Claim 3a of Proposi-
tion 13.12, and Theorem 12.18. Claim 3b holds by Proposition 13.7.

Second, we state the following lemma for the real algebraic sets of critical points.

Lemma 13.20. Consider F = Λ(s, l,w,≻, fs,φ ,ρ,x,X). Let r ∈ OX and m,n ∈ JsKl . Then, we have the
following.

1. Ir(X)(Fm)1(r) ̸= 0.

2. (Fm −Fn)(r) = 0 if and only if det(Ir(X)(Fm), Ir(X)(Fn))(r) = 0.

Proof. Proof of Claim 1. Since fs is ≻-positive, we have f 2
s,m ≻ 0. This implies f 2

s,m >OX
0. Also, ∏φ(x)m◦w ·

[m]!w
x >OX

0 by Proposition 12.12. Then, F 2
m >OX

0 by Fm =
fs,m

∏φ(x)m◦w·[m]!w
x

and Lemma 12.11. Hence, we
obtain Claim 1 by Claim 3 of Lemma 13.11.

Proof of Claim 2. Claim 2 follows from Claim 1.

We introduce the following real algebraic sets.

Definition 13.21. Suppose a pθ ,Xq-merged pair ζ = pP,F q such that P = pps, l,mi,ni,kiqqi∈JθK. Then, we
define the following:

1. FZ(ζ ) =
{

r ∈ OX | det(Ir(X)(Fmθ1 akθ1
), Ir(X)(Fnθ1

))(r) = 0
}

;
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2. RZ(ζ ) =
{

r ∈ OX | det(Ir(X)(Fnθ2
), Ir(X)(Fnθ2 ‘kθ2

))(r) = 0
}

, if P is finite-length;

3. AZ(ζ ) = {r ∈ OX | det(AIr(X)(ζ ),AIr(X)(t,ζ ))(r) = 0} if F is tame along P by t ∈Q(X).

By Claim 1 of Lemma 13.11, FZ(ζ ) above ignores the choices of Ir(X)(Fmθ1 akθ1
), Ir(X)(Fnθ1

) ∈Q[X].
The same holds for RZ(ζ ) and AZ(ζ ).

We thus have the real algebraic sets of critical points.

Theorem 13.22. Suppose a pθ ,Xq-merged pair ζ = pP,F q. Then, FZ(ζ ), RZ(ζ ), and AZ(ζ ) are the real
algebraic sets of front, rear, and asymptotic critical points of ζ , respectively. Namely, r ∈ OX is in FZ(ζ ),
RZ(ζ ), or AZ(ζ ) if and only if FD(ζ )(r) = 0, RD(ζ )(r) = 0, or AD(ζ )(r) = 0, respectively.

Proof. Statements hold by Claim 2 of Lemma 13.20, Claim 3b of Proposition 13.12, and Theorem 13.19.

Third, we introduce the notion of front, rear, and asymptotic semi-phase and phase transitions of merged
pairs. In Section 14.3, there is a merged pair with a semi-phase transition but not with a phase transition. Also,
in Section 14.4, there is a merged pair with asymptotic critical points but not with a semi-phase transition.

Definition 13.23. Suppose a pθ ,Xq-merged pair ζ = pP,F q.

1. We say that ζ has a front, rear, or asymptotic semi-phase transition if

• /0 ̸= FZ(ζ ) ̸= OX,

• /0 ̸= RZ(ζ ) ̸= OX, or

• /0 ̸= AZ(ζ ) ̸= OX, respectively.

2. We say that ζ has a front, rear, or asymptotic phase transition between r1 and r2 if

• FD(ζ )(r1) ·FD(ζ )(r2)< 0,

• RD(ζ )(r1) ·RD(ζ )(r2)< 0, or

• AD(ζ )(r1) ·AD(ζ )(r2)< 0, respectively.

Remark 13.24. Strictly decreasing sequences turn into two-sided hill or strictly increasing sequences by
front phase transitions, which give statistical-mechanical phase transitions in Sections 1.11 and 19.

We obtain front phase transitions on monomial parcels by the lemma below.

Lemma 13.25. Let T ∈ X. Assume Bot(T ),Top(T ) ∈Q(X)2 with the following conditions:

1. Bot1(T ),Bot2(T ),Top1(T ),Top2(T )>OX
0;

2. Frac(Bot)(0)> Frac(Top)(0) in R;

3. Frac(Bot)(1)< Frac(Top)(1) in R.

Also, let Fi(T ) =
Topi(T )
Boti(T )

for i ∈ J2K. Then, there are real numbers 0 < r0 < r1 < r2 < 1 such that F1(r0)<

F2(r0), F1(r1) = F2(r1), and F1(r2)> F2(r2).

Proof. Conditions 2 and 3 give 0< r0 < r1 < r2 < 1 such that Frac(Bot)(r0)>Frac(Top)(r0), Frac(Bot)(r1)=
Frac(Top)(r1), and Frac(Bot)(r2)< Frac(Top)(r2). Now, Condition 1 implies the assertion.
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Proposition 13.26. Let pl,w,γq be a monomial index with palindromic w, pγi,1qi∈JlK, and pγi,2qi∈JlK. For
s = p0,∞q, assume a wrapped fitting path P = pps, l,mi,ni,kiqqi∈JθK and monomial parcel F = Λ(s, l,w,≻
,Ψs,γ,q,ρ,x,X). Let ζ = pP,F q. Then, we have the following.

1. ζ is a merged pair.

2. If q is fully admissible by X, then the following statements are equivalent.

(a) ζ has a front semi-phase transition;

(b) tγ(mθ1)− tγ(mθ1 a kθ1) ∈Q>0;

(c) ζ has a front phase transition.

Moreover, if X= {X1} and tγ(mθ1)− tγ(mθ1 a kθ1) ∈Q>0, then ζ has a front phase transition at the
unique front critical point.

Proof. Let θ1 = 1 and each γi,3 = 0 for simplicity. Let r ∈ OX.
Proof of Claim 1. First, F is flip-invariant by Proposition 12.8. Second, F is >OX

-merged-log-concave
by Theorem 8.40.

Proof of Claim 2. Let T ∈ X and h ∈ Z≥1 such that T = q
1
h for the fully admissible q. First, we prove

Statement 2b from Statement 2a. Since P is wrapped, m1 a k1 ∈ JsKl . Also, since F is flip-invariant,
Fn1(r) = Fm1(r). Thus, there exists c ∈ OX such that

Fm1ak1(c) =
q(c)tγ (m1ak1)

(m1 a k1)w
q |q=q(c)

=
q(c)tγ (m1)

(m1)w
q |q=q(c)

= Fn1(c). (13.4.1)

Moreover, we obtain 0 <
(m1)

w
q |q=q(c)

(m1ak1)w
q |q=q(c)

< 1 by σ(k1) > 0 and w > 0. Hence, equation (13.4.1) implies

Statement 2b, since otherwise q(c)tγ (mθ1 )−tγ (mθ1 akθ1 ) ≥ 1.
Second, we prove Statement 2c from Statement 2b. Let Bot1(T ) = (m1 a k1)

w
q , Bot2(T ) = (m1)

w
q ,

Top1 = qtγ (m1ak1), and Top2(T ) = qtγ (m1) ∈Q(X). Then, Lemma 13.25 gives a front phase transition of ζ .
Third, Statement 2c implies Statement 2a by Definition 13.23. The latter statement holds by X= {T}.

In Sections 13.7 and 17.2, we further discuss phase transitions by width-one monomial parcels.

13.5 Ideal merged pairs
There is a merged pair pP,F q such that F is not >q-merged-log-concave, but its merged determinants along
P give q-polynomials (see Section 14.6.2). We introduce the following notion of ideal merged pairs to obtain
not only almost strictly unimodal sequences, but also polynomials with positive integer coefficients. This
extends Definition 1.18.

Definition 13.27. Suppose a pθ ,Xq-merged pair ζ = pP,F q such that P = pps, l,mi,ni,kiqqi∈JθK and F =

Λ(s, l,w,≻, fs,φ ,ρ,x,X). We call ζ ideal if each i ∈ JθK satisfies

∆(F )(s, l,w,mi,ni,ki,φ ,ρ,x,X)>x 0.

For example, suppose an ideal pθ ,Xq-merged pair ζ = pP,F q such that F = Λ(s, l,w,≻, fs,φ ,ρ,x,X)
and x = pqq. Then, each i ∈ JθK satisfies ∆(F )(s, l,w,mi,ni,ki,φ ,ρ,x,X)>q 0. Also, these q-polynomials
give almost strictly unimodal sequences u(ζ ,r) in Theorems 12.18, 13.19, and 13.22. We compute several
explicit ideal merged pairs with critical points in Section 14.
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13.6 Comparison of fitting paths
We introduce the following notions of finer and equivalent fitting paths. By the notions, we compare wrapped
fitting paths, which give almost strictly unimodal sequences by merged pairs. In particular, we discuss the
existence and the non-existence of finest wrapped fitting paths, depending on the widths of wrapped fitting
paths.

Definition 13.28. Assume fitting paths Pi = ppsi, l,mi, j,ni, j,ki, jqq j∈JθiK
for i ∈ J2K.

1. We say that P1 is finer than or equivalent to P2 if there is an order-preserving map f : pJθ1K,<q →
pJθ2K,<q such that each i ∈ Jθ1K satisfies

m1,i = m2, f (i),

n1,i = n2, f (i).

When P1 is finer than or equivalent to P2, we write

P1 ⊢ P2.

2. We say that P1 is equivalent to P2 if θ1 and θ2 have the same widths and each j ∈ J0,θ1,2−θ1,1K satisfies

m1,θ1,1+ j = m2,θ2,1+ j,

n1,θ1,1+ j = n2,θ2,1+ j.

When P1 is equivalent to P2, we write

P1 ≡ P2.

We prove the antisymmetricity of ⊢ on the equivalence relation ≡ by the following binary relation.

Definition 13.29. Suppose m,m′ ∈ Zl for l ∈ Z≥1. If m < m′ or m∨ < m′, then let

m Ì m′.

Lemma 13.30. The binary relation Ì is a strict partial order on Zl .

Proof. First, we prove the irreflexivity. If m ∈ Zl , then m < m does not hold. Also, m < m∨ does not hold
either, since m < m∨ implies m1 < m∨

1 = ml < m∨
l = m1.

Second, we prove the transitivity. Let m1,m2,m3 ∈ Zl such that m1 Ì m2 Ì m3. Then, m1 < m2 or
m1 < m∨

2 , and m2 < m3 or m2 < m∨
3 . We have m1 < m3 or m1 < m∨

3 , since taking ∨ preserves the order <.

We state the antisymmetricity of ⊢ with respect to the equivalence relation ≡.

Proposition 13.31. Suppose fitting paths Pi = ppsi, l,mi, j,ni, j,ki, jqq j∈JθiK
for i ∈ J2K. If P1 ⊢ P2 and P2 ⊢ P1,

then P1 ≡ P2. In particular, ⊢ is a partial order on fitting paths with respect to the equivalence relation ≡.

Proof. By P1 ⊢P2 and P2 ⊢P1, we have order-preserving maps f : pθ1,<q→ pθ2,<q and g : pθ2,<q→ pθ1,<q

such that

m1,i = m2, f (i) for each i ∈ Jθ1K, (13.6.1)

m2,i = m1,g(i) for each i ∈ Jθ2K. (13.6.2)
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First, we prove

f (i+1)− f (i) = 1 (13.6.3)

for each i ∈ Jθ1K. Suppose

f (i)< u < f (i+1) (13.6.4)

for some u ∈ Jθ2K. Then,

m2,u Ì m2, f (i+1) = m1,i+1 (13.6.5)

by Lemma 12.27 and equation (13.6.1). Let us show g(u)< i+1. If g(u)> i+1, then

m1,i+1 Ì m1,g(u) = m2,u (13.6.6)

by Lemma 12.27 and equation (13.6.2). If g(u) = i+1, then

m1,i+1 = m1,g(u) = m2,u (13.6.7)

by equation (13.6.2). By inequality (13.6.5), inequality (13.6.6) and equation (13.6.7) contradict Lemma 13.30.
Also, inequality (13.6.4) implies

m1,i = m2, f (i) Ì m2,u.

As above, i ≥ g(u) implies m2,u = m1,g(u) Ì m1,i or m2,u = m1,g(u) = m1,i. In either case, we have a con-
tradiction to Lemma 13.30. It follows that i < g(u)< i+1 against g(u) ∈ Z. Therefore, equation (13.6.3)
follows.

Second, assume f (θ1,1) > θ2,1. Then, Lemmas 12.27 and 13.30 imply g(θ2,1) < θ1,1, which can not
happen. It follows that f (θ1,1) = θ2,1. We deduce P1 ≡ P2 by equation (13.6.3).

We obtain the latter statement by the reflexivity and transitivity of ⊢.

We introduce the notion of restricted fitting paths.

Definition 13.32. Suppose a fitting path P = pPiqi∈Jθ1K. For a gate θ2 such that θ1,1 ≤ θ2,1 ≤ θ2,2 ≤ θ1,2, we
define the restricted fitting path

rθ1,θ2(P) = pPiqi∈Jθ2K .

Then, we realize width-one fitting paths by π(λ ,h) and the equivalence relation ≡.

Lemma 13.33. For l = 1, consider a fitting path P = pps, l,mi,ni,kiqqi∈Jθ1K. Then, we have

P ≡ rθ1,θ2(π(λ ,h))

for some pλ q = σ(kθ1,1) ∈ Zl , phq = mθ1,1 −σ(kθ1,1) ∈ Zl , and θ2 = p1,θ1,2 −θ1,1 +1q ∈ Ẑ2.

Proof. The equivalent supports ki give σ(ki) = pλ q for some λ ∈ Z≥1. Also, mi = ni by l = 1. The assertion
follows, since mi = ni = pλ (i−θ1,1 +1)+hq ∈ Zl for some h ∈ Z such that mθ1,1 = nθ1,1 = ph+λ q.

Furthermore, we obtain π(1) as the finest fitting path among all the width-one wrapped fitting paths.
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Proposition 13.34. We have the following.

1. If P is a width-one wrapped fitting path, then π(1) ⊢ P.

2. If there exists a wrapped fitting path P′ such that P′ ⊢ P for each width-one wrapped fitting path P, then
π(1)≡ P′.

Proof. Proof of Claim 1. For some gates θ1 and θ2, P ≡ rθ1,θ2(π(λ ,h)) by Lemma 13.33. We obtain Claim 1,
since h ∈ Z≥0 for the wrapped P.

Proof of Claim 2.Claim 2 holds by Proposition 13.31 and Claim 1.

Next, for each l ∈ Z≥1, we prove the non-existence of finest fitting paths among all the width-l wrapped
fitting paths. We state the following lemma.

Lemma 13.35. Assume fitting paths P = pps, l,mi,ni,kiqqi∈JθK. Let u1,u2 ∈ JθK such that u1 < u2. Then,
there is µ ∈ Z2

≥0 such that µ1 ≥ 1, ∑ µ = u2 −u1, and

µ1σ(ku1)+µ2σ(ku1)
∨+n∨u1

=

{mu2 , or (13.6.8)
m∨

u2
. (13.6.9)

Proof. Since (nu2−1 ‘ ku2−1)
∨ = mu2 , we have

σ(ku2−1)+n∨u2−1 = mu2 . (13.6.10)

This gives the assertion when u2 −u1 = 1.
We demonstrate the assertion by the induction. Let u2 − u1 ≥ 2. Also, let λ ∈ Z2

≥0 such that λ1 ≥ 1,
∑λ = u2 −u1 −1, and

λ1σ(ku1)+λ2σ(ku1)
∨+n∨u1

=

{mu2−1, or (13.6.11)
m∨

u2−1. (13.6.12)

First, suppose equation (13.6.11). If n∨u2−1 = mu2−1, then we obtain equation (13.6.8), adding equa-
tions (13.6.10) and (13.6.11). By equation (13.6.10), we deduce

σ(ku2−1)
∨+nu2−1 = m∨

u2
. (13.6.13)

Hence, nu2−1 = mu2−1 gives equation (13.6.9) by equations (13.6.11) and (13.6.13).
Second, suppose equation (13.6.12). If nu2−1 = m∨

u2−1, then equation (13.6.9) follows from equa-
tions (13.6.12) and (13.6.13). Also, n∨u2−1 =m∨

u2−1 gives equation (13.6.8) by equations (13.6.10) and (13.6.12).

We obtain the non-existence of finest fitting paths for higher-width wrapped fitting paths.

Proposition 13.36. Let l ≥ 2. Then, there is no width-l fitting path P such that P ⊢ P′ for each width-l
wrapped fitting path P′.

Proof. We prove the assertion by contradiction. Suppose a fitting path P = pps, l,mi,ni,kiqqi∈JθK such that
P ⊢ P′ for each width-l wrapped fitting path P′.
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Let ξ = plq ∈ Y (1, l), s′ = p0,∞q, and θ ′ = p1,∞q. Then, by Theorem 12.32 and Lemma 12.36, there is a
fitting path P′ = Ps,l,ξ ,0 = pps′, l,m′

i,n
′
i,k

′
iqqi∈Jθ ′K such that

m′
i = n′i = iι l(1).

Furthermore, P ⊢ P′ implies m′
1 = mi1 and m′

2 = mi2 for some i1, i2 ∈ JθK such that i1 < i2. Then, Proposi-
tion 13.35 gives µ ∈ Z2

≥0 such that ∑ µ = i2 − i1, µ1 ≥ 1, and

µ1σ(k1)+µ2σ(k1)
∨ = mi2 −mi1 = m′

2 −m′
1 = ι

l(1).

Hence, σ(k1)> 0 implies i2 − i1 = 1 and σ(k1) = ι l(1). Also, we obtain flat m j = n j = ( j− i1 +1)ι l(1) for
j ∈ JθK.

However, by Theorem 12.32 and Lemma 12.36, ξ = pl,1q ∈ Y (2, l) gives a wrapped fitting path P′ =
Ps,l,ξ ,3 = pps′, l,m′

i,n
′
i,k

′
iqqi∈Jθ ′K such that each i ∈ Jθ ′K satisfies

m′
i = n′i = p5q++ ι

l−1(4)+(i−1)ι l(3).

Then, P ⊢ P′ can not hold, since each mi of P is flat.

By Propositions 13.34 and 13.36, the finest fitting path exists only for width-one wrapped fitting paths.
We simply call π(1) the finest fitting path for our convenience.

13.7 On phase transitions of width-one monomial parcels
We obtain some phase transitions of width-one monomial parcels by canonical mediators and the finest fitting
path π(1). This uses the following lemma on tame factors.

Lemma 13.37. Let l = 1 and µ = pl,w,γq be a monomial index. Consider the t-monomials Ψs,γ,q. Assume
r ∈ OX such that 0 < q(r)< 1. Then, for i ∈ Z≥0, we have

lim
i→∞

Ψs,γ,q(r),pi+1q

Ψs,γ,q(r),piq
=

{
q(r)γ1,2 if γ1,1 = 0,
0 otherwise.

Proof. The monomial conditions of µ yield γ1,1 ≥ 0. Hence, the assertion holds by

lim
i→∞

Ψs,γ,q(r),pi+1q

Ψs,γ,q(r),piq
= lim

i→∞

q(r)γ1,1(i+1)2+γ1,2(i+1)

q(r)γ1,1i2+γ1,2i
= q(r)γ1,2 lim

i→∞
q(r)(2i+1)γ1,1 .

We then state the phase transitions.

Proposition 13.38. Suppose a monomial parcel F = Λ(s, l,w,≻,Ψs,γ,q,φ ,x,X) such that s = p0,∞q, l = 1,
and φ(x) = p1−qq ∈Q(X)l . Then, for the merged pair ζ = Ω(F ), we have the following.

1. ζ has no rear critical points.

2. ζ has no asymptotic critical points.

3. If q is fully admissible by X, then the following statements are equivalent:

131



(a) ζ has a front semi-phase transition;

(b) γ1,1 + γ1,2 > 0;

(c) ζ has a front phase transition.

Moreover, if X = {X1} and γ1,1 + γ1,2 > 0, then ζ has a single phase transition at the front critical
point.

Proof. Proof of Claim 1. Claim 1 holds, since π(1) is infinite-length.
Proof of Claim 2. Let r ∈ OX. Then, Claim 1 of Lemma 5.22 implies 0 < q(r) < 1. Hence, by

Lemma 13.37, F is tame along P by t ∈ Q(X) such that t(r) = q(r)γ1,2 if γ1,1 = 0, and 0 otherwise. Let
π(1) = pps, l,mi,ni,kiqqi∈JθK. Then, σ(kθ1) = p1q ∈ Zl yields

AD(ζ ) = ∏φ(x)σ(kθ1 )
∨◦w − t ·∏φ(x)σ(kθ1 )

∨◦w = (1−q)w1(1− t).

Thus, AD(ζ ) = 0 has no solutions over OX.
Proof of Claim 3. Claim 3 follows from Claim 2 of Proposition 13.26, since

tγ(mθ1)− tγ(mθ1 a kθ1) = γ1,1 + γ1,2.

Then, Claims 1 and 2 give the latter statement of Claim 3.

14 Explicit critical points, phase transitions, and merged determinants
We adopt the following notation for simplicity.

Definition 14.1. Consider a pθ ,Xq-merged pair ζ = pP,F q such that X= {X1}. Suppose phq ∈ OX for a
real number 0 < h < 1.

1. For a path-parcel sequence, let

u(ζ ,h) = u(ζ ,phq).

2. We call h a front critical point of ζ , rear critical point of ζ , or asymptotic critical point of ζ if phq is a

• front critical point of ζ ,

• rear critical point of ζ , or

• asymptotic critical point of ζ , respectively.

We recall the following parcel L , which appears in equation (1.4.3) by a different terminology in the
introduction.

Definition 14.2. Let s = p0,∞q, l = 1, w = p1q, and X =
{

q
1
2

}
. Then, we define the q

1
2 -linear monomial

parcel

L = Λ(s, l,w,≻,Ψs,pp0, 1
2 ,0qq,q,x,X).
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14.1 Golden angle as a critical point
For l = 1, w = p2q, s = p0,∞q, and X= {q}, let

F = Λ(s, l,w,>q,Ψs,pp0,1,0qq,q,x,X)

such that Fλ = qλ1

(λ1)2
q

for λ ∈ JsKl . Also, by Theorem 8.40 and Proposition 13.26, we consider the ideal

merged pair ζ = Ω(F ) for a critical point and phase transition, since the path-parcel sequences u(ζ ,r) of
r ∈ OX are almost strictly unimodal by Theorem 12.18.

14.1.1 On critical points and phase transitions

Let π(1) = pps, l,mi,ni,kiqqi∈JθK with m0 = n0 = p0q and k0 = a0 = b0 = p0,1q. Then, a real number 0< q< 1
is a front critical point of ζ if and only if

Fm0(q) = 1 =
q

(1−q)2 = Fm1(q).

Therefore, the unique front critical point FC(ζ ) of ζ is the golden angle: i.e.,

FC(ζ ) =
3−

?
5

2
= 0.381966 . . . .

By Proposition 13.38, ζ has neither rear nor asymptotic critical points. However, ζ has the front phase
transition at FC(ζ ) such that

• u(ζ ,0.3) is a strictly decreasing sequence,

• u(ζ ,FC(ζ )) is a decreasing and hill sequence, and

• u(ζ ,0.4) is a two-sided hill.

For each i ∈ J0,5K, Figure 6 plots the bottom point for Fmi(0.3), the middle point for Fmi(FC(ζ )), and the
top point for Fmi(0.4).
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Figure 6: Fmi(q) of q = 0.3 (bottom), FC(ζ ) (middle), and 0.4 (top)

14.1.2 Polynomials with positive integer coefficients of an ideal merged pair

For i ∈ Z≥1, ζ gives the following q-polynomials with positive coefficients:

∆(F )(s, l,w,mi,ni,ki,x,X) =
(i)2

q · (i+1)2
q

(0)2
q · (1)2

q
· (F1,miF1,ni −F1,mi−1F1,ni+1)

=
(i)2

q · (i+1)2
q

(0)2
q · (1)2

q
·

¨

˝

˜

qi

(i)2
q

¸2

− qi−1

(i−1)2
q

qi+1

(i+1)2
q

˛

‚.

Explicitly, some of them are

∆(F )(s, l,w,m1,n1,k1,x,X) = 2q3 +q4,

∆(F )(s, l,w,m2,n2,k2,x,X) = 2q6 +2q7 +q8,

∆(F )(s, l,w,m3,n3,k3,x,X) = 2q9 +2q10 +2q11 +q12,

∆(F )(s, l,w,m4,n4,k4,x,X) = 2q12 +2q13 +2q14 +2q15 +q16,

∆(F )(s, l,w,m5,n5,k5,x,X) = 2q15 +2q16 +2q17 +2q18 +2q19 +q20.

14.1.3 Golden angle from golden ratio as critical points

The q
1
2 -linear L has the golden ratio as the front critical point in Section 1.7. Moreover, L gives F , because

L ◦2 = Λ(s, l,w,≻,Ψs,pp0,1,0qq,q,x,
{

q
1
2

}
),

and F = rp1q,p2q(L
◦2) by the parcel restriction rp1q,p2q (or F = L ◦2 in Q(q

1
2 )).
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14.2 A non-canonical mediator with phase transitions
Consider s = p0,∞q, l = 1, w = p2q, ρ = p1q, and X= {q}. Also, let

φ(x) =
ˆ

29
20

−5q+5q2
˙

∈Q(x)l .

Then, B(s, l,w,m,φ ,ρ,x,X) >q 0 for each m ∈ JsKl by ρ = p1q and Claim 1 of Lemma 4.2. Hence, φ is a
non-canonical ps, l,w,>q,ρ,x,Xq-mediator, because φ1(x1)

w1 >OX
0 by

29
20

−5q+5q2 = 5
ˆ

q− 1
2

˙2

+
1
5
. (14.2.1)

Now, these analogs φ1(x1)
λ1 [λ1]!q of q-Pochhammer symbols (λ1)q give the monomial parcel

F = Λ(s, l,w,>q,Ψs,pp0,1,0qq,q,φ ,ρ,x,X)

such that each λ ∈ JsKl satisfies

Fλ =
qλ1

` 29
20 −5q+5q2

˘2λ1 · [λ1]!2
q

.

By Theorem 8.40, F is >q-merged-log-concave. Hence, we have the ideal merged pair ζ = Ω(F ), which
gives the same merged determinants in Section 14.1 by Proposition 7.2.

14.2.1 On critical points and phase transitions

Let P = π(1) = pps, l,mi,ni,kiqqi∈JθK with m0 = n0 = p0q and k0 = a0 = b0 = p0,1q. First, unlike the
canonical mediator in Section 14.1, the non-canonical φ of ζ gives exactly the two front critical points by
equation (14.2.1). More explicitly, we have the front critical points FC(ζ )1 = 0.253594 . . . and FC(ζ )2 =
0.884885 . . . that solve

Fm0(q) = 1 =
q

` 29
20 −5q+5q2

˘2 = Fm1(q).

Second, there are no rear critical points for the infinite-length P. Third, F is tame along P by q in
Lemma 13.37. Thus, an asymptotic critical point 0 < q < 1 solves

AD(ζ ) =

ˆ

29
20

−5q+5q2
˙2

−q(1−q)2 = 0.

For v(q) = q(1− q)2, v′(q) = (1− q)(1− 3q) and v
` 1

3

˘

> φ1
` 1

3

˘2
. Then, equation (14.2.1) gives the two

asymptotic critical points AC(ζ )1 = 0.30813 . . . and AC(ζ )2 = 0.63486 . . . . Hence, we obtain the following
table of phase transitions.

0 FC(ζ )1 AC(ζ )1 AC(ζ )2 FC(ζ )2 1
FD(ζ ) + + 0 − − − − − 0 + +
AD(ζ ) + + + + 0 − 0 + + + +
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In particular, the non-canonical mediator gives not only the front phase transitions at FC(ζ )1 and FC(ζ )2, but
also the asymptotic phase transitions at AC(ζ )1 and AC(ζ )2 between the front phase transitions.

First, the front phase transition at FC(ζ )1 gives the strictly decreasing u(ζ ,0.2), decreasing and hill
u(ζ ,FC(ζ )1), and two-sided hill u(ζ ,0.3). For each i ∈ J0,5K, Figure 7 plots Fmi(q) of q = 0.2 for the
bottom point, q = FC(ζ )1 for the middle point, and q = 0.3 for the top point.
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Fmi(q)

i

Figure 7: Fmi(q) of q = 0.2 (bottom), FC(ζ )1 (middle), and 0.3 (top)

Second, the front phase transition at FC(ζ )1 gives the two-sided hill u(ζ ,0.8), decreasing and hill
u(ζ ,FC(ζ )2), and strictly decreasing u(ζ ,0.95). Figure 8 puts Fmi(q) of q = 0.95 for the bottom point,
q = FC(ζ )2 for the middle point, and q = 0.8 for the top point.
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Figure 8: Fmi(q) of q = 0.95 (bottom), FC(ζ )2 (middle), and 0.8 (top)

Third, Proposition 13.7 gives the asymptotic hills u(ζ ,AC(ζ )1) and u(ζ ,AC(ζ )2). Also, we obtain
the strictly increasing sequence u(ζ ,q) for AC(ζ )1 < q = 0.5 < AC(ζ )2. Figure 9 plots log(Fmi(q)) of
q = AC(ζ )1 for the bottom point, q = AC(ζ )2 for the middle point, and q = 0.5 for the top point.
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Figure 9: log(Fmi(q)) of q = AC(ζ )1 (bottom), AC(ζ )2 (middle), and 0.5 (top)

14.3 A non-canonical mediator only with a semi-phase transition
We have a parcel F with a front semi-phase transition, but without a front phase transition. Consider
s = p0,∞q, l = 1, w = p1q, ρ = p1q, and X= {q}. Also, let

φ(x) =
ˆ

3q2

2
− q

2
+

3
8

˙

∈Q(x)l .

Then, φ is a ps, l,w,>q,ρ,x,Xq-mediator as in Section 14.2, since 3q2

2 − q
2 +

1
8 = 3

2

`

q− 1
6

˘2
+ 1

3 and ρ = p1q.
Hence, the analogs φ1(x1)

λ1 [λ1]!q of q-Pochhammer symbols (λ1)q give the >q-merge-log-concave monomial
parcel

F = Λ(s, l,w,>q,Ψs,pp0,1,0qq,q,φ ,ρ,x,X)

such that Fλ = qλ1

φ1(x1)
λ1 [λ1]!q

for λ ∈ JsKl . This also gives the ideal merged pair ζ = Ω(F ).

14.3.1 On critical points and phase transitions

Let P = π(1) = pps, l,mi,ni,kiqqi∈JθK with m0 = n0 = p0q and k0 = a0 = b0 = p0,1q. Then, ζ has the single
front critical point FC(ζ ) =

1
2 that solves

Fm0(q) = 1 =
q

3q2

2 − q
2 +

3
8

= Fm1(q).

As FZ(ζ ) ̸= OX, ζ has the front semi-phase transition at FC(ζ ). But, ζ has no front phase transitions, because
Fm0(q)≥OX

Fm1(q) by 3q2

2 − q
2 +

3
8 −q = 3

2 (q−
1
2 )

2 ≥ 0.
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There are no rear critical points for the infinite-length P. By Lemma 13.37, F is tame along P by q. But,
there are no asymptotic critical points, since φ1(q)>OX

1
4 implies

AD(ζ ) =

ˆ

3q2

2
− q

2
+

3
8

˙

−q(1−q)>OX
0.

14.3.2 Polynomials with positive integer coefficients of an ideal merged pair

The merged determinants of ζ give the following q-polynomials with positive coefficients:

∆(F )(s, l,w,m1,n1,k1,x,X) = q3;

∆(F )(s, l,w,m2,n2,k2,x,X) = q6;

∆(F )(s, l,w,m3,n3,k3,x,X) = q9;
. . . .

14.4 A weight-zero parcel with critical points and without semi-phase transitions
For s = p1,∞q, l = 1, and X= {q}, consider the weight-zero q-number parcel

F = Λ(s, l,>q,χs,l,q,X).

Also, there is the fitting path P = π(λ ,h) = pps, l,mi,ni,kiqqi∈JθK with m0 = n0 = m1 a k1 = phq ≥ 1. Then,
we have the ideal merged pair ζ = pP,F q.

First, ζ has no front critical points by Fm1 −Fm0 >q 0. Second, ζ has no rear critical points either, since
P is infinite-length. Third, for each r ∈ OX, u(ζ ,r) is an asymptotic hill, since 0 < q < 1 implies

lim
i→∞

χs,l,q,mi+1

χs,l,q,mi

= lim
i→∞

1+q+ · · ·+qmi+1,1−1

1+q+ · · ·+qmi,1−1 = lim
i→∞

1−qmi+1,1

1−qmi,1
= 1.

Consequently, ζ has asymptotic critical points without semi-phase transitions.

14.5 A finite-length merged pair with a rear phase transition
For s = p1,3q, l = 1, and X = {q}, we have the ≥q-merged-log-concave q-Stirling parcel F = Λ(s, l,>q
,Ss,l,q,X). Then, Claim 2 of Corollary 10.4 gives the finite-length >q-merged-log-concave parcel

G = Λ(s, l,w,>q,Ss,l,q,x,X)

for w= p1q and x= pqq. Moreover, θ = p1,1q gives the fitting path P= rp1,∞q,θ (π(1,1))= pps, l,mi,ni,kiqqi∈JθK
such that m1 = n1 = p2q and k1 = p0,1q. Therefore, we obtain the finite-length ideal merged pair ζ = pP,G q.
Let m0 = n0 = p1q, m2 = n2 = p3q, and k0 = k2 = k1 for our convenience.

14.5.1 On critical points and phase transitions

We have no front critical points of ζ , because

Gm2(q) =
q+2

(1−q)(1−q2)
>OX

1
1−q

= Gm1(q).

Since P is finite-length, ζ has no asymptotic critical points either. However, ζ has the rear critical point
RC(ζ ) = 0.86676 . . . that solves

Gm2(q) =
q+2

(1−q)(1−q2)
=

1
(1−q)(1−q2)(1−q3)

= Gm3(q).

In particular, Theorem 13.19 gives the rear phase transition of ζ such that
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• u(ζ ,0.84) is a two-sided hill,

• u(ζ ,RC(ζ )) is a hill and increasing sequence, and

• u(ζ ,0.9) is a strictly increasing sequence.

In Figure 10, each i ∈ J3K puts the bottom point for Gmi(0.84), the middle point for Gmi(RC(ζ )), and the top
point for Gmi(0.9).

1.0 1.5 2.0 2.5 3.0

0

50

100

150

200

i

Gmi(q)

Figure 10: Gmi(q) of q = 0.84 (bottom), RC(ζ ) (middle), and 0.9 (top)
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14.5.2 Polynomials with positive integer coefficients of an ideal merged pair

The ideal merged pair ζ gives the following q-polynomials with positive coefficients:

∆(G )(s, l,w,m0,n0,k0,x,X) =
(1)q(2)q

(0)q(1)q
·
ˆ

1
(1−q)

˙2

= 1+q;

∆(G )(s, l,w,m1,n1,k1,x,X) =
(2)q(3)q

(0)q(1)q
·

˜

ˆ

q+2
(1−q)(1−q2)

˙2

− 1
(1−q)

· 1
(1−q)(1−q2)(1−q3)

¸

= 3+7q+9q2 +5q3 +q4;

∆(G )(s, l,w,m2,n2,k2,x,X) =
(3)q(4)q

(0)q(1)q
·
ˆ

1
(1−q)(1−q2)(1−q3)

˙2

= 1+q+q2 +q3.

14.6 A higher-width parcel with a phase transition and conjectures
We discuss a higher-width parcel, unlike the examples above in Section 14. Let l = 3, s = p0,∞q, w = p1q,
X =

{
q

1
2

}
, and ≻=>

q
1
2

. Also, let γ =
`` 1

2 ,0,0
˘

,
`

− 1
2 ,0,0

˘

,
` 1

2 ,0,0
˘˘

. Then, we obtain the width-three

monomial parcel F = Λ(s, l,w,≻,Ψs,γ,q,x,X) such that each λ ∈ JsKl satisfies

Fλ =
q

λ2
1 −λ2

2 +λ2
3

2

(λ1)q(λ2)q(λ3)q
.

Since γ is palindromic, F is flip-invariant.
Moreover, let ξ = p2,1q, h = 4, and θ = p1,∞q. Then, Theorem 12.32 gives the infinite-length fitting

path P = Ps,l,ξ ,h = pps, l,mi,ni,kiqqi∈JθK such that each i ∈ JθK gives

mi = ni = p6,5,4q+(i−1) · ι l(4),
ai = ν(ki) = p0,1,2,4,5,6q ,

bi = ν(mi,ni,ki) = p6,6,6,10,10,10q+(i−1) · ι2l(4),
σ(ki) = p6,4,2q .

Then, we have the merged pair ζ = pP,F q. Let m0 = n0 = p2,1,0q, k0 = k1, a0 = ν(k0), and b0 = ν(m0,n0,k0)
for our convenience.

14.6.1 On critical points and phase transitions

As s is infinite, ζ has no rear critical points. Moreover, F is tame along P by 0, because 0 < q
1
2 < 1 gives

lim
i→∞

Ψs,γ,q,mi+1

Ψs,γ,q,mi

= lim
i→∞

q
(4(i+1)+2)2−(4(i+1)+1)2+(4(i+1))2

2

q
(4i+2)2−(4i+1)2+(4i)2

2

= lim
i→∞

q16i+12 = 0.
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Thus, ζ has no asymptotic critical points, since u(ζ ,r) is a hill or decreasing sequence for each r ∈ OX by
Claim 1 of Proposition 13.12.

We have tγ(m1)− tγ(m0) = 12 > 0. Also, there is the front critical point FC(ζ ) = 0.82439 . . . that solves

Fm0(q
1
2 ) =

q
3
2

(2)q(1)q(0)q
=

q
27
2

(6)q(5)q(4)q
= Fm1(q

1
2 ).

Claim 2 of Proposition 13.26 implies the unique front phase transition of ζ at FC(ζ ). In particular,

• u(ζ ,0.8) is a strictly decreasing sequence,

• u(ζ ,FC(ζ )) is a hill and decreasing sequence, and

• u(ζ ,0.83) is a two-sided hill.

For each i∈ J0,3K, Figure 11 gives the bottom point for log(Fmi(0.8)), the middle point for log(Fmi(FC(ζ ))),
and the top point for log(Fmi(0.83)). Figure 11 takes the log scale to avoid point collisions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

- 30

- 25

- 20

- 15
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- 5

0

log(Fmi(q))

i

Figure 11: log(Fmi(q)) of q = 0.8 (bottom), FC(ζ ) (middle), and 0.83 (top)

14.6.2 Ideal property of a merged pair

The parcel F is not >q-merged-log-concave, since the following is not a q-polynomial:

∆(F )(s, l,w,(3,3,3) ,(3,4,3) ,(0,0,0,1,0,1) ,x,X) = q
37
2 + 3q

35
2 + 7q

33
2 + 13q

31
2 + 19q

29
2 + 23q

27
2 + 24q

25
2

+23q
23
2 +20q

21
2 +17q

19
2 +12q

17
2 +7q

15
2 +3q

13
2 +q

11
2 .
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However, ζ is ideal, because each i ∈ JθK gives

∆(F )(s, l,w,mi,ni,ki,x,X)

=
(4i+2)q(4i+2)q(4i+2)q(4i+6)q(4i+6)q(4i+6)q

(0)q(1)q(2)q(4)q(5)q(6)q

·

˜

ˆ

q
(4i+2)2−(4i+1)2+(4i)2

2

(4i+2)q(4i+1)q(4i)q

˙2

− q
(4i−2)2−(4i−3)2+(4i−4)2

2

(4i−2)q(4i−3)q(4i−4)q
· q

(4i+6)2−(4i+5)2+(4i+4)2
2

(4i+6)q(4i+5)q(4i+4)q

¸

such that
ˆ

q
(4i+2)2−(4i+1)2+(4i)2

2

˙2

= q16i2+8i+3 >q 0,

q
(4i−2)2−(4i−3)2+(4i−4)2

2 ·q
(4i+6)2−(4i+5)2+(4i+4)2

2 = q16i2+8i+19 >q 0.

14.6.3 Polynomials with positive integer coefficients of an ideal merged pair

For instance, ∆(F )(s, l,w,m0,n0,k0,x,X) is

q3+3q4+6q5+10q6+15q7+20q8+23q9+24q10+23q11+20q12+15q13+10q14+6q15+3q16+q17.

Then, ∆(F )(s, l,w,m1,n1,k1,x,X) is

q27 + 5q28 + 19q29 + 58q30 + 158q31 + 388q32 + 885q33 + 1890q34

+ 3828q35 + 7390q36 + 13688q37 + 24412q38 + 42089q39 + 70327q40

+ 114182q41 + 180469q42 + 278185q43 + 418794q44 + 616576q45

+ 888721q46 + 1255398q47 + 1739429q48 + 2365848q49 + 3160960q50

+ 4151230q51 + 5361659q52 + 6814044q53 + 8524865q54 + 10503235q55

+ 12748773q56 + 15249837q57 + 17982091q58 + 20907732q59 + 23975445q60

+ 27121214q61 + 30270096q62 + 33338786q63 + 36239100q64 + 38881893q65

+ 41181562q66 + 43060365q67 + 44452792q68 + 45309075q69 + 45598218q70

+ 45309614q71 + 44453850q72 + 43061901q73 + 41183518q74 + 38884194q75

+ 36241661q76 + 33341512q77 + 30272892q78 + 27123986q79 + 23978109q80

+ 20910214q81 + 17984335q82 + 15251804q83 + 12750444q84 + 10504608q85

+ 8525955q86 + 6814878q87 + 5362272q88 + 4151661q89 + 3161248q90

+ 2366030q91 + 1739536q92 + 1255456q93 + 888749q94 + 616588q95

+ 418798q96 + 278186q97 + 180469q98 + 114182q99 + 70327q100

+ 42089q101 + 24412q102 + 13688q103 + 7390q104 + 3828q105 + 1890q106

+ 885q107 + 388q108 + 158q109 + 58q110 + 19q111 + 5q112 + q113.

Also, ∆(F )(s, l,w,m2,n2,k2,x,X) is

q83 + 5q84 + 19q85 + 58q86 + 158q87 + 390q88 + 899q89 + 1951q90 + . . . .
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14.6.4 Conjectures

Some leading coefficients of ∆(F )(s, l,w,mi,ni,ki,x,X) for i ∈ J2K coincide in the above. Also, these
∆(F )(s, l,w,mi,ni,ki,x,X) are not palindromic, but log-concave q-polynomials. Thus, we make the following
conjectures.

Conjecture 14.3. For each i ∈ Z≥0, consider the q-polynomial

fi = ∑
j

fi, jq j = ∆(F )(s, l,w,mi,ni,ki,x,X).

For ordq( fi) < j2 < · · · < degq( fi), let f+i =
´

fi,ordq( fi), fi, j2 , . . . , fi,degq( fi)

¯

denote the non-zero positive
coefficients of fi. Then, each i ∈ Z≥1 satisfies

f+i+1(2+4(i−1),5+4(i−1)) = f+i (2+4(i−1),5+4(i−1)).

For example, f+1 = p1,5,19,58,158,388,885, . . .q and f+2 = p1,5,19,58,158,390,899, . . .q in Section 14.6.3.
Thus, we have

f+1 (2,5) = p5,19,58,158q = f+2 (2,5).

We adopt the following notation to state another conjecture on log-concave q-polynomials.

Definition 14.4. For a Laurent polynomial f ∈Q[q±1], let

Cq( f ) =

{
q−ordq( f ) f if f ̸= 0,
0 otherwise.

Conjecture 14.5. Let i ∈ Z≥0.

1. ∆(F )(s, l,w,mi,ni,ki,x,X) is a log-concave q-polynomial.

2. The following is a log-concave q-polynomial:

Cq(∆(F )(s, l,w,mi+1,ni+1,ki+1,x,X))−Cq(∆(F )(s, l,w,mi,ni,ki,x,X))>q 0.

Claim 1 of Conjecture 14.5 is analogous to Conjectures 8.54 and 8.56.

15 Parcel convolutions
15.1 Convolution indices
Consider a parcel F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) with l = 1 and s = p0,∞q. Then, multiplying generating
functions of F gives a sequence of rational functions, which, however, is not necessarily a parcel Λ(s, l,w,≻
,gs,φ ,ρ,x,X) for some gs = pgs,m ∈Q(X)qm∈Zl . Hence, we introduce the notion of convolution indices.

Definition 15.1. Assume the following:

(a) squaring orders Oi = {⪰i,≻i} on X for i ∈ J3K such that O3 Ţ O1,O2;

(b) l = 1, λ ∈Q3
>0, and x =

``

qλi
˘˘

i∈J3K ∈ ∏i∈J3KQ(X)l;
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(c) Fi = Λ(si, l,w,≻i, fi,si ,φ ,ρi,xi,X) for i ∈ J2K;

(d) ρ = pρiqi∈J3K ∈ ∏i∈J3KZl , s = ps1,s2,s1 + s2q, O = pOiqi∈J3K, and o ∈ Z2
≥1.

We call C = ps, l,w,O,φ ,ρ,x,X,q,λ ,oq a convolution index of pF1,F2q when C satisfies the following
conditions:

1. o1λ1 = o2λ2 = λ3;

2. o−1
1 ρ1 = o−1

2 ρ2 = ρ3;

3. φ is a psi, l,w,≻i,poiq ,xi,Xq-mediator for each i ∈ J2K;

4. φ is a ps3, l,w,≻3,ρ3,x3,Xq-mediator.

We refer to Conditions 1, 2, 3, and 4 as the pλ ,oq-exponent equation, pρ,oq-base-shift equation, pC,oq-
mediator condition, and pC,ρ3q-mediator condition.

In particular, we have the following on convolution indices.

Lemma 15.2. Suppose a convolution index C = ps, l,w,O,φ ,ρ,x,X,q,λ ,oq of pF1,F2q.

1. Then, xi is Oi-admissible for each i ∈ J2K.

2. Provided the pλ ,oq-exponent equation, x3 is O3-admissible.

3. Suppose that λ and ρ are flat.

(a) If o = ι2(1), then we have the pλ ,oq-exponent and pρ,oq-base-shift equations and the pC,oq-
mediator condition.

(b) If one of s1 and s2 is infinite or p0,0q, then we have the pC,ρ3q-mediator condition.

(c) Similarly, if w = p0q, then we have the pC,ρ3q-mediator condition.

4. Suppose that φ is the canonical l-mediator.

(a) Then, the pC,oq-mediator condition holds.

(b) Provided the pλ ,oq-exponent equation, the pC,ρ3q-mediator condition holds.

Proof. Proof of Claim 1. Claim 1 holds, since the parcel Fi has the squaring order Oi and the base xi.
Proof of Claim 2. We have o ∈ Z2

≥1 for the convolution index C. Then, since there is the pλ ,oq-exponent
equation, x3 =

`

qλ3
˘

is O1- and O2-admissible by Claim 2 of Proposition 5.24 and Claim 1. Thus, Claim 2
holds by the compatibility O3 Ţ O1,O2 in C.

Proof of Claim 3a. By o = ι2(1), the flatness of λ and ρ yields the pλ ,oq-exponent and pρ,oq-base-shift
equations. Let µi = psi, l,w,≻i,poiq ,xi,Xq for i ∈ J2K. By Claim 1, Claim 2 of Lemma 5.20 implies 1 ≻i 0
for i ∈ J2K. This gives the base-shift positivity of φ and µi by Claim 1 of Lemma 4.2 and o = ι2(1). Thus, the
pC,oq-mediator condition holds, since we have the base positivity of φ and µi in the parcel Fi.

Proof of Claim 3b. Suppose that s1 is infinite or p0,0q. Then, m ∈ Js1 + s2Kl implies m ∈ Js1Kl if s1 is
infinite, or m ∈ Js2Kl otherwise. Thus, by the flatness of ρ and λ , m ∈ Js1 + s2Kl such that m ∈ JsiKl gives

B(s1 + s2, l,w,m,φ ,ρ3,x3,X) = B(si, l,w,m,φ ,ρi,xi,X)≻i 0.
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Therefore, the pC,ρ3q-mediator condition holds by the compatibility O3 Ţ O1,O2 in C.
Proof of Claim 3c. Let µ3 = ps3, l,w,≻3,ρ3,x3,Xq. Notice that x3 is ≻3-admissible by the flat λ and the

compatibility O3 Ţ O1. First, Claim 1 and Claim 2 of Lemma 5.20 imply 1 ≻1 0, which gives 1 ≻3 0 by the
compatibility. Hence, the base-shift positivity of φ and µ3 follows from Claim 1 of Lemma 4.2. Moreover,
Claim 3c follows, since we have the base positivity of φ and µ3 by w = p0q.

Proof of Claim 4a. Claim 4a follows from Claim 1, Claim 2 of Lemma 5.20, and Lemma 1.8.
Proof of Claim 4b. Similarly, Claim 4b follows from Claim 2, Claim 2 of Lemma 5.20, and Lemma 1.8.

We now obtain parcels by convolution indices.

Proposition 15.3. Consider Fi = Λ(si, l,w,≻i, fi,si ,φ ,ρi,xi,X) for i ∈ J2K with a convolution index C =
ps, l,w,O,φ ,ρ,x,X,q,λ ,oq. Assume

H =

˜

Hm1 = ∑
m2∈Zl

F1,m2 ·F2,m1−m2 ∈Q(X)

¸

m1∈Zl

,

f3,s3 =
`

f3,s3,m = ∏φ(x3)
m◦w · [m]!w

x3
·Hm ∈Q(X)

˘

m∈Zl .

Let τi = poiq ∈ Zl
≥1 for i ∈ J2K. Then, we have the following.

1. When m ̸∈ Js3Kl ,

Hm = 0.

2. When m1 ∈ Zl ,

f3,s3,m1 = ∑
m2∈Zl

„

m1

m2

ȷw

x3

·B(s1, l,w,m2,φ ,τ1,x1,X) ·B(s2, l,w,m1 −m2,φ ,τ2,x2,X) · f1,s1,m2 f2,s2,m1−m2 .

3. f3,s3 is ≻3-positive.

4. H is a parcel such that

H = Λ(s3, l,w,≻3, f3,s3 ,φ ,ρ3,x3,X).

Proof. Proof of Claim 1. Claim 1 holds, because F1,m = 0 for m ̸∈ Js1Kl and F2,m = 0 for m ̸∈ Js2Kl .
Proof of Claim 2. Since x3 =

`

qλ3
˘

, we have

x3 =
´

qo1λ1
¯

= xτ1
1 ,

x3 =
´

qo2λ2
¯

= xτ2
2

by the pλ ,oq-exponent equation. Thus, for each i ∈ J2K and m ∈ JsiKl , we have

∏φ(x3)
m◦w · [m]!w

x3

∏φ(xi)m◦w · [m]!w
xi

=
∏φ(xτi

i )
m◦w · [m]!w

x
τi
i

∏φ(xi)m◦w · [m]!w
xi

= B(si, l,w,m,φ ,τi,xi,X).
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Hence, if m1 ∈ Js3Kl , then

f3,s3,m1 = ∏φ(x3)
m1◦w · [m1]!w

x3
· ∑

m2∈Zl

F1,m2F2,m1−m2

= ∏φ(x3)
m1◦w · [m1]!w

x3

· ∑
m2∈Js1Kl ,m1−m2∈Js2Kl

f1,s1,m2

∏φ(x1)m2◦w · [m2]!w
x1

·
f2,s2,m1−m2

∏φ(x2)(m1−m2)◦w · [m1 −m2]!w
x2

= ∑
m2∈Js1Kl ,m1−m2∈Js2Kl

[m1]!w
x3

[m2]!w
x3
[m1 −m2]!w

x3

·
∏φ(x3)

m2◦w · [m2]!w
x3

∏φ(x1)m2◦w · [m2]!w
x1

·
∏φ(x3)

(m1−m2)◦w · [m1 −m2]!w
x3

∏φ(x2)(m1−m2)◦w · [m1 −m2]!w
x2

· f1,s1,m2 f2,s2,m1−m2

= ∑
m2∈Js1Kl ,m1−m2∈Js2Kl

„

m1

m2

ȷw

x3

·B(s1, l,w,m2,φ ,τ1,x1,X) ·B(s2, l,w,m1 −m2,φ ,τ2,x2,X) · f1,s1,m2 f2,s2,m1−m2 .

If m1 /∈ Js3Kl , then both sides of Claim 2 are zero by Claim 1 and the ≻i-positivities of fi,si of 1 ≤ i ≤ 2.
Proof of Claim 3. For m1 ∈ Js3Kl , we obtain

f3,s3,m1 = ∑
m2∈Js1Kl ,m1−m2∈Js2Kl

„

m1

m2

ȷw

x3

·B(s1, l,w,m2,φ ,τ1,x1,X) ·B(s2, l,w,m1 −m2,φ ,τ2,x2,X)

· f1,s1,m2 · f2,s2,m1−m2 . (15.1.1)

In equation (15.1.1), m1,m1 −m2 ≥ 0. This gives
“m1

m2

‰w
x3
≻3 0 by the ≻3-admissibility of x3 in Claim 2 of

Lemma 15.2. Also, in equation (15.1.1), the compatibility ≻3Ţ≻1,≻2 implies

B(s1, l,w,m2,φ ,τ1,x1,X) ·B(s2, l,w,m1 −m2,φ ,τ2,x2,X)≻3 0,
f1,s1,m2 · f2,s2,m1−m2 ≻3 0

by the ≻i-positivities of fi,si for 1 ≤ i ≤ 2. Hence, Claim 3 holds by equation (15.1.1), since f3,s3,n = 0 for
n ̸∈ Js3Kl by Claim 1.

Proof of Claim 4. Claim 4 follows from Claim 3 and the pC,ρ3q-mediator condition.

By Proposition 15.3, we introduce the parcel convolutions below.

Definition 15.4. Suppose Fi = Λ(si, l,w,≻i, fi,si ,φ ,ρi,xi,X) for i ∈ J2K with a convolution index C =
ps, l,w,O,φ ,ρ,x,X,q,λ ,oq. Then, we define the parcel convolution

F1 ∗F2 = Λ(s3, l,w,≻3, f3,s3 ,φ ,ρ3,x3,X)

such that f3,s3,m = ∏φ(x3)
m◦w · [m]!w

x3
·∑n1+n2=m F1,n1F2,n2 ∈Q(X) for m ∈ Zl .

In particular, we have the following parcels by identity functions.
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Lemma 15.5. Suppose s1 = p0,0q, l = 1, F =Λ(s1, l,w,≻,1s1 ,φ ,ρ,x,X), and G =Λ(s2, l,w,≻, fs2 ,φ ,ρ,x,X).
Then, F ∗G = G .

Proof. Let x = pqq and O = pOi = {⪰,≻}qi∈J3K. Then, pF ,G q has the convolution index

`

ps1,s2,s2q , l,w,O,φ , ι3(ρ), ι3(x),X,q, ι3(1), ι2(1)
˘

by Claims 3a and 3b of Lemma 15.2. Thus, the assertion holds by Fp0q =
1s′,p0q

∏φ(x)p0q◦w·[p0q]!w
x
= 1.

Hence, we have the convolutions below by Lemma 15.5 and Claim 3 of Lemma 15.2.

Definition 15.6. Let l = 1, λ ∈ Z≥0, and F = Λ(s, l,w,≻, fs,φ ,ρ,x,X). Assume that s = p0,0q or infinite,
or w = p0q. Then, we define the λ -fold parcel convolution

F ∗λ = Λ(λ s, l,w,≻,gλ s,φ ,ρ,x,X)

such that gλ s = 1p0,0q when λ = 0, and

gλ s,m = ∏φ(x)m◦w · [m]!w
x · ∑

n1+···+nλ=m
Fn1 · · · · ·Fnλ

for m ∈ Zl when λ > 0.

15.2 Extension of the Cauchy–Binet formula
The Cauchy–Binet formula describes minors of a matrix product AB by those of A and B. Hence, we extend
the Cauchy–Binet formula to obtain the merged-log-concavity of parcel convolutions, as merged determinants
extend 2×2 determinants. This uses the following notation with Definition 2.3.

Definition 15.7. Let d ∈ Z≥1, λ ∈ Z3
≥1, and Q be a commutative ring.

1. Consider a λ1 × λ2-matrix A = pAi, jqi∈Jλ1K, j∈Jλ2K ∈ Mλ1,λ2(Q). Suppose α ∈ T<(d,λ1) and β ∈
T<(d,λ2). Then, we write the minor

A(α,β ) = det

»

—

—

–

Aα1,β1 Aα1,β2 . . . Aα1,βd
Aα2,β1 Aα2,β2 . . . Aα2,βd
. . . . . . . . . . . .

Aαd ,β1 Aαd ,β2 . . . Aαd ,βd

fi

ffi

ffi

fl

.

2. Suppose α ∈ T<(d,λ1), β ∈ T<(d,λ3). A ∈ Mλ1,λ2(Q), and B ∈ Mλ2,λ3(Q). Then, let

T<(d,λ2,α,β ,A,B) = {γ ∈ T<(d,λ2) | A(α,γ)B(γ,β ) ̸= 0} .

We recall the Cauchy–Binet formula, which holds by summation reordering in the Leibniz formula of
A(α,γ) and B(γ,β ).

Theorem 15.8 (the Cauchy–Binet formula). Let d ∈ Z≥1, λ ∈ Z3
≥1, and Q be a commutative ring. Consider

A∈Mλ1,λ2(Q), B∈Mλ2,λ3(Q), α ∈T<(d,λ1), and β ∈T<(d,λ3). Then, AB(α,β )=∑γ∈T<(d,λ2) A(α,γ)B(γ,β ).

Let Q× denote the units of a ring Q. We then generalize the ring shift factors in Definition 6.1.

Definition 15.9. Let Q be a commutative ring and d ∈ Z≥1. Let Θ(κ,u) ∈ Q for κ ∈ J3K and u ∈ Z.
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1. For i ∈ J2K, suppose φi ∈ Z≥1, γi ∈ T<(d,φi), and µi ∈ J3K.

(a) For each u ∈ Z, we define the ring shift factor

Θ(µ1,µ2,γ1,γ2,u) =


∏i∈JdK Θ(µ2,γ2,i − γ1,1 +u)

∏i∈JdK Θ(µ1,γ1,i − γ1,1 +u)
if ∏

i∈JdK
Θ(µ1,γ1,i − γ1,1 +u) ∈ Q×,

0 otherwise.

(b) For each u ∈ Z and C ∈ Mφ1,φ2(Q), let

C(µ1,µ2,γ1,γ2,Θ,u) = Θ(µ1,µ2,γ1,γ2,u) ·C(γ1,γ2).

If Θ(1,u) = Θ(2,u) = Θ(3,u) for each u ∈ Z, then we also write Θ(u) = Θ(κ,u) for κ ∈ J3K,
Θ(γ1,γ2,u) = Θ(µ1,µ2,γ1,γ2,u), and C(γ1,γ2,Θ,u) =C(µ1,µ2,γ1,γ2,Θ,u).

2. Suppose λ ∈ Z3
≥1, A ∈ Mλ1,λ2(Q), B ∈ Mλ2,λ3(Q), α ∈ T<(d,λ1), and β ∈ T<(d,λ3). Then, we call

R = pΘ,d,λ ,α,β ,A,B,Qq a ring shift index when R satisfies the following conditions:

(a) Θ(κ,u) ∈ Q× for each κ ∈ J3K and u ≥ 0;
(b) ∏i∈JdK Θ(κ,γi −α1 +u) ∈ Q× for each κ ∈ J3K, γ ∈ T<(d,λ2,α,β ,A,B), and u ≥ 0;
(c) ∏i∈JdK Θ(κ,βi − γ1 +u) ∈ Q× for each κ ∈ J2,3K, γ ∈ T<(d,λ2,α,β ,A,B), and u ≥ min(0,γ1 −

α1).

We call Conditions 2a, 2b, and 2c the Θ-nonsingularity, J3K-product nonsingularity, and J2,3K-product
nonsingularity of R, respectively.

There is a ring shift index pΘ,d,λ ,α,β ,A,B,Qq such that each Θ(u) = 1. Then, AB(α,β ,Θ,u) =
AB(α,β ), A(α,γ,Θ,u) = A(α,γ), and B(γ,β ,Θ,u) = B(γ,β ). Hence, ring shift indices extend minors by
ring shift factors.

We state the following lemma.

Lemma 15.10. Consider a ring shift index pΘ,d,λ ,α,β ,A,B,Qq. Let γ ∈ T<(d,λ2,α,β ,A,B). Then, we
have the following.

1. Θ(µ1,µ2,α,γ,u) ∈ Q× whenever µ1,µ2 ∈ J3K and u ≥ 0.

2. Θ(µ1,µ2,γ,β ,u) ∈ Q× whenever µ1,µ2 ∈ J2,3K and u ≥ min(0,γ1 −α1).

Proof. Proof of Claim 1. Claim 1 holds, since we have

∏
i∈JdK

Θ(µ1,αi −α1 +u) ∈ Q×,

∏
i∈JdK

Θ(µ2,γi −α1 +u) ∈ Q×

by the Θ- and J3K-product nonsingularities.
Proof of Claim 2. If 0 = min(0,γ1 −α1), then

∏
i∈JdK

Θ(µ1,γi − γ1 +u) ∈ Q×

for each u ≥ min(0,γ1 −α1) by the Θ–nonsingularity; otherwise, the same holds by the J3K–product nonsin-
gularity. Thus, Claim 2 follows from the J2,3K-product nonsingularity.
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Now, we obtain the following extended Cauchy–Binet formula by the ring shift factors.

Theorem 15.11 (the extended Cauchy–Binet formula by ring shift factors). Consider a ring shift index
pΘ,d,λ ,α,β ,A,B,Qq. Then, for each u ∈ Z≥0, we have

AB(1,3,α,β ,Θ,u) = ∑
γ∈T<(d,λ2)

A(1,2,α,γ,Θ,u)B(2,3,γ,β ,Θ,γ1 −α1 +u).

Proof. Let γ ∈ T<(d,λ2) and u ≥ 0. First, suppose A(α,γ)B(γ,β ) = 0. Then,

A(1,2,α,γ,Θ,u)B(2,3,γ,β ,Θ,γ1 −α1 +u)

= Θ(1,2,α,γ,u)A(α,γ)Θ(2,3,γ,β ,γ1 −α1 +u)B(γ,β )

= 0. (15.2.1)

Second, suppose A(α,γ)B(γ,β ) ̸= 0. Then, Lemma 15.10 yields

A(α,γ) ·B(γ,β ) = Θ(1,2,α,γ,u)−1 ·Θ(2,3,γ,β ,γ1 −α1 +u)−1

·A(1,2,α,γ,Θ,u) ·B(2,3,γ,β ,Θ,γ1 −α1 +u). (15.2.2)

Moreover, we have

(15.2.3)

Θ(1,3,α,β ,u) · Θ(1,2,α,γ,u)−1 · Θ(2,3,γ,β ,γ1 − α1 + u)−1

=
∏i∈JdK Θ(3,βi − α1 + u)

∏i∈JdK Θ(1,αi − α1 + u)
·

∏i∈JdK Θ(1,αi − α1 + u)

∏i∈JdK Θ(2,γi − α1 + u)
·

∏i∈JdK Θ(2,γi − γ1 + γ1 − α1 + u)

∏i∈JdK Θ(3,βi − γ1 + γ1 − α1 + u)

=
∏i∈JdK Θ(3,βi − α1 + u)

∏i∈JdK Θ(1,αi − α1 + u)
·

∏i∈JdK Θ(1,αi − α1 + u)

∏i∈JdK Θ(2,γi − α1 + u)
·

∏i∈JdK Θ(2,γi − α1 + u)

∏i∈JdK Θ(3,βi − α1 + u)
= 1.

Therefore, equations (15.2.1), (15.2.2), and (15.2.3) and Theorem 15.8 yield

AB(1,3,α,β ,Θ,u)

= Θ(1,3,α,β ,u) ·AB(α,β )

= ∑
γ∈T<(d,λ2)

Θ(1,3,α,β ,u) ·A(α,γ)B(γ,β )

= ∑
γ∈T<(d,λ2,α,β ,A,B)

Θ(1,3,α,β ,u) ·Θ(1,2,α,γ,u)−1 ·Θ(2,3,γ,β ,γ1 −α1 +u)−1

·A(1,2,α,γ,Θ,u) ·B(2,3,γ,β ,Θ,γ1 −α1 +u)

= ∑
γ∈T<(d,λ2,α,β ,A,B)

A(1,2,α,γ,Θ,u)B(2,3,γ,β ,Θ,γ1 −α1 +u)

= ∑
γ∈T<(d,λ2)

A(1,2,α,γ,Θ,u)B(2,3,γ,β ,Θ,γ1 −α1 +u).

In particular, the extended Cauchy–Binet formula reduces to the non-extended one with trivial ring shift
factors

1 = Θ(1,3,α,β ,u) = Θ(1,2,α,γ,u) = Θ(2,3,γ,β ,γ1 −α1 +u)

of each γ ∈ T<(d,λ2,α,β ,A,B) and u ≥ 0.

150



Remark 15.12. If Θ(u) = [u]!q for each u ≥ 0, then Θ(u) gives a ring shift factor in Definition 6.1. Moreover,
consider

Θ(1,u) = [u]!q ,

Θ(2,u) = [u]!2
q ,

Θ(3,u) = [u]!2
q .

Then, Proposition 8.19 and Theorem 15.11 give q-polynomials with positive integer coefficients by convolu-
tions of

´

1
[m]q

¯

m∈Z≥0
and

´

1
[m]2q

¯

m∈Z≥0

. However, we discuss parcel convolutions with the same weights in

this manuscript.

Consider ∑λ∈Z≥0
1

(λ )q
tλ and ∑λ∈Z≥0

q
λ2
2

(λ )q
tλ . Then, for Schoenberg’s Pólya frequency on real num-

bers [Scho, Theorem 3] (see [Bra, Edr]), we conjecture the following analog on polynomials. Proposition 8.19
gives the d = 2 case of the conjecture.

Conjecture 15.13. Let h,λ ,ρ,w∈Z≥1 and d ∈Z≥3. Consider Mw,h,Nw,h ∈Mh,h(Q(q
1
2 )) such that Mw,h,i, j =

1
( j−i)w

q
and Nw,h,i, j =

q
( j−i)2

2

( j−i)w
q

if 0 ≤ j− i, and Mw,h,i, j = Nw,h,i, j = 0 otherwise. Moreover, for α,β ∈ T<(d,h)

such that β ≥ α , let

F(w,ρ,λ ,α,β ) =
∏i∈JdK(βi −α1 +λ )w

qρ

∏i∈JdK(αi −α1 +λ )w
qρ

.

Then, we have

F(w,ρ,λ ,α,β )Mw,h(α,β )>q 0,
F(w,ρ,λ ,α,β )Nw,h(α,β )>

q
1
2

0.

15.3 Fitting tuples and strictly increasing sequences
We introduce the following notion to discuss fitting tuples and strictly increasing sequences by the extended
Cauchy–Binet formula.

Definition 15.14. Suppose a gate s ≥ 0 and l ∈ Z≥1. Let u ∈ Z, m,n ∈ Zl , and k ∈ Z2l . Then, we define

ων(ps, l,m,n,kq ,u) = ps, l,α,β q

such that

α = ν(k)− k1 +u ∈ Z2l ,

β = m++n+α ∈ Z2l .

We then obtain strictly increasing sequences from fitting tuples.

Lemma 15.15. For a fitting µ = ps, l,m,n,kq and u ∈ Z≥0, let ps, l,α,β q = ων(µ,u).

1. Then, p2l,α,β q is pre-fitting and β ≥ α ≥ u.
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2. If l = 1, then α,β ∈ T<(2l,pu,hq) for some h ∈ Z≥1.

Proof. Proof of Claim 1. Claim 1 follows from Claim 1 of Proposition 8.10 and Claim 2 of Lemma 3.7.
Proof of Claim 2. Claim 1 gives Claim 2, since α,β are strictly increasing when l = 1.

By the following, we obtain fitting tuples from increasing sequences.

Definition 15.16. For a gate s ≥ 0 and l ∈ Z≥1, suppose µ = ps, l,α,β q such that α,β ∈ Z2l . Let u ∈ Z.
Then, we define

ωd(µ,u) =
`

s, l,mα,β ,nα,β ,kα,β ,u
˘

such that

mα,β = (β −α)[1 : l] ∈ Zl ,

nα,β = (β −α)[l +1 : 2l] ∈ Zl ,

kα,β ,u = puq++(α[2 : 2l]−α[1 : 2l −1]) ∈ Z2l .

When l = 1, we define ωd(s,α,β ,u) = ωd(µ,u) for our convenience.

Furthermore, we prove the following reciprocity between ων and ωd .

Proposition 15.17. Assume a gate s ≥ 0 and l ∈ Z≥1. Let m,n ∈ Zl , k ∈ Z2l , and µ = ps, l,m,n,kq. Also, let
α,β ∈ Z2l and µ ′ = ps, l,α,β q. Then, we have the following.

1. ωd(ps, l,ων(µ,α1)3,ων(µ,α1)4q ,k1) = µ .

2. ων(ωd(µ
′,k1),α1) = µ ′.

3. Suppose l = 1, α1 ∈ Z≥0, k1 ∈ Z≥0, and µ = ωd(µ
′,k1). Then, µ ′ satisfies α −β ∈ JsK2l and α,β ∈

T<(2l,pα1,hq) for some h ∈ Z≥1 if and only if µ is fitting.

Proof. Proof of Claim 1. Let ων(µ,α1) = ps, l,α ′,β ′q. Then, we have

pk1q++(α ′[2 : 2l]−α
′[1 : 2l −1]) = pk1q++((ν(k)− k1 +α1)[2 : 2l]− (ν(k)− k1 +α1)[1 : 2l −1])

= pk1q++(ν(k)[2 : 2l]−ν(k)[1 : 2l −1])
= k.

Hence, Claim 1 holds by β ′−α ′ = m++n.
Proof of Claim 2. Let ωd(µ

′,k1) = ps, l,m′,n′,k′q. Then, k′ = pk1q++(α[2 : 2l]−α[1 : 2l −1]) gives

ν(k′)− k1 +α1 = pk1,k1 +α2 −α1, . . . ,k1 +α2l −α1q− k1 +α1 = α.

Thus, Claim 2 follows from m′++n′ = β −α .
Proof of Claim 3. The if part follows from Claim 2 and Claim 2 of Lemma 15.15. We now prove the only

if part. First, α −β ∈ JsK2l gives the inclusion condition of µ . Second, k1 ∈ Z≥0 and α ∈ T<(2l,pα1,hq)
imply the lower slope condition of µ . Third, β ∈ T<(2l,pα1,hq) gives the upper slope condition of µ .
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15.3.1 Merged determinants by Toeplitz matrices and ring shift indices

We consider the following Toeplitz matrices.

Definition 15.18. For l = 1, suppose F = pFm ∈Q(X)qm∈Zl . For h ∈ Z≥1 and i, j ∈ JhK, we write a matrix
MF ,h ∈ Mh,h(Q(X)) such that its pi, jq-element MF ,h,i, j is Fp j−iq.

In particular, we have the following by ωd .

Lemma 15.19. Suppose l = 1 and F = Λ(s, l,w,≻, fs,φ ,ρ,x,X). Let d = 2. Consider h ∈ Z≥2 and
α,β ∈ T<(d,h). Then, we have the following.

1. MF ,h(α,β ) ̸= 0 implies β −α ∈ JsKd .

2. Let F be ≻′-merged-log-concave. Then, ωd(s,α,β ,u) is fitting for each u ∈ Z≥0 if and only if
MF ,h(α,β ) ̸= 0.

Proof. Proof of Claim 1. Assume β1−α1 < s1. Then, Fpβ1−α1q = 0. Also, Fpβ1−α2q = 0, since β1−α2 < s1
by α2 > α1. Hence, we obtain the contradiction

0 ̸= MF ,h(α,β ) = Fpβ1−α1qFpβ2−α2q −Fpβ2−α1qFpβ1−α2q = 0.

The same contradiction occurs when either β1 −α1 > s2, β2 −α2 < s1, or β2 −α2 > s2.
Proof of Claim 2. Let ωd(s,α,β ,u) =

`

s, l,mα,β ,nα,β ,kα,β ,u
˘

. First, we prove the if part. Since kα,β ,u =
pu,α2 −α1q, kα,β ,u ≥ p0,1q by u ≥ 0 and α2 > α1. Furthermore, since mα,β ++nα,β = β −α , β2 > β1 gives

nα,β + kα,β ,u,2 = pβ2 −α1q > pβ1 −α1q = mα,β .

Thus, Lemma 3.10 and Claim 1 give the if part. Second, we prove the only if part. We have

mα,β a kα,β ,u = pβ1 −α1 − (α2 −α1)q = pβ1 −α2q ,

nα,β ‘ kα,β ,u = pβ2 −α2 +(α2 −α1)q = pβ2 −α1q .

Then, MF ,h(α,β ) = Fmα,β
Fn∨

α,β
−Fmα,β akα,β ,uF(nα,β ‘kα,β ,u)

∨ . Thus, the only if part holds by the ≻′-
merged-log-concavity of F .

Also, we introduce the following notation.

Definition 15.20. Let l ∈ Z≥1 and w ∈ Zl
≥0. Consider an indeterminate y ∈Q(X)l and φ(y) ∈ ∏i∈JlKQ(yi).

Then, for each u ∈ Zl , we define

Θ̃(l,w,y,φ ,u) =

{
∏φ(y)u◦w · [u]!w

y if u ≥ 0,

0 otherwise.

We then realize merged determinants by Toeplitz matrices and ring shift indices.

Proposition 15.21. Let l = 1. Suppose Fi = Λ(si, l,w,≻i, fi,si ,φ ,ρi,xi,X) for i ∈ J3K such that Fi is ≻′
i-

merged-log-concave for each i ∈ J2K. Let

C = ps, l,w,O,φ ,ρ,x,X,q,λ ,oq
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be the convolution index of pF1,F2q and F3 = F1 ∗F2. Let y = xρ3
3 and Θ(u) = Θ̃(l,w,y,φ ,puq) for each

u ∈ Z. Also, for d = 2, h ∈ Z≥2, and α,β ∈ T<(d,h), let

R =
`

Θ,d, ι3(h),α,β ,MF1,h,MF2,h,Q(X)
˘

.

Then, we have the following.

1. R is a ring shift index.

2. For each γ ∈ T<(d,h) and u ≥ 0, we have

MF1,h(α,γ,Θ,u) = ∆(F1)(s1, l,w,mα,γ ,nα,γ ,kα,γ,u,φ ,ρ1,x1,X), (15.3.1)
MF2,h(γ,β ,Θ,u) = ∆(F2)(s2, l,w,mγ,β ,nγ,β ,kγ,β ,u,φ ,ρ2,x2,X), (15.3.2)

MF3,h(α,β ,Θ,u) = ∆(F3)(s3, l,w,mα,β ,nα,β ,kα,β ,u,φ ,ρ3,x3,X). (15.3.3)

Proof. Proof of Claim 1. First, we prove the Θ-nonsingularity. The base positivity of φ in F3 gives
∏φ(x3)

w >OX
0. Thus, ∏φ(y)w ̸= 0 by ρ3 ∈ Zl

≥1. Moreover, qλ1 >OX
0 by Claim 1 of Lemma 5.22. This

implies

y1 = qλ3ρ3,1 = qλ1o1ρ3,1 >OX
0.

Hence, we have the Θ-nonsingularity, since [puq]!w
y ̸= 0 for each u ≥ 0.

Second, let us prove the J3K- and J2,3K-product nonsingularities. Assume γ ∈T<(d,h,α,β ,MF1,h,MF2,h).
Then, Claim 1 of Lemma 15.19 implies γ1 −α1 ≥ 0 by MF1,h(α,γ)MF2,h(γ,β ) ̸= 0. Thus, we obtain
the J3K-product nonsingularity by the Θ-nonsingularity and γ2 > γ1. Also, we have 0 = min(0,γ1 −α1),
and β1 − γ1 ≥ 0 by MF1,h(α,γ)MF2,h(γ,β ) ̸= 0 and Claim 1 of Lemma 15.19. Thus, the J2,3K-product
nonsingularity follows from the Θ-nonsingularity and β2 > β1. In particular, Claim 1 holds.

Proof of Claim 2. We prove equation (15.3.1), since equations (15.3.2) and (15.3.3) hold analogously. Let

aα,γ,u = ν(kα,γ,u),

bα,γ,u = ν(mα,γ ,nα,γ ,kα,γ,u).

Then, kα,γ,u = pu,α2 −α1q and mα,γ ++nα,γ = γ −α give

aα,γ,u = pu,α2 −α1 +uq , (15.3.4)
bα,γ,u = aα,γ,u +mα,γ ++nα,γ = pγ1 −α1 +u,γ2 −α1 +uq , (15.3.5)

mα,γ a kα,γ,u = pγ1 −α1q− pα2 −α1q = pγ1 −α2q , (15.3.6)
nα,γ ‘ kα,γ,u = pγ2 −α2q+ pα2 −α1q = pγ2 −α1q . (15.3.7)

First, suppose γ1 −α1 +u < 0. Then,

Θ(α,γ,u) =
∏i∈JdK Θ(γi −α1 +u)

∏i∈JdK Θ(αi −α1 +u)
= 0,

ϒ(s1, l,w,mα,γ ,nα,γ ,kα,γ,u,φ ,ρ1,x1,X) = 0

by equation (15.3.5). Hence, equation (15.3.1) holds by 0 = 0.
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Second, suppose γ1 −α1 + u ≥ 0. Then, since α2 −α1 + u ≥ 0 by u ≥ 0, equations (15.3.4), (15.3.5),
(15.3.6), and (15.3.7) give

MF1,h(α,γ,Θ,u) = Θ(α,γ,u)MF1,h(α,γ)

=
Θ(γ2 − α1 + u)Θ(γ1 − α1 + u)

Θ(α2 − α1 + u)Θ(u)
· (MF1,h,α1,γ1MF1,h,α2,γ2 − MF1,h,α1,γ2MF1,h,α2,γ1)

=
∏(φ(y)⊔)(γ2−α1+u,γ1−α1+u)◦w⊔

[(γ2 − α1 + u)]!w
y [(γ1 − α1 + u)]!w

y

∏(φ(y)⊔)(α2−α1+u,u)◦w⊔
[(α2 − α1 + u)]!w

y [(u)]!w
y

· (F1,(γ1−α1)F1,(γ2−α2) − F1,(γ2−α1)F1,(γ1−α2))

=
∏(φ(y)⊔)bα,γ,u◦w⊔

[bα,γ,u]!w⊔
y⊔

∏(φ(y)⊔)aα,γ,u◦w⊔
[aα,γ,u]!w⊔

y⊔
· (F1,mα,γ F1,n∨α,γ

− F1,mα,γ akα,γ,uF1,(nα,γ ‘kα,γ,u)∨).

Furthermore, we have

∏(φ(y)⊔)bα,γ,u◦w⊔
[bα,γ,u]!w⊔

y⊔

∏(φ(y)⊔)aα,γ,u◦w⊔
[aα,γ,u]!w⊔

y⊔
= ϒ(s1, l,w,mα,γ ,nα,γ ,kα,γ,u,φ ,ρ1,x1,X),

since y = xρ3
3 =

`

qλ3
˘o−1

1 ρ1 =
´

qλ1o1o−1
1 ρ1,1

¯

=
´

qλ1ρ1,1
¯

= xρ1
1 in the convolution index C. Thus, we obtain

equation (15.3.1).

15.4 Merged-log-concavity
If there is a squaring order ≻′

3 compatible to ≻′
1,≻′

2, and ≻3 in Proposition 15.21, then Theorem 15.11 and
Proposition 15.21 give the ⪰′

3-merged-log-concavity of F3. But, we need the ≻′
3-merged-log-concavity of

F3 for polynomials with positive integer coefficients. Hence, we introduce the following notation to obtain
fitting tuples for MF1,h(α,γ,Θ,u) and MF2,h(γ,β ,Θ,u) in Proposition 15.21.

Definition 15.22. Suppose gates s1,s2 ≥ 0. For each u ∈ Z and α,β ∈ Z2, we define

FT<(s1,s2,α,β ,u) = {γ ∈ T<(2,pα1,β2q) | ωd(s1,α,γ,u) and ωd(s2,γ,β ,u) are fitting.} .

Then, we prove the following existence of fitting tuples.

Lemma 15.23. Let l = 1 and α1 ∈ Z≥1. Assume the following:

1. s3 = s1 + s2 for gates s1,s2,s3 ≥ 0;

2. a fitting µ = ps3, l,m,n,kq;

3. ps3, l,α,β q = ων(µ,α1);

4. γ = pmax(s1,1 +α1,β1 − s2,2),min(s1,2 +α2,β2 − s2,1)q ∈ Z2.

Then, we have the following.

(a) There exist the following inequalities:

γ1 ≤ min(s1,2 +α1,β1 − s2,1); (15.4.1)
max(s1,1 +α2,β2 − s2,2)≤ γ2; (15.4.2)

γ1 < γ2. (15.4.3)

155



(b) For each u ∈ Z≥0, there exists γ ∈ FT<(s1,s2,α,β ,u).

Proof. We state the following inequalities to prove Claims (a) and (b). First, the inclusion condition of
Assumption 2 and β −α = m++n of Assumption 3 imply

s3,1 ≤ β1 −α1 ≤ s3,2, (15.4.4)
s3,1 ≤ β2 −α2 ≤ s3,2. (15.4.5)

Second, Assumption 2 and Claim 2 of Lemma 15.15 give some h ∈ Z≥1 such that

1 ≤ α1 < α2 ≤ h, (15.4.6)
1 ≤ β1 < β2 ≤ h. (15.4.7)

Proof of Claim (a). First, we prove inequality (15.4.1). Then, by Assumption 1 and inequality (15.4.4),
we have

(s1,2 +α1)− (β1 − s2,2) = s1,2 + s2,2 +α1 −β1 = s3,2 − (β1 −α1)≥ 0,
(β1 − s2,1)− (s1,1 +α1) = β1 −α1 − (s1,1 + s2,1) = β1 −α1 − s3,1 ≥ 0.

Therefore, we obtain inequality (15.4.1), because Assumption 1 implies

(s1,2 +α1)− (s1,1 +α1) = s1,2 − s1,1 ≥ 0,
(β1 − s2,1)− (β1 − s2,2) = s2,2 − s2,1 ≥ 0.

Second, inequality (15.4.2) holds similarly by Assumption 1 and inequality (15.4.5).
Third, we prove inequality (15.4.3). By Assumption 1 and inequalities (15.4.6) and (15.4.7), we have

(s1,2 +α2)− (s1,1 +α1) = (s1,2 − s1,1)+(α2 −α1)> 0,
(β2 − s2,1)− (β1 − s2,2) = (s2,2 − s2,1)+(β2 −β1)> 0.

Furthermore, Assumption 1 and inequalities (15.4.4) and (15.4.7) give

(β2 − s2,1)− (s1,1 +α1) = β2 −α1 − s3,1 > β1 −α1 − s3,1 ≥ 0.

If s3,2 = ∞, then γ1 = s1,1 +α1 if s2,2 = ∞ or γ2 = β2 − s2,1 if s1,2 = ∞. Thus, suppose s3,2 < ∞. Then,
Assumption 1 and inequalities (15.4.4) and (15.4.6) imply

(s1,2 +α2)− (β1 − s2,2) = s3,2 −β1 +α2 > s3,2 −β1 +α1 = s3,2 − (β1 −α1)≥ 0.

Thus, inequality (15.4.3) follows.
Proof of Claim (b). First, we prove

γ ∈ T<(2,pα1,β2q). (15.4.8)

Since s1,1,s2,1 ≥ 0 by Assumption 1, Assumption 4 implies α1 ≤ γ1 and γ2 ≤ β2. Therefore, inclusion (15.4.8)
holds by inequality (15.4.3).

Second, we confirm that ωd(s1,α,γ,u) =
`

s1, l,mα,γ ,nα,γ ,kα,γ,u
˘

is fitting. By Assumption 4 and inequal-
ities (15.4.1) and (15.4.2), each i∈ J2K gives inequalities s1,1+αi ≤ γi ≤ s1,2+αi and βi−s2,2 ≤ γi ≤ βi−s2,1,
which are equivalent to

s1,1 ≤ γi −αi ≤ s1,2, (15.4.9)
s2,1 ≤ βi − γi ≤ s2,2. (15.4.10)
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Then, inequality (15.4.9) implies

mα,γ ++nα,γ = pγi −αiqi∈J2K ∈ Js1K2l .

Moreover, inequality (15.4.3) gives

nα,γ,1 + kα,γ,u,2 = γ2 −α1 > γ1 −α1 = mα,γ,1.

Hence, ωd(s1,α,γ,u) is fitting by inequality (15.4.6) and Lemma 3.10.
Third, we prove that ωd(s2,γ,β ,u) =

`

s2, l,mγ,β ,nγ,β ,kγ,β ,u
˘

is fitting. By inequality (15.4.10), we have

mγ,β ++nγ,β = pβi − γiqi∈J2K ∈ Js2K2l .

Also, inequality (15.4.7) gives

nγ,β ,1 + kγ,β ,u,2 = β2 − γ1 > β1 − γ1 = mγ,β ,1.

Therefore, ωd(s2,γ,β ,u) is fitting by inequality (15.4.3) and Lemma 3.10.

Moreover, we rewrite FT<(s1,s2,α,β ,u) as follows.

Lemma 15.24. Let α,β ∈ T<(2,h) for some h ∈ Z≥1. Suppose u ∈ Z≥0. Then, γ ∈ FT<(s1,s2,α,β ,u) if
and only if γ ∈ T<(2,h) and both ωd(s1,α,γ,u) and ωd(s2,γ,β ,u) are fitting.

Proof. The only if part is clear. Hence, we prove the if part. The fitting ωd(s1,α,γ,u) and ωd(s2,γ,β ,u) give
α1 ≤ γ1 and γ2 ≤ β2, because

mα,γ = pγ1 −α1q ∈ Js1Kl ,

nγ,β = pβ2 − γ2q ∈ Js2Kl

by s1,s2 ≥ 0. Thus, γ ∈ T<(2,pα1,β2q), since γ1 < γ2 by γ ∈ T<(2,h).

We now state the following merged-log-concavity of parcel convolutions. Its weight-zero case applies to
the convolutions of strongly >q-log-concave polynomials, which carry convolution indices by Claim 3c of
Lemma 15.2.

Theorem 15.25. Let l = 1. Consider Fi = Λ(si, l,w,≻i, fi,si ,φ ,ρi,xi,X) for i ∈ J3K such that F3 = F1 ∗F2.
For a fitting µ = ps3, l,m,n,kq and α1 ∈ Z≥1, let ps3, l,α,β q = ων(µ,α1). Then, we obtain

∆(F3)(s3, l,w,m,n,k,φ ,ρ3,x3,X)

= ∑
γ∈FT<(s1,s2,α,β ,k1)

∆(F1)(s1, l,w,mα,γ ,nα,γ ,kα,γ,k1 ,φ ,ρ1,x1,X)

·∆(F2)(s2, l,w,mγ,β ,nγ,β ,kγ,β ,γ1−α1+k1 ,φ ,ρ2,x2,X). (15.4.11)

Moreover, let Fi be ≻′
i-merged-log-concave for i ∈ J2K with Oi = {⪰i,≻i} for i ∈ J3K and O′

i = {⪰′
i,≻′

i} for
i ∈ J2K. If there are squaring orders O′

3 =
{
⪰′

3,≻′
3
}

Ţ O′
1,O

′
2,O3, then F3 is ≻′

3-merged-log-concave by

∆(F3)(s3, l,w,m,n,k,φ ,ρ3,x3,X)≻′
3 0. (15.4.12)
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Proof. First, we prove equation (15.4.11). Consider the convolution index C = ps, l,w,O,φ ,ρ,x,X,q,λ ,oq

of pF1,F2q. Also, let y = xρ3
3 and Θ(u) = Θ̃(l,w,y,φ ,puq) for each u ∈ Z. Then, we have a ring shift index

R =
`

Θ,d, ι3(h),α,β ,MF1,h,MF2,h,Q(X)
˘

for some h ∈ Z≥1 by Claim 1 of Proposition 15.21.
We then have

MF3,h(α,β ,Θ,k1) = ∆(F3)(s3, l,w,m,n,k,φ ,ρ3,x3,X)

by the convolution index C and Claim 2 of Proposition 15.21, because ωd(s3,α,β ,k1) = ps3, l,m,n,kq by
Claim 1 of Proposition 15.17. Furthermore, if MF1,h(α,γ)MF2,h(γ,β ) ̸= 0, then Claim 1 of Lemma 15.19
implies γ1 −α1 ≥ 0. In particular, Claim 2 of Lemma 15.19 implies

MF1,h(α,γ,Θ,k1) = ∆(F1)(s1, l,w,mα,γ ,nα,γ ,kα,γ,k1 ,φ ,ρ1,x1,X),

MF2,h(γ,β ,Θ,γ1 −α1 + k1) = ∆(F2)(s2, l,w,mγ,β ,nγ,β ,kγ,β ,γ1−α1+k1 ,φ ,ρ2,x2,X).

We have MF3,h = MF1,hMF2,h, since F3,m1 = ∑m2∈Zl F1,m2 ·F2,m1−m2 for each m1 ∈ Zl . Hence, Theo-
rem 15.11 with the ring shift index R gives

∆(F3)(s3, l,w,m,n,k,φ ,ρ3,x3,X) = MF3,h(α,β ,Θ,k1)

= ∑
γ∈T<(2,h,α,β ,MF1 ,h,MF2 ,h)

MF1,h(α,γ,Θ,k1) ·MF2,h(γ,β ,Θ,γ1 −α1 + k1)

= ∑
γ∈T<(2,h,α,β ,MF1 ,h,MF2 ,h)

∆(F1)(s1, l,w,mα,γ ,nα,γ ,kα,γ,k1 ,φ ,ρ1,x1,X)

· ∆(F2)(s2, l,w,mγ,β ,nγ,β ,kγ,β ,γ1−α1+k1 ,φ ,ρ2,x2,X).

This implies equation (15.4.11) by Claim 2 of Lemma 15.19 and Lemma 15.24.
Second, we prove inequality (15.4.12). Let

λ = pmax(s1,1 +α1,β1 − s2,2),min(s1,2 +α2,β2 − s2,1)q ∈ Z2.

Then, λ ∈ FT<(s1,s2,α,β ,k1) by Claim (b) of Lemma 15.23. Also, the merged-log-concavity of F1 and
F2 says

∆(F1)(s1, l,w,mα,λ ,nα,λ ,kα,λ ,k1 ,φ ,ρ1,x1,X)≻′
1 0,

∆(F2)(s2, l,w,mλ ,β ,nλ ,β ,kλ ,β ,λ1−α1+k1 ,φ ,ρ2,x2,X)≻′
2 0.

Thus, equation (15.4.11) and the compatibility O′
3 Ţ O′

1,O
′
2 imply inequality (15.4.12).

Example 15.26. We explicitly compute both sides of equation (15.4.11) in Theorem 15.25. Let l = 1,
s1 = s2 = s3 = p0,∞q, w = p1q, x1 = x2 = x3 = pqq, X = {q}, ≻1=≻2=≻3=>q, and γ = pp0,0,0qq. Then,
for i ∈ J2K, suppose parcels

Fi = Λ(si, l,w,≻i,Ψs,γ,q,xi,X).

Moreover, let ρ1 = ρ2 = ρ3 = p1q, λ = ι3(1), and o = ι2(1). Then, Claims 3a and 3b of Lemma 15.2
give the convolution index C = ps, l,w,O,φ ,ρ,x,X,q,λ ,oq. Thus, consider

F3 = F1 ∗F2 = Λ(s3, l,w,≻3, f ,x3,X)
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such that fm = ∏φ(x3)
m◦w · [m]!w

x3
·∑i+ j=m F1,iF2, j for each m ∈ JsKl .

Furthermore, Lemma 3.10 gives a fitting µ = ps3, l,m,n,kq such that m = n = p1q and k = p0,1q. Then,
α = p1,2q and β = p2,3q satisfy ps3, l,α,β q = ων(µ,α1). Thus, FT<(s1,s2,α,β ,k1) consists of γ1 = p1,2q,
γ2 = p1,3q, and γ3 = p2,3q. In particular,

γ2 = pmax(s1,1 +α1,β1 − s2,2),min(s1,2 +α2,β2 − s2,1)q

as in Claim 4 of Lemma 15.23.
The right-hand side of equation (15.4.11) in Theorem 15.25 sums the following q-polynomials:

∆(F1)(s1, l,w,mα,γ1 ,nα,γ1 ,kα,γ1,k1 ,x1,X)

·∆(F2)(s2, l,w,mγ1,β ,nγ1,β ,kγ1,β ,γ1,1−α1+k1 ,x2,X)

= ∆(F1)(s1, l,w,p0q ,p0q ,p0,1q ,x1,X) ·∆(F2)(s2, l,w,p1q ,p1q ,p0,1q ,x2,X)

= q;
∆(F1)(s1, l,w,mα,γ2 ,nα,γ2 ,kα,γ2,k1 ,x1,X)

·∆(F2)(s2, l,w,mγ2,β ,nγ2,β ,kγ2,β ,γ2,1−α1+k1 ,x2,X)

= ∆(F1)(s1, l,w,p0q ,p1q ,p0,1q ,x1,X) ·∆(F2)(s2, l,w,p1q ,p0q ,p0,2q ,x2,X)

= q+1;
∆(F1)(s1, l,w,mα,γ3 ,nα,γ3 ,kα,γ3,k1 ,x1,X)

·∆(F2)(s2, l,w,mγ3,β ,nγ3,β ,kγ3,β ,γ3,1−α1+k1 ,x2,X)

= ∆(F1)(s1, l,w,p1q ,p1q ,p0,1q ,x1,X) ·∆(F2)(s2, l,w,p0q ,p0q ,p1,1q ,x2,X)

= q.

Then, we obtain 3q+1. Therefore, this coincides with the left-hand side:

∆(F3)(s3, l,w,m,n,k,x3,X) =
(1)q(2)q

(0)q(1)q

´

F 2
3,p1q −F3,p0qF3,p2q

¯

= (2)q

˜

ˆ

2
(1−q)

˙2

− q+3
(1−q)(1−q2)

¸

.

The following gives polynomials with positive integer coefficients by Theorem 15.25.

Corollary 15.27. Let l = 1. Consider Fi = Λ(si, l,w,≻i, fi,si ,φ ,ρi,xi,X) for i ∈ J3K with the parcel convo-
lution F3 = F1 ∗F2. Also, for each i ∈ J2K and fitting psi, l,m,n,kq, suppose κ1 ∈ Q>0 and κ2 ∈ Q such
that

qκ2(m1+n1)∆(Fi)(si, l,w,m,n,k,φ ,ρi,xi,X)>qκ1 0.

Then, for each fitting ps3, l,m,n,kq, we have

qκ2(m1+n1)∆(F3)(s3, l,w,m,n,k,φ ,ρ3,x3,X)>qκ1 0.

Proof. In equation (15.4.11) of Theorem 15.25, we have

m++n = β −α,

mα,γ ++nα,γ = γ −α,

mγ,β ++nγ,β = β − γ.

Thus, the assertion follows, because

κ2(mα,γ,1 +nα,γ,1)+κ2(mγ,β ,1 +nγ,β ,1) = κ2(β1 −α1 +β2 −α2) = κ2(m1 +n1).
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16 Explicit parcel convolutions, critical points, phase transitions, and
merged determinants

We compute explicit parcel convolutions of finite gates in this section, as ones of infinite gates appear later.

16.1 A parcel convolution of weight one
Let s1 = p1,4q, l = 1, w = p1q, ≻=>q, ρ = p1q, x = pqq, and X = {q}. Then, we have q-Stirling and
monomial parcels F1 and F2 such that

F1 = Λ(s1, l,≻,cs1,l,q,X),

F2 = Λ(s1, l,w,≻,Ψs1,pp0,1,0qq,q,ρ,x,X).

Then, Claim 1 of Corollary 10.4 gives the ≻-merged-log-concave parcel

F3 = Λ(s1, l,w,≻, f3,s1 ,ρ,x,X)

such that f3,s1,m = qm1cs1,l,q,m for m ∈ Js1Kl .
Now, let s2 = 2s1 = p2,8q. Then, Claims 3a and 4b of Lemma 15.2 and Theorem 15.25 provides the

≻-merged-log-concave parcel

F4 = F3 ∗F3 = Λ(s2, l,w,≻, f4,s2 ,ρ,x,X).

Explicitly, we have the following q-polynomials:

(16.1.1)f4,s2,(2) = q9 + 5q8 + 12q7 + 18q6 + 18q5 + 12q4 + 5q3 + q2;

(16.1.2)f4,s2,(3) = 2q11 + 12q10 + 36q9 + 70q8 + 94q7 + 90q6

+ 60q5 + 26q4 + 6q3;
f4,s2,(4) = q14 + 7q13 + 27q12 + 70q11 + 133q10 + 191q9 + 212q8 + 183q7 + 120q6 + 55q5 + 15q4;

f4,s2,(5) = 2q16+12q15+40q14+90q13+154q12+214q11+244q10+236q9+186q8+122q7+60q6+20q5;

f4,s2,(6) = q19 + 5q18 + 18q17 + 41q16 + 74q15 + 108q14 + 139q13

+ 157q12 + 154q11 + 136q10 + 101q9 + 66q8 + 35q7 + 15q6;

(16.1.3)f4,s2,(7) = 2q21 + 6q20 + 14q19 + 20q18 + 32q17 + 42q16 + 50q15 + 52q14

+ 54q13 + 46q12 + 40q11 + 28q10 + 18q9 + 10q8 + 6q7;

(16.1.4)f4,s2,(8) = q24 + q23 + 2q22 + 3q21 + 5q20 + 5q19 + 7q18 + 7q17 + 8q16

+ 7q15 + 7q14 + 5q13 + 5q12 + 3q11 + 2q10 + q9 + q8.

16.1.1 On critical points and phase transitions

For θ = p3,7q, let P = rp1,∞q,θ (π(1)) = pps1, l,mi,ni,kiqqi∈JθK such that mi = ni = piq and ki = p0,1q. Then,
we have the ideal merged pair ζ = pP,F4q. First, ζ has the unique front critical point FC(ζ ) = 0.181093 . . .
that solves

F4,p2q(q) = F4,p3q(q)

160



by equations (16.1.1) and (16.1.2). If Bot1(q) = (2)q, Bot2(q) = (3)q, Top1(q) = f4,s2,p2q(q), and Top2(q) =
f4,s2,p3q(q), then we obtain the front phase transition of ζ at FC(ζ ) by Lemma 13.25. Second, ζ has the
unique rear critical point RC(µ) = 0.978644 . . . that solves

F4,p7q(q) = F4,p8q(q)

by equations (16.1.3) and (16.1.4). Then, Lemma 13.25 gives the rear phase transition of ζ at RC(ζ ). Third,
ζ has no asymptotic critical points for the finite gate θ .

16.1.2 Polynomials with positive integer coefficients of an ideal merged pair

Let m2 = n2 = p2q and k2 = p0,1q. Then, the following q-polynomials are merged determinants of ζ :

∆(F4)(s2, l,w,m2,n2,k2,ρ,x,X) = q20 + 11q19 + 60q18 + 215q17 + 565q16 + 1152q15

+ 1882q14 + 2510q13 + 2760q12 + 2510q11 + 1882q10

+ 1152q9 + 565q8 + 215q7 + 60q6 + 11q5 + q4;
∆(F4)(s2, l,w,m3,n3,k3,ρ,x,X) = 3q25 + 39q24 + 253q23 + 1091q22 + 3500q21 + 8862q20 + 18351q19

+31793q18+46772q17+58972q16+64038q15+59954q14+48259q13

+33163q12 +19215q11 +9201q10 +3526q9 +1024q8 +203q7 +21q6;
∆(F4)(s2, l,w,m4,n4,k4,ρ,x,X) = q32 + 15q31 + 114q30 + 584q29 + 2263q28 + 7054q27

+ 18368q26 + 40957q25 + 79554q24 + 136253q23 + 207590q22

+ 283136q21 + 347192q20 + 383691q19 + 382378q18

+ 343199q17 + 276483q16 + 198741q15 + 126308q14 + 70013q13

+ 33168q12 + 13010q11 + 4008q10 + 875q9 + 105q8.

In particular, ∆(F4)(s2, l,w,mi,ni,ki,ρ,x,X) is a log-concave q-polynomial for each i ∈ Je(θ)K. Also, it
is palindromic for each i = 2,8, but not for i ∈ JθK.

16.2 A parcel convolution of weight two
Let s1 = p0,2q, s2 = p1,2q, l = 1, w = p2q, ≻=>q, ρ = p1q, x = pqq, and X = {q}. First, we have the
q-number parcel

F1 = Λ(s2, l,≻,χs2,q,X)

and monomial parcels

F2 = Λ(s2, l,w,≻,Ψs2,pp0,0,0qq,q,ρ,x,X),

F3 = Λ(s1, l,w,≻,Ψs1,pp0,1,0qq,q,ρ,x,X).

These F1, F2, and F3 are ≻-merged-log-concave. Then, Theorem 10.3 gives the ≻-merged-log-concave

F4 = F1 ◦F2 = Λ(s2, l,w,≻,χs2,q,ρ,x,X).

Moreover, let s3 = s1 + s2 = p1,4q. Then, Claims 3a and 4b of Lemma 15.2 and Theorem 15.25 yields the
≻-merged-log-concave

F5 = F3 ∗F4 = Λ(s3, l,w,≻, f5,s3 ,ρ,x,X)
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with the following q-polynomials:

f5,s3,p1q = 1; (16.2.1)

f5,s3,p2q = q3 +2q2 +2q+1; (16.2.2)

f5,s3,p3q = 2q6 +5q5 +8q4 +7q3 +4q2 +q; (16.2.3)

f5,s3,p4q = q11 +3q10 +7q9 +11q8 +14q7 +14q6 +11q5 +7q4 +3q3 +q2. (16.2.4)

16.2.1 On critical points and phase transitions

For θ = p2,3q and P = rp1,∞q,θ (π(1)), we have the ideal merged pair ζ = pP,F5q. First, ζ has no front critical
points, because 0 < q < 1 does not solve

F5,p1q(q) = F5,p2q(q)

by equations (16.2.1) and (16.2.2). Second, ζ has the unique rear critical point RC(ζ ) = 0.618034 . . . that
solves

F5,p3q(q) = F5,p4q(q)

by equations (16.2.3) and (16.2.4). Then, we have the rear phase transition by Lemma 13.25. Third, there are
no asymptotic critical points of ζ for the finite gate θ .

16.2.2 Polynomials with positive integer coefficients of an ideal merged pair

Let P = pps1, l,mi,ni,kiqqi∈JθK with m1 = n1 = p1q, m4 = n4 = p4q, and k1 = k4 = k2. Then, we have the
following merged determinants of ζ :

∆(F5)(s3, l,w,m1,n1,k1,ρ,x,X) = q2 + 2q + 1;
∆(F5)(s3, l,w,m2,n2,k2,ρ,x,X) = q10 + 6q9 + 17q8 + 31q7 + 41q6 + 42q5 + 35q4 + 24q3 + 13q2 + 5q+ 1;
∆(F5)(s3, l,w,m3,n3,k3,ρ,x,X) = 3q18 +21q17 +81q16 +219q15 +456q14 +768q13 +1074q12 +1266q11

+ 1266q10 + 1074q9 + 768q8 + 456q7 + 219q6 + 81q5 + 21q4 + 3q3;
∆(F5)(s3, l,w,m4,n4,k4,ρ,x,X) = q30 + 8q29 + 38q28 + 132q27 + 369q26 + 870q25 + 1782q24

+ 3232q23 + 5260q22 + 7754q21 + 10423q20 + 12836q19 + 14527q18

+ 15136q17 + 14527q16 + 12836q15 + 10423q14 + 7754q13 + 5260q12

+ 3232q11 + 1782q10 + 870q9 + 369q8 + 132q7 + 38q6 + 8q5 + q4.

In particular, ∆(F5)(s3, l,w,mi,ni,ki,ρ,x,X) is a log-concave q-polynomial for each i ∈ Je(θ)K and
palindromic for each i ∈ Je(θ)K except i ̸= 2.

17 Primal monomial parcels
Definition 17.1. Suppose a parcel F =Λ(s, l,w,≻, fs,ρ,x,X). We call F primal if s= p0,∞q, l = 1, w= p1q,
Fp0q = 1, and x is fully ≻-admissible.

The primal parcels are important for the theory of the merged-log-concavity. First, they construct parcels
of arbitrary gates, widths, and weights by cut and shift operators and separable and Hadamard products.
Second, they allow arbitrary base shifts by canonical mediators. Third, they consist of primal monomial
parcels Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X) such that γ1,3 = 0.
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17.1 Primal monomial parcels and q-dilogarithms
The generating functions of primal monomial parcels are quantum dilogarithms in [FadKas, FadVol, Kir,
KonSoi, Rom, Schu, Zag]. This is because the generating functions satisfy pentagon identities in the following
theorem, which is due to [FadKas, FadVol, Schu] (see also [Kir, Zag]). For completeness of this manuscript,
we provide a full proof.

Theorem 17.2 ([FadKas, FadVol, Schu]). Let Q =Q(X) and q ∈ Q. For u0 = 1 and u1 ∈ Q×, consider a
formal power series kq(t) = ∑λ∈Z≥0

uλ tλ ∈ Q[[t]]. Let Q̃ = Q⟨z1,z2⟩/⟨z1z2 = qz2z1⟩. Also, let p = 1−q and
µ = u1 p.

1. The following statements are equivalent.

(a) We have the (−µ)-pentagon identity kq(z1)kq(z2) = kq(z2)kq(−µz2z1)kq(z1) in Q̃.

(b) kq(t) = ∑λ∈Z≥0
µλ

(λ )q
· tλ .

2. The following statements are equivalent.

(a) We have the µ-pentagon identity kq(z2)kq(z1) = kq(z1)kq(µz2z1)kq(z2) in Q̃.

(b) kq(t) = ∑λ∈Z≥0
q

λ (λ−1)
2 ·µλ

(λ )q
· tλ .

Proof. Proof of Claim 1. First, assume the (−u1)-pentagon identity. By z1z2 = qz2z1, both sides of the
(−µ)-pentagon identity read

kq(z1)kq(z2) = ∑
v1,v2∈Z≥0

uv1uv2qv1v2zv2
2 zv1

1 , (17.1.1)

kq(z2)kq(−µz2z1)kq(z1) = ∑
v′1,v

′
2,v

′
3∈Z≥0

uv′1
uv′2

uv′3
zv′1

2 (−µz2z1)
v′2z

v′3
1

= ∑
v′1,v

′
2,v

′
3∈Z≥0

uv′1
uv′2

uv′3
(−µ)v′2q

v′2(v
′
2−1)
2 zv′1+v′2

2 z
v′2+v′3
1 . (17.1.2)

To obtain the term zv2
2 z1

1 in equation (17.1.2), we only have the following two cases: first, v′1 = v2, v′2 = 0,

and v′3 = 1; second, v′1 = v2 − 1, v′2 = 1, and v′3 = 0. Both cases satisfy q
v′2(v

′
2−1)
2 = 1. Hence, we have

u1uv2qv2 = uv2u1 −uv2−1u1µ , comparing coefficients of zv2
2 z1

1 in equations (17.1.1) and (17.1.2). Then, since
µuv2−1 = uv2(1−qv2) by u1 ∈ Q×, uv2−1

µ

1−qv2 = uv2 implies Statement 1b.
Second, suppose Statement 1b. Then, both sides of the (−µ)-pentagon identity read

kq(z1)kq(z2) = ∑
v1,v2∈Z≥0

µv1+v2

(v1)q(v2)q
qv1v2zv2

2 zv1
1 , (17.1.3)

kq(z2)kq(−µz2z1)kq(z1) = ∑
v′1,v

′
2,v

′
3∈Z≥0

(−1)v′2q
v′2(v

′
2−1)
2

µv′1+2v′2+v′3

(v′1)q(v′2)q(v′3)q
zv′1+v′2

2 z
v′2+v′3
1 . (17.1.4)

Now, v′1 + v′2 = v2, v′2 + v′3 = v1, and v′2 = λ imply v′1 = v2 −λ ≥ 0 and v′3 = v1 −λ ≥ 0. Thus, comparing
coefficients of zv2

2 zv1
1 in equations (17.1.3) and (17.1.4), the (−µ)-pentagon identity follows from

qv1v2

(v1)q(v2)q
= ∑

λ∈J0,min(v1,v2)K

(−1)λ q
λ (λ−1)

2

(v1 −λ )q(λ )q(v2 −λ )q
.
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Multiplied by (v1)q(v2)q on both sides, this is equivalent to

qv1v2 = ∑
λ∈J0,min(v1,v2)K

„

v2

λ

ȷ„

v1

λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2 . (17.1.5)

Let us prove equation (17.1.5). Assume v1 ≥ v2 without loss of the generality. When v2 = 0, equa-
tion (17.1.5) clearly holds. Furthermore, the induction on v2 gives

∑
λ∈J0,v2−1K

„

v2 −1
λ

ȷ„

v1

λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2 = qv1(v2−1),

∑
λ∈J0,v2−1K

„

v2 −1
λ

ȷ„

v1 −1
λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2 = q(v1−1)(v2−1).

Thus, we obtain equation (17.1.5), as the q-Pascal identity gives

∑
λ ∈J0,v2K

„

v2

λ

ȷ„

v1

λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2 = ∑
λ∈J0,v2K

„

v2 − 1
λ

ȷ„

v1

λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2

+ ∑
λ∈Jv2K

qv2−λ

„

v2 − 1
λ − 1

ȷ„

v1

λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2

= ∑
λ∈J0,v2−1K

„

v2 − 1
λ

ȷ„

v1

λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2

+ ∑
λ∈Jv2K

q(v2−1)−(λ−1) (1 − qv1)

(1 − qλ )

„

v2 − 1
λ − 1

ȷ„

v1 − 1
λ − 1

ȷ

(λ )q(−1)λ q
λ (λ−1)

2

= qv1(v2−1)

+ (1 − qv1)qv2−1 ∑
λ∈Jv2K

„

v2 − 1
λ − 1

ȷ„

v1 − 1
λ − 1

ȷ

(λ − 1)q(−1)λ q
(λ−1)(λ−2)

2

= qv1(v2−1)

+ (qv1 − 1)qv2−1 ∑
λ∈J0,v2−1K

„

v2 − 1
λ

ȷ„

v1 − 1
λ

ȷ

(λ )q(−1)λ q
λ (λ−1)

2

= qv1(v2−1) + (qv1 − 1)qv2−1q(v1−1)(v2−1)

= qv1v2 .

Proof of Claim 2. First, suppose Statement 2a. By u0 = 1, kq(t) ∈ Q[[t]]×. Let ωq(t) = kq(t)−1 =
1−u1t + . . . . Then, inverting both sides of the µ-pentagon identity, we have

ωq(z1)ωq(z2) = ωq(z2)ωq(−(−µ)pz2z1)ωq(z1). (17.1.6)

Hence, Claim 1 implies ωq(t) = ∑λ∈Z≥0
(−µ)λ

(λ )q
tλ . By the Euler binomial identities, Statement 2b follows

from

kq(t) = ωq(t)−1 = ∑
λ∈Z≥0

(−1)λ q
λ (λ−1)

2 (−µ)λ

(λ )q
tλ = ∑

λ∈Z≥0

q
λ (λ−1)

2 µλ

(λ )q
tλ .

Second, suppose Statement 2b. Then, we go backward the discussion above, as Claim 1 is an equivalence.
This gives equation (17.1.6) for ωq(t) = kq(t)−1. Thus, kq(t) satisfies the µ-pentagon identity.
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In Theorem 17.2, kq(t) that satisfies one of the pentagon identities is a quantum dilogarithm. In particular,
we adopt the following notation by q-Pochhammer symbols.

Definition 17.3. Let κ ∈Q and q ∈Q(X). We call kq(t) ∈Q(X)[[t]] a Pochhammer quantum dilogarithm, if

kq(t) =


∑

λ∈Z≥0

qκλ

(λ )q
· tλ or

∑
λ∈Z≥0

q
λ (λ−1)

2 +κλ

(λ )q
· tλ .

These Pochhammer quantum dilogarithms have been studied intensively. For instance, (x;q)∞ in [FadKas]

is kq(t) = ∑λ∈Z≥0
t

λ (λ−1)
2

(λ )q
for x =−t. Also, 1+∑λ∈Z≥1

q
λ2
2

(qλ−qλ−1)...(qλ−q)(qλ−1)
xλ in [KonSoi, Section 6.4] is

kq(t) = ∑λ∈Z≥0
q

λ
2

(λ )q
tλ . Furthermore, we state the following.

Proposition 17.4. Suppose a primal monomial parcel F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X). Then, Zγ,q(t) is a
Pochhammer quantum dilogarithm.

Proof. The monomial conditions of µ = pl,w,γq imply γ1,1 = 0 or γ1,1 = 1
2 . If γ1,1 = 0, then Zγ,q(t) =

∑λ∈Z≥0
qγ1,2λ

(λ )q
· tλ ∈Q(X)[[t]]. Also, if γ1,1 =

1
2 , then Zγ,q(t) = ∑λ∈Z≥0

q
λ2
2 +γ1,2λ

(λ )q
· tλ ∈Q(X)[[t]].

17.2 Phase transitions and the golden ratio
We now study the almost strictly unimodal sequences and phase transitions. This gives the golden ratio as a
critical point. We introduce the following notion for merged pairs.

Definition 17.5. Suppose the merged pair ζP = pP,F q of a parcel F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) and fitting
path P = pps, l,mi,ni,kiqqi∈JθK.

1. We call ζP vanishing if limi→∞ u(ζ ,r)i = 0 for each r ∈ OX.

2. We call ζP probabilistic if ∑i∈Je(θ)K u(ζ ,r)i < ∞ for each r ∈ OX.

If ζP is vanishing (resp. probabilistic) for each fitting path P, then we call F vanishing (resp. probabilistic).

We have the following equivalence.

Proposition 17.6. Suppose a primal monomial parcel F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X). Let r ∈ OX. Then,
the following statements are equivalent.

1. F is vanishing.

2. There exists some λ ∈ Z≥1 such that tγ(pµq)> 0 for each µ ∈ Z≥λ .

3. There exist real numbers Nγ(r) ≥ 1 and 0 < Sγ(r) < 1 such that Fpµq(r) ≤ Nγ(r)Sγ(r)µ for each
µ ∈ Z≥0.

4. F is probabilistic.
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Proof. We prove Statement 2 from Statement 1. Since w = p1q, the monomial conditions of κ = pl,w,γq

imply γ1,1 =
1
2 or 0. Suppose γ1,1 = 0. If γ1,2 ≤ 0, then

Fp0q(r) = 1 < Fp1q(r) =
q(r)γ1,2

1−q(r)
< Fp2q(r) =

q(r)2γ1,2

(1−q(r))(1−q(r)2)
< .. . ,

since 0 < q(r) < 1 in Claim 1 of Lemma 5.22. However, this is against Statement 1, which makes Ω(F )
vanishing. Hence, Statement 2 follows from γ1,2 > 0. If γ1,1 =

1
2 , then Statement 2 holds for any γ1,2 ∈Q.

We prove Statement 3 from Statement 2. Since γ1,1 = 0 and γ1,2 > 0, or γ1,1 =
1
2 , we have Uγ ∈Q>0 and

Vγ(r) ∈ Z≥0 such that each integer µ ≥Vγ(r)+1 satisfies

q(r)Uγ

1−q(r)Vγ (r)+1 < 1, (17.2.1)

tγ(pµq)≥Uγ µ. (17.2.2)

Let υ(r) = 1
1−q(r) , Sγ(r) =

q(r)Uγ

1−q(r)Vγ (r)+1 , and χγ(r) =
υ(r)
Sγ (r)

> 1. In particular, µ ∈ Z≥1 gives

υ(r)>
q(r)Uγ

1−q(r)µ
, (17.2.3)

Sγ(r)≥
q(r)Uγ

1−q(r)Vγ (r)+µ
. (17.2.4)

Also, let ωγ(r) = max(q(r)tγ (p0q) = 1, · · · ,q(r)tγ (pVγ (r)q)) and Nγ(r) =
`

ωγ(r)χγ(r)
˘Vγ (r) ≥ 1.

First, assume µ ≥Vγ(r)+1. Then, inequality (17.2.2) gives

Fpµq(r) =
q(r)tγ (pµq)

(µ)q|q=q(r)
≤ ∏

i∈JµK

q(r)Uγ

1−q(r)i .

Hence,

Fpµq(r)≤ υ(r)Vγ (r)Sγ(r)µ−Vγ (r) = χγ(r)Vγ (r)Sγ(r)µ ≤ Nγ(r)Sγ(r)µ

by inequalities (17.2.3) and (17.2.4).
Second, suppose 0 ≤ µ ≤Vγ(r). Then,

Fpµq(r)≤
ˆ

ωγ(r)
1−q(r)

˙µ

≤
`

ωγ(r)υ(r)
˘Vγ (r) .

Thus, inequality (17.2.1) gives

Fpµq(r)≤ (ωγ(r)υ(r))Vγ (r) ·
Sγ(r)µ

Sγ(r)Vγ (r)
= Nγ(r)Sγ(r)µ .

Statement 4 follows from Statement 3, since ∑m∈JsKl Fm(s)≤ Nγ(r)∑i∈Z≥0
Sγ(r)i < ∞. Also, Statement 4

implies Statement 1 by Fpµq(r)> 0.

We discuss phase transitions first by asymptotic critical points.
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Lemma 17.7. Consider the merged pair ζ = pP,F q of an infinite-length P and a primal monomial parcel
F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X). When r ∈ OX, we have the following.

1. If γ1,1 = γ1,2 = 0, then u(ζ ,r) is an asymptotic hill.

2. If not, then ζ has no asymptotic critical points.

Proof. Let P = pps, l,mi,ni,kiqqi∈JθK of an infinite θ . Let θ1 = 1 for simplicity. Then, Lemma 13.33 provides
κ ∈ Z≥1 and h ∈ Z such that mi = ni = piκ +hq for i ∈ JθK.

Proof of Claim 1. Claim 1 holds by Proposition 13.7, since Claim 1 of Lemma 5.22 gives

lim
j→∞

Fm j+1(r)

Fm j(r)
= lim

j→∞

( jκ +h)q|q=q(r)

(( j+1)κ +h)q|q=q(r)
= lim

j→∞ ∏
i∈JλK

1
1−q(r) jκ+h+i = 1.

Proof of Claim 2. First, suppose λ ∈ Z≥1 such that each µ ≥ λ satisfies

tγ(pµq)> 0. (17.2.5)

Then, Lemma 12.27 and Proposition 17.6 yield lim j→∞ u(ζ ,r) j = 0. Thus, Claim 2 follows, since u(ζ ,r)> 0
is a hill or strictly decreasing sequence by Claim 2 of Theorem 12.18.

Second, assume that inequality (17.2.5) does not hold. This gives γ1,1 = 0 and γ1,2 ≤ 0, since γ1,1 =
1
2

or 0 by the monomial conditions. Thus, the assumption of Claim 2 implies γ1,1 = 0 and γ1,2 < 0. Then,
q(r)γ1,2 > 1 by Claim 1 of Lemma 5.22. Claim 2 now holds, since

lim
j→∞

Fm j+1

Fm j

= lim
j→∞

q(r)(( j+1)κ+h)·γ1,2

(( j+1)κ +h)q|q=q(r)
·
( jκ +h)q|q=q(r)

q(r)( jκ+h)·γ1,2
= lim

j→∞

q(r)κγ1,2

∏i∈JκK(1−q(r) jκ+h+i)
> 1.

By the following notation, we obtain front and rear phase transitions.

Definition 17.8. Let θ = p1,∞q and χ ≥ 1 be a gate. Suppose a merged pair Ωλ (F ). Then, let

Ωχ

λ
(F ) =

`

rθ ,χ(π(λ )),F
˘

,

which we call a restricted merged pair.

Lemma 17.9. Let F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X) be a primal monomial parcel. Suppose some λ ∈ Z≥1
such that each µ ∈ Z≥λ satisfies

tγ(pµq)> 0. (17.2.6)

Then, we have the following.

1. The merged pair ζλ = Ωλ (F ) has a front phase transition.

2. The merged pair ζλ ,χ = Ωχ

λ
(F ) has a rear phase transition for each finite gate χ .
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Proof. For θ = p1,∞q, suppose the fitting path π(λ ) = pps, l,mi,ni,kiqqi∈JθK with m0 = n0 = p0q. Let us use
Lemma 13.25.

Proof of Claim 1. There is d ∈ Z≥1 such that T = q
1
d ∈ X for the fully admissible q. Then, we put

Bot1(T ) = Top1(T ) = 1,
Bot2(T ) = (λ )q,

Top2(T ) = qtγ (pλq).

In particular, Frac(Top)(T ) = qtγ (pλq) and Frac(Bot)(T ) = (λ )q. Then, Frac(Top)(0) = 0 by inequal-
ity (17.2.6) and Frac(Top)(1)= 1. Also, we have Frac(Bot)(0)= 1 and Frac(Bot)(1)= 0. Thus, Lemma 13.25
gives Claim 1 by

Fp0q(q) =
Top1(T )
Bot1(T )

,

Fpλq(q) =
Top2(T )
Bot2(T )

.

Proof of Claim 2. Let κ ∈ Z≥1 and χ = p1,κq, Also, we put

Bot1(T ) = (κλ )q,

Bot2(T ) = ((κ +1)λ )q,

Top1(T ) = qtγ (pκλq),

Top2(T ) = qtγ (p(κ+1)λq).

Then, we have Frac(Bot)(0) = 1, Frac(Bot)(1) = 0, and Frac(Top)(1) = 1. Also, Frac(Top)(0) = 0, because
inequality (17.2.6) and γ1,1 ≥ 0 imply

tγ(((κ + 1)λ ))− tγ((κλ )) = (((κ + 1)λ )2 − (κλ )2)γ1,1 + ((κ + 1)λ − κλ )γ1,2

= (2κλ + λ
2)γ1,1 + λγ1,2

= 2κγ1,1 + tγ((λ ))
> 0.

We have the following positive values of tγ by semi-phase transitions.

Lemma 17.10. Consider a primal monomial parcel F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X). Let λ ∈ Z≥1.

1. If Ωλ (F ) has a front semi-phase transition, then tγ(pµq)> 0 for each µ ∈ Z≥λ .

2. For a finite gate χ , if Ωχ

λ
(F ) has a rear semi-phase transition, then there is λ ′ ∈ Z≥1 such that

tγ(pµq)> 0 for each µ ∈ Z≥λ ′ .

Proof. For θ = p1,∞q, let π(λ ) = pps, l,mi,ni,kiqqi∈JθK with m0 = n0 = p0q. Also, let κ = pl,w,γq.
Proof of Claim 1. We have 0 < (λ )q|q=q(r)< 1 by Claim 1 of Lemma 5.22. Also, the front semi-phase

transition gives r ∈ OX such that

Fm0(r) = 1 =
q(r)tγ (pλq)

(λ )q|q=q(r)
= Fm1(r).
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Hence, 0 < q(r)tγ (pλq) < 1, which implies

tγ(pλ q) = γ1,1λ
2 + γ1,2λ > 0.

Claim 1 now holds, since γ1,1 ≥ 0 by the monomial conditions of κ .
Proof of Claim 2. The rear semi-phase transition demands r ∈ OX such that

Fmχ2
(r) =

q(r)tγ (pχ2λq)

(χ2λ )q|q=q(r)
=

q(r)tγ (p(χ2+1)λq)

((χ2 +1)λ )q|q=q(r)
= Fmχ2+1(r).

Then, 0 < q(r)tγ (p(χ2+1)λq)−tγ (pχ2λq) < 1 by 0 <
((χ2+1)λ )q|q=q(r)

(χ2λ )q|q=q(r)
< 1. In particular,

tγ(p(χ2 +1)λ q)− tγ(pχ2λ q) = (2χ2λ +λ
2)γ1,1 +λγ1,2 > 0.

Thus, the monomial conditions of κ imply γ1,1 =
1
2 , or γ1,1 = 0 and γ1,2 > 0.

Then, we obtain the following on the phase transitions of primal monomial parcels. This extends
Proposition 13.38 by vanishing and probabilistic parcels.

Theorem 17.11. Suppose a primal monomial parcel F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X). Then, we have the
following.

1. Each merged pair pP,F q has no asymptotic semi-phase transitions.

2. The following statements are equivalent.

(a) F is vanishing.

(b) F is probabilistic.

(c) There exists some λ ∈ Z≥1 such that tγ(pµq)> 0 for each µ ∈ Z≥λ .

(d) For some λ ∈ Z≥1, Ωλ (F ) has a front phase transition.

(e) For some λ ∈ Z≥1, Ωλ (F ) has a front semi-phase transition.

(f) For some λ ∈ Z≥1 and finite gate χ , Ωχ

λ
(F ) has a rear phase transition.

(g) For some λ ∈ Z≥1 and finite gate χ , Ωχ

λ
(F ) has a rear semi-phase transition.

3. If one of Statements 2c – 2e holds by some λ ∈ Z≥1, then each of Statements 2c – 2g holds by the same
λ ∈ Z≥1.

Proof. Proof of Claim 1. Claim 1 holds by Lemma 17.7.
Proof of Claim 2. We obtain Claim 2 by the following.

• Statements 2a, 2b, and 2c are equivalent by Proposition 17.6.

• Statements 2c, 2d, and 2e are equivalent by Claim 1 of Lemma 17.9 and Claim 1 of Lemma 17.10.

• Statements 2c, 2f, and 2g are equivalent by Claim 2 of Lemma 17.9 and Claim 2 of Lemma 17.10.

Proof of Claim 3. Claim 1 of Lemma 17.9 and Claim 1 of Lemma 17.10 imply that Statements 2c, 2d,
and 2e hold by the same λ , which give Statements 2f and 2g by Claim 2 of Lemma 17.9.
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Furthermore, Theorem 17.11 gives the following polynomials with positive integer coefficients by the
finest fitting path π(1).

Proposition 17.12. Let F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X) be a primal monomial parcel. Then, Statements 1
and 2 below are equivalent.

1. The merged pair ξ = Ω(F ) is ideal with a front phase transition.

2. We have some λ ∈ Z≥1 such that

γ =

ˆˆ

0,
λ

2
,0

˙˙

, (17.2.7)

or some λ ∈ Z≥0 such that

γ =

ˆˆ

1
2
,

λ

2
,0

˙˙

. (17.2.8)

Proof. For θ = p1,∞q, let π(1) = pps, l,mi,ni,kiqqi∈JθK with ai = ν(ki) and bi = ν(mi,ni,ki). Suppose
φ(x) = p1−qq ∈Q(X)l and i ∈ JθK. Then, Theorem 8.40 gives

q−2(γ1,1i2+γ1,2i)∆(F )(s, l,w,mi,ni,ki,φ ,ρ,x,X) = d̃(V )bi
ai
(s, l,w,φ ,ρ, tγ,∆(mi,ni,ki),x)

>q 0. (17.2.9)

We prove Statement 2 from Statement 1. Since ∆(F )(s, l,w,mi,ni,ki,φ ,ρ,x,X) >q 0 for the ideal ξ ,
inequality (17.2.9) implies

2(γ1,1i2 + γ1,2i) ∈ Z. (17.2.10)

First, assume γ1,1 = 0. Then, inclusion (17.2.10) gives 2γ1,2 ∈ Z by i = 1. Thus, equation (17.2.7) holds by

tγ(p1q) = γ1,2 > 0

in Claim 3 of Theorem 17.11. Second, assume γ1,1 =
1
2 . Then, inclusion (17.2.10) implies 1+2γ1,2 ∈ Z by

i = 1. Hence, equation (17.2.8) follows from

tγ(p1q) =
1
2
+ γ1,2 > 0

in Claim 3 of Theorem 17.11.
We prove Statement 1 from Statement 2. First, suppose equation (17.2.7). By inequality (17.2.9), ξ is

ideal, since

2(γ1,1i2 + γ1,2i) = λ i ∈ Z≥1.

Thus, Statement 1 holds by Claim 3 of Theorem 17.11, since any µ ∈ Z≥1 satisfies

tγ(pµq) =
λ

2
µ > 0.
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Second, suppose equation (17.2.8). By inequality (17.2.9), ξ is ideal, since

2(γ1,1i2 + γ1,2i) = i2 +λ i ∈ Z≥1.

Claim 3 of Theorem 17.11 now gives Statement 1, since any µ ∈ Z≥1 satisfies

tγ(pµq) =
µ2

2
+

λ µ

2
> 0.

We introduce the following notation to compare merged pairs by bases and almost strictly unimodal
sequences.

Definition 17.13. For i ∈ J2K, suppose parcels Fi = Λ(s, l,w,≻i, fi,s,φi,ρi,x,Xi) so that each x j ∈Q(X1)∩
Q(X2).

1. If r1 ∈ AX1 and r2 ∈ AX2 satisfy x(r1) = x(r2) ∈ Rl , then we write pX1,r1q ≡x pX2,r2q.

2. Consider pθ ,Xiq-merged pairs ζi = pP,Fiq for i ∈ J2K. If u(ζ1,r1) ≥ u(ζ2,r2) whenever pX1,r1q ≡x

pX2,r2q, then we say that ζ1 covers ζ2 on x and write ζ1 ≥x ζ2.

Let us state the following reflexivity and transitivity of the covering relation ≥x.

Lemma 17.14. For i∈ J3K, consider the pθ ,Xiq-merged pairs ζi = pP,Fiq of Fi =Λ(s, l,w,≻i, fi,s,φi,ρi,x,Xi).
Then, we have the following.

1. ζ1 ≥x ζ1.

2. ζ1 ≥x ζ2 and ζ2 ≥x ζ3 imply ζ1 ≥x ζ3.

Proof. Proof of Claim 1. Claim 1 holds by u(ζ1,r1)≥ u(ζ1,r1) for r1 ∈ OX1 .
Proof of Claim 2. Claim 2 holds, since pX1,r1q ≡x pX2,r2q ≡x pX3,r3q implies u(ζ1,r1) ≥ u(ζ2,r2) ≥

u(ζ3,r3).

The antisymmetricity of ≥x does not hold in general. However, we state the following.

Lemma 17.15. For i ∈ J2K, consider the pθ ,Xiq-merged pairs ζi = Ω(Fi) of primal monomial parcels
Fi = Λ(s, l,w,≻i,Ψs,γi,q,ρi,x,Xi). If ζ1 ≥x ζ2 ≥x ζ1, then F1 = F2.

Proof. By the primal assumption, q
1

d1 ∈X1 and q
1

d2 ∈X2 for some d1,d2 ∈ Z≥1. Then, the covering relations

imply F1,piq(q
1

d1 ) = F2,piq(q
1

d2 ) for each i ∈ Z≥0 and 0 < q < 1. This implies

F1,piq = F2,piq ∈Q
ˆ

q
1

d1d2

˙

so that F1,piq = F2,piq have infinite solutions.

We now identify the q
1
2 -linear L in Definition 14.2 as the extremal parcel among primal monomial

parcels by q-polynomials with positive integer coefficients and phase transitions. Also, we obtain the golden
ratio of L as the critical point of Ω(L ) (see Section 1.8).
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Corollary 17.16. Consider the ideal merged pair ζ = Ω(L ) of the the q
1
2 -linear

L = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X).

1. Let F = Λ(s, l,w,≻′,Ψs,γ ′,q,ρ
′,x,X′) be a primal monomial parcel and ζ ′ = Ω(F ). If ζ ′ has a front

phase transition, then ζ ≥x ζ ′.

2. Consider all primal monomial parcels F = Λ(s, l,w,≻′,Ψs,γ ′,q,ρ
′,x,X′) such that each Ω(F ) has a

front phase transition. Among them, L gives the unique maximum ideal merged pair ζ with respect to
the covering relation ≥x.

3. The single critical point of ζ is the golden ratio FC(ζ ) =
−1+

?
5

2 .

Proof. Proof of Claim 1. By the existence of a front phase transition, Proposition 17.12 implies

γ
′ =

ˆˆ

0,
λ

2
,0

˙˙

for some λ ∈ Z≥1, or

γ
′ =

ˆˆ

1
2
,

λ

2
,0

˙˙

for some λ ∈ Z≥0.

Thus, each i ∈ Z≥0 satisfies

tγ(piq) =
i
2
≤ tγ ′(piq).

Also, suppose pX,rq ≡x pX′,r′q. Then, 0 < q(r) = q(r′)< 1 in Claim 1 of Lemma 5.22. Hence,

u(ζ ,r)i =
q(r)tγ (piq)

(i)q|q=q(r)
≥ q(r′)t

γ ′ (piq)

(i)q|q=q(r′)
= u(ζ ′,r′)i.

Proof of Claim 2. Claim 2 follows from Lemma 17.15 and Claim 1.
Proof of Claim 3. A real number 0 < q

1
2 < 1 is a front critical point of ζ if and only if

Lp0q = 1 =
q

1
2

1−q
= Lp1q,

whose solution is FC(ζ ) =
−1+

?
5

2 . Since s is infinite and L is vanishing by Claim 2 of Theorem 17.11, ζ

has no other critical points.

We recall the following parcel Q, which appears in equation (1.4.4) by a different notation in the
introduction.

Definition 17.17. Let s = p0,∞q, l = 1, w = p1q, and X =
{

q
1
2

}
. We define the q

1
2 -quadratic monomial

parcel

Q = Λ(s, l,w,≻,Ψs,pp 1
2 ,0,0qq,x,X).

By quadratic primal monomial parcels and Q, we have following analog of Corollary 17.16.
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Corollary 17.18. For the q
1
2 -quadratic Q = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X), suppose the ideal merged pair

ζ = Ω(Q).

1. For a quadratic primal monomial parcel F = Λ(s, l,w,≻′,Ψs,γ ′,q,ρ
′,x,X′), suppose the ideal merged

pair ζ ′ = Ω(F ) with a front phase transition. Then, ζ ≥x ζ ′.

2. Consider all quadratic primal monomial parcels F = Λ(s, l,w,≻′,Ψs,γ ′,q,ρ
′,x,X′) such each Ω(F )

has a front phase transition. Among them, Q gives the unique maximum ideal merged pair ζ with
respect to the covering relation ≥x.

3. The single critical point of ζ is the golden ratio FC(ζ ) =
−1+

?
5

2 .

Proof. Claims 1, 2, and 3 hold as in Corollary 17.16, since Qp1q =
q

1
2

1−q and γ ′1,1 = 1
2 by the monomial

conditions of pl,w,γ ′q.

17.3 Convolutions of vanishing monomial parcels and phase transitions
Theorem 17.11 gives vanishing monomial parcels F with phase transitions. We obtain more vanishing
parcels with phase transitions by convolutions. We first state the following, since convolutions of vanishing
sequences are not necessarily vanishing.

Lemma 17.19. Let δ ∈ Z≥1. For each i ∈ Jδ K, assume a primal monomial parcel Fi = Λ(s, l,w,≻
,Ψs,γi,q,ρ,x,X) such that Ω(Fi) is vanishing. Consider the parcel convolution H = ∗i∈JδKFi. Then,
Ω(H ) is vanishing.

Proof. Let r ∈ OX and µ ∈ Z≥0. Then, Proposition 17.6 gives Ni(q(r))≥ 1 and 0 < Si(q(r))< 1 such that
Fpµq(r)≤ Ni(q(r)) ·Si(q(r))µ for each i ∈ Jδ K. Consider real numbers Ñ(q(r)) and S̃(q(r)) such that each
i ∈ Jδ K satisfies

Ñ(q(r))≥ Ni(q(r)),

1 > S̃(q(r))≥ Si(q(r))> 0.

The assertion holds by Hpµq(r)≤ Ñ(q(r))δ · (µ +1)δ−1 · S̃(q(r))µ .

Then, the following monomial indices give convolutions with front critical points.

Proposition 17.20. Suppose integers 0 ≤ d1 ≤ d2 such that d2 ∈ Z≥1. Let l = 1 and w = p1q. Consider
monomial indices pl,w,γiq for i ∈ Jd2K such that i ∈ Jd1K gives γi = p0,γi,2,0q with

γi,2 > 0, (17.3.1)

and i ∈ Jd1 +1,d2K gives γi =
` 1

2 ,γi,2,0
˘

with

γi,2 >−1
2
. (17.3.2)

For i ∈ Jd2K, let Fi = Λ(s, l,w,≻,Ψs,γi,q,ρ,x,X) be primal monomial parcels such that X = {qκ} of some
κ−1 ∈ Z≥1. Moreover, consider the parcel convolution

H = ∗i∈Jd2KFi = Λ(s, l,w,≻,hs,ρ,x,X)

and the merged pair ζ = Ω(H ). Then, we have the following.
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1. ζ has the unique phase transition at the front critical point 0 < FC(ζ ) = qκ < 1 that solves

1−q = ∑
i∈Jd1K

qγi,2 + ∑
i∈Jd1+1,d2K

q
1
2+γi,2 .

2. ζ has neither rear nor front critical points if one of inequalities (17.3.1) and (17.3.2) fails.

Proof. Proof of Claim 1. Since s is infinite, ζ has no rear critical points. Moreover, each Fi satisfies
Statement 2c of Theorem 17.11. Hence, ζ has no asymptotic critical points by Claim 2of Theorem 17.11 and
Lemma 17.19.

Let us prove that ζ has the single front critical point. First, p1(qκ) = 1− q is strictly decreasing over
0 ≤ qκ ≤ 1 with p1(0) = 1 and p1(1) = 0. Second, inequalities (17.3.1) and (17.3.2) imply that p2(qκ) =

∑i∈Jd1K qγi,2 +∑i∈Jd1+1,d2K q
1
2+γi,2 is strictly increasing over 0 ≤ qκ ≤ 1 with p2(0) = 0 and p2(1) = d2 ≥ 1.

Hence, there is the unique solution 0 < FC(ζ ) = qκ < 1 for

1 = Hp0q = Hp1q =
p2(qκ)

p1(qκ)

such that p2(FC(ζ )) = p1(FC(ζ )). Also, there are r1,r2 ∈OX such that Hp0q(r1)<Hp1q(r1) and Hp0q(r2)>
Hp1q(r2).

Proof of Claim2. If one of inequalities (17.3.1) and (17.3.2) fails, then we have no front critical points as
p2(qκ)> 1 for 0 < qκ < 1. We have no rear critical points either for the infinite s.

In particular, Proposition 17.20 determines front phase transitions of Ω(H ) for each convolution H of
primal monomial parcels. Moreover, the following gives explicit front critical points by metallic ratios.

Corollary 17.21. Consider the q
1
2 -linear L = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X) and q

1
2 -quadratic Q = Λ(s, l,w,≻

,Ψs,γ ′,q,ρ,x,X) of X=
{

q
1
2

}
. Let n ∈ Z≥1. Suppose merged pairs

ζn = Ω(L ∗n),

ζ̃n = Ω(Q∗n).

Then, we have the following.

1. X is fully optimal for L ∗n and Q∗n.

2. ζn is ideal and has the unique phase transition at the front critical point FC(ζn) =
−n+

?
n2+4

2 , which is
a metallic ratio.

3. The same holds for ζ̃n with the front critical point FC(ζ̃n) = FC(ζn).

Proof. Proof of Claim 1. Claim 1 holds by L ∗n
p1q

= nq
1
2

1−q .
Proof of Claim 2. By Corollary 15.27 and Proposition 17.12, ζn is ideal. Thus, Claim 2 follows, since ζn

has the front phase transition by the critical point FC(ζn) by Proposition 17.20.
Proof of Claims 3. Claims 3 holds similarly, since Q∗n

p1q
= L ∗n

p1q
.

18 Monomial convolutions and graded monomial products
We discuss graded monomial products and monomial convolutions in Section 1.10.
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18.1 Merged-log-concavity of graded monomial products
We first prove that all monomial convolutions are generating functions of merged-log-concave parcels by
parcel convolutions. Second, we prove the same for all graded monomial products by separable products.

For a multimonomial index pd,w,α,β ,γq, the monomial convolution involves the change of variable
q 7→ qαλ . Hence, we discuss the following change of parcel parameters.

Proposition 18.1. Let l ∈ Z≥1 and κ,ρ1,ρ2 ∈ Zl
≥1. Consider a parcel F = Λ(s, l,w,≻1, fs,φ ,ρ1,x1,X) and

x2 = xκ
1 . Assume the following.

1. There are squaring orders O2 = {⪰2,≻2} Ţ O1 = {⪰1,≻1}.

2. φ is a ps, l,w,≻2,κ,x1,Xq-mediator.

3. φ is a ps, l,w,≻2,ρ2,x2,Xq-mediator.

Then, we have the following.

(a) There exists a parcel G = Λ(s, l,w,≻2,gs,φ ,ρ2,x2,X) = F such that each m ∈ JsKl satisfies

gs,m = fm ·B(s, l,w,m,φ ,κ,x1,X).

(b) Suppose squaring orders O′ = {⪰′,≻′} Ţ O2. For i ∈ J2K, let

µ≻′,i =
`

s, l,w,≻′,φ ,ρi,xi,X
˘

,

µ⪰′,i =
`

s, l,w,⪰′,φ ,ρi,xi,X
˘

.

Furthermore, let κ ◦ρ2 = ρ1. Then, F is µ≻′,2-merged-log-concave if and only if F is µ≻′,1-merged-
log-concave. Also, F is µ⪰′,2-merged-log-concave if and only if F is µ⪰′,1-merged-log-concave.

Proof. Proof of Claim (a). For each m ∈ JsKl ,

Fm =
fs,m

∏φ(x2)m◦w · [m]!w
x2

∏φ(x2)
m◦w · [m]!w

x2

∏φ(x1)m◦w · [m]!w
x1

=
gs,m

∏φ(x2)m◦w · [m]!w
x2

.

Also, gs is ≻2-positive by Assumptions 1 and 2, since fs is ≻1-positive. Hence, Assumption 3 gives Claim (a).
Proof of Claim (b). Claim (b) holds by Claim (a), because xρ2

2 = xρ1
1 implies

ϒ(s, l,w,m,n,k,φ ,ρ1,x1,X) = ϒ(s, l,w,m,n,k,φ ,ρ2,x2,X)

for each m,n ∈ Zl and k ∈ Z2l .

We introduce the following notations of multimonomial indices by Definitions 1.11 and 1.13.

Definition 18.2. For a reduced multimonomial index pd,w,α,γq and β = ιd(1), let

M(d,w,α,γ,q,z) = M(d,w,α,β ,γ,q,z),

M (d,w,α,γ,q,v) = M (d,w,α,β ,γ,q,v).

We call M(d,w,α,γ,q,z) and M (d,w,α,γ,q,v) a reduced graded monomial product and reduced monomial
convolution (or a graded monomial product and monomial convolution for short).
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In particular, for each monomial convolution M (d,w,α,β ,γ,q,v), there exists a reduced monomial
convolution M (d′,w,α ′,γ ′,q,v) = M (d,w,α,β ,γ,q,v).

We now obtain the merged-log-concavity of all monomial convolutions. For parcels F1, . . . ,Fd , we write
∗i∈JdKFi for the parcel convolution F1 ∗ · · · ∗Fd .

Theorem 18.3. Consider a multimonomial index pd,w,α,β ,γq with δ ∈ Z≥1 and κ ∈ Zd
≥1 such that κ ◦α =

ιd(δ ). Let s = p0,∞q, l = 1, ≻=>α,γ,q, ρ ∈ Zl
≥1, y =

`

qδ
˘

, and X= Uα,γ,q. For i ∈ JdK, let xi = pqαiq and

Fi = Λ(s, l,w,≻,Ψs,pγiq,qαi , pi,xi,X).

Then, we have the following.

1. There is the ≻-merged-log-concave parcel

G = Λ(s, l,w,≻, fs,ρ,y,X) = ∗i∈JdKF
∗βi
i .

2. For an indeterminate v,

ZG (v) = M (d,w,α,β ,γ,q,v).

Proof. Proof of Claim 1. Without loss of generality, assume a reduced multimonomial index pd,w,α,γq. First,
let d = 1. Then, we have y = xκ

1 and F1 = Λ(s, l,w,≻,Ψs,pγ1q,qα1 ,φ , p1,x1,X) for the l-canonical mediator φ .
Hence, Claim (a) of Proposition 18.1 gives the parcel

G = Λ(s, l,w,≻, fs,ρ,y,X) = F1.

By Theorem 8.40, G is ps, l,w,≻,φ , p1,x1,Xq-merged-log-concave. Hence, Claim 1 holds, since G is
ps, l,w,≻,φ ,ρ,y,Xq-merged-log-concave by Claim (b) of Proposition 18.1.

Second, let d ≥ 2. Then, the induction gives the ≻-merged-log-concave parcel

H = Λ(s, l,w,≻,hs,ρ,y,X) = ∗i∈Jd−1KFi.

Also, we have Fd = Λ(s, l,w,≻,Ψs,pγiq,qαi ,φ ,κdρ,xi,X) for the canonical l-mediator φ . Let λ = pδ ,αd ,δ q,
τ = pρ,κdρ,ρq, O = pOi = {⪰,≻}qi∈J3K, and o = p1,κdq. Hence, pH ,Fdq carries the convolution in-
dex

`

ι3(s), l,w,O,φ ,τ,py,xd ,yq ,X,q,λ ,o
˘

by the exponent equation o1λ1 = o2λ2 = δ = λ3, the base-shift
equation o−1

1 τ1 = o−1
2 τ2 = ρ = τ3, and Claim 4 of Lemma 15.2. Theorem 15.25 now gives the ≻-merged-

log-concave parcel

G = Λ(s, l,w,≻, fs,ρ,y,X) = H ∗Fd = ∗i∈JdKFi.

Proof of Claim 2. Claim 2 follows from Claim 1.

We introduce the following notation, which generalizes Definition 1.19.

Definition 18.4. Let F = Λ(s, l,w,≻, fs,φ ,ρ,x,X) and z = pziqi∈JlK be indeterminates zi.

1. We write the generating function ZF (z) = ZF (z1, . . . ,zl) of F such that

ZF (z) = ∑
λ∈Zl

≥0

Fλ · ∏
i∈JlK

zλi
i ∈Q(X)[[z1, . . . ,zl ]].
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2. In particular, if s = p0,∞q and F = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X), then let

Zw,γ,q(z) = ZF (z1, . . . ,zl).

When w = ι l(1), let Zγ,q(z) = Zw,γ,q(z).

Hence, we obtain the following merged-log-concavity of graded monomial products.

Theorem 18.5. Consider a graded monomial product M(d,w,α,β ,γ,q,z). Let s = p0,∞q, ≻=>α,γ,q, ρ ∈
Zd
≥1, x = pqαiqi∈JdK, and X = Uα,γ,q. Also, suppose z = pziqd of indeterminates zi. Then, we have the

merged-log-concave parcel F = Λ(s,d,w,≻, fs,ρ,x,X) such that

ZF (z) = M(d,w,α,β ,γ,q,z). (18.1.1)

Proof. For each i ∈ JdK, Theorem 18.3 gives the merged-log-concave Hi = Λ(s,1,w,≻, fi,s,ρ,xi,X) such
that

M (1,w,pαiq ,pβiq ,pγiq ,q,zi) = ZHi(zi).

Then, Theorem 9.7 yields the merged-log-concave

F = Λ(s,d,w,≻, fs,ρ,x,X) = H1 ˝ . . .˝Hd

in equation (18.1.1).

18.2 Graded monomial products and eta products
We first realize the eta function η(τ) in Definition 1.22 and its inverse by weight-one linear and quadratic
monomial parcels.

Lemma 18.6. Let s = p0,∞q, l = 1, and w = p1q. Consider κ1,κ2 ∈Q such that κ1 +κ2 = 1. Let

F1 = Λ(s, l,w,≻,Ψs,pp0,κ1,− 1
24 qq,q,ρ,x,X),

F2 = Λ(s, l,w,≻,Ψs,pp 1
2 ,

κ1
2 , 1

24 qq,q
,ρ,x,X).

Then, q = e2πiτ of Imτ > 0 satisfies

ZF1(q
κ2) = η(τ)−1,

ZF2(−q
κ2
2 ) = η(τ).

Proof. Since η(τ) = q
1
24 (q;q), the Euler binomial identities imply

η(τ)−1 = q−
1
24 ∑

λ∈Z≥0

qλ

(λ )q

= q−
1
24 ∑

λ∈Z≥0

qλ (κ1+κ2)

(λ )q

= q−
1
24 ∑

λ∈Z≥0

qλκ1

(λ )q
(qκ2)λ

= ZF2(q
κ2),
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η(τ) = q
1
24 ∑

λ∈Z≥0

q
λ (λ−1)

2

(λ )q
(−q)λ

= q
1
24 ∑

λ∈Z≥0

(−1)λ q
λ (λ+1)

2

(λ )q

= q
1
24 ∑

λ∈Z≥0

(−1)λ q
λ2
2 +λ

κ1+κ2
2

(λ )q

= q
1
24 ∑

λ∈Z≥0

q
λ2
2 +λ

κ1
2

(λ )q
(−q

κ2
2 )λ

= ZF1(−q
κ2
2 ).

Hence, we have the following by γ(β ,κ) and T (z,q,α,β ,κ) in Definition 1.24. Then, graded mono-
mial products M(d,w,α, |β | ,γ(β ,κ),q,z) give the merged-log-concavity of infinitely-many T (z,q,α,β ,κ)-
analogs of each eta product Ed,α,β (τ) by choices of κ ∈Qd .

Proposition 18.7. Let d ∈ Z≥1, w = p1q, α ∈ Zd
≥1, β ∈ Zd

̸=0, and κ ∈Qd . Then, we have the following.

1. There exists a width-d merged-log-concave parcel F such that

ZF (z) = M(d,w,α, |β | ,γ(β ,κ),q,z).

2. For each q = e2πiτ of Im(τ)> 0,

Ed,α,β (τ) = lim
T (z,q,α,β ,κ)→ιd(1)∈Cd

ZF (z).

Namely, ZF (z) is a t-analog of Ed,α,β (τ) for t = T (z,q,α,β ,κ).

Proof. Proof of Claim 1. Claim 1 follows from Theorem 18.5, since p1,w,pγ(β ,κ)iqq is a monomial index
for each i ∈ JdK.

Proof of Claim 2. Let αi = 1 for simplicity. First, assume βi ≥ 1 for some i ∈ JdK. Then, when
T (z,q,α,β ,κ) 7→ ιd(1) ∈ Cd as z varies, we have

−q−
1−κi

2 · zi → 1,

which implies ∣∣∣q κi
2 zi

∣∣∣→ ∣∣∣−q
1
2

∣∣∣< 1.

Hence, suppose zi ∈ C such that −q−
1−κi

2 · zi is sufficiently close to 1 so that∣∣∣q κi
2 zi

∣∣∣< 1. (18.2.1)
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Also, let aλ (q,zi) =
q

λ2
2 +

κiλ
2

(λ )q
zλ

i . Then, we have

∣∣∣aλ (q,zi)zλ
i

∣∣∣=
∣∣∣∣∣∣ q

λ2
2

(λ )q
(q

κi
2 zi)

λ

∣∣∣∣∣∣<
∣∣∣∣∣∣ q

λ2
2

(λ )q

∣∣∣∣∣∣
Consider a primal monomial parcel G = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X) such that Gm = q

λ2
2

(λ )q
. Then, G is prob-

abilistic by Proposition 17.6. This implies that ∑λ∈Z≥0
|aλ (q,zi)| converges absolutely and uniformly by

the Weierstrass M-test for all zi ∈ C that satisfy inequality (18.2.1). Therefore, the dominated convergence
theorem gives

lim
T (z,q,α,β ,κ)7→ιd(1)∈Cd

q
1

24 ∑
λ∈Z≥0

aλ (q,zi) = q
1

24 ∑
λ∈Z≥0

lim
T (z,q,α,β ,κ)7→ιd(1)∈Cd

aλ (q,zi)

= q
1
24 ∑

λ∈Z≥0

q
λ2
2

(λ )q
(−q

1
2 )λ

= η(τ).

Second, assume βi ≤−1 for some i ∈ JdK. This case holds similarly as follows. When T (z,q,α,β ,κ) 7→
ιd(1) ∈ Cd as z varies, we have

q−(1−κi) · zi → 1,

which implies

|qκizi| → |q|<
∣∣∣q 1

2

∣∣∣< 1.

Now, suppose that q−(1−κi) · zi is sufficiently close to 1 so that

|qκizi|<
∣∣∣q 1

2

∣∣∣ . (18.2.2)

Also, let aλ (q,zi) =
qλκi

(λ )q
zλ

i . Then, we have

|aλ (q,zi)|=

∣∣∣∣∣ (qκizi)
λ

(λ )q

∣∣∣∣∣<
∣∣∣∣∣ q

λ
2

(λ )q

∣∣∣∣∣
Consider a primal monomial parcel G = Λ(s, l,w,≻,Ψs,γ,q,ρ,x,X) such that Gm = q

λ
2

(λ )q
. Then, G is proba-

bilistic by Proposition 17.6. Hence, ∑λ∈Z≥0
|aλ (q,zi)| converges absolutely and uniformly by the Weierstrass

M-test for all zi ∈ C that satisfy inequality (18.2.2). In particular, the dominated convergence theorem gives

lim
T (z,q,α,β ,κ)7→ιd(1)∈Cd

q−
1
24 ∑

λ∈Z≥0

aλ (q,zi) = q−
1

24 ∑
λ∈Z≥0

lim
T (z,q,α,β ,κ)7→ιd(1)∈Cd

aλ (q,zi)

= q−
1

24 ∑
λ∈Z≥0

qλ

(λ )q

= η(τ)−1.
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Example 18.8. Let s = p0,∞q, d = 3, w = p1q, α1 = p1,1,1q, α2 = p2,1,1q, β = p1,2,2q, ρ = ιd(1), and
γ =

`

p0,0,0q ,
`

0, 1
2 ,0

˘

,p0,0,0q
˘

. Also, let xi = ιd(q)αi , ≻i=>αi,γ,q, and Xi = Uαi,γ,q for i ∈ J2K. Then,
Claim 1 in Proposition 18.7 gives width-d parcels Fi = Λ(s,d,w,≻i, fs,ρ,xi,Xi) such that each i ∈ J2K
satisfies

ZFi(z1, . . . ,zd) = M(d,w,αi,β ,γ,q,z).

Hence, suppose Ps,d,ξ ,h =
`

Ps,d,ξ ,h,i = ps,d,mi,ni,kiq
˘

i∈JθK in Example 12.34 with ki = p0,1,0,2,1,0q.

For instance, F1,m1 =
4q

1
2

(q2−1)(q4−1)(q−1)2 . Moreover, we have the following unimodal q-polynomial:

∆(F1)(s,d,w,m1,n1,k1,ρ,x1,X1) = q38 + 2q37 + 7q36 + 12q35 + 25q34 + 38q33 + 63q32 + 88q31

+ 128q30 + 168q29 + 221q28 + 274q27 + 331q26 + 388q25

+ 437q24 + 486q23 + 515q22 + 544q21 + 544q20 + 544q19 + 515q18

+ 486q17 + 437q16 + 388q15 + 331q14 + 274q13 + 221q12 + 168q11

+ 128q10 + 88q9 + 63q8 + 38q7 + 25q6 + 12q5 + 7q4 + 2q3 + q2.

However, the following is not a unimodal q-polynomial:

∆(F2)(s,d,w,m1,n1,k1,ρ,x2,X2) = q30 + q29 + 5q28 + 5q27 + 14q26 + 13q25 + 29q24 + 25q23

+ 49q22 + 40q21 + 70q20 + 54q19 + 86q18 + 62q17

+ 92q16 + 62q15 + 86q14 + 54q13 + 70q12 + 40q11 + 49q10

+ 25q9 + 29q8 + 13q7 + 14q6 + 5q5 + 5q4 + q3 + q2.

Since we are interested in the unimodality, we conjecture the following (see Conjecture 8.59 for
M(1,p1q ,p1q ,p1q ,pp0,0,0qq ,q,pz1q)).

Conjecture 18.9. Under the notation of Example 18.8, ∆(F1)(s,d,w,mi,ni,ki,ρ,x1,X1) is a unimodal
q-polynomial for each i ∈ Z≥1.

18.3 Weighted q–multinomial coefficients and monomial convolutions
We employ the following notation.

Definition 18.10. For d ∈ Z≥1, λ ∈ JdK, and j ∈ Zd , let

o( j,λ ) = p j1, . . . , jλ −1, . . . , jdq ∈ Zd .

For instance, j ∈ Zd and i ∈ Z≥1 give the q-Pascal identity
“ i

j

‰

q
= ∑λ∈JdK q∑κ∈Jλ−1K jκ

“ i−1
o( j,λ )

‰

q
. We extend

this by weighted q-multinomial coefficients.

Proposition 18.11. Let d ∈ Z≥1, α ∈ Zd
≥1, δl = lcm(α), and δg = gcd(α). If i ∈ Z≥1 and j ∈ Zd , then we

have a weighted q-Pascal identity
„

i
j

ȷ

α,q
= ∑

λ∈JdK
qδl ∑κ∈Jλ−1K jκ

„

i−1
o( j,λ )

ȷ

α,q

„

δl

αλ

ȷ

qα
λ

j
λ

.

In particular,
“ i

j

‰

α,q
≥qδg 0.
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Proof. Assume j ∈ Zd
≥0 and ∑ j = i; otherwise, the weighted q-Pascal identity holds by 0 = 0. Then, by the

unweighted q-Pascal identity, we have
„

i
j

ȷ

α,q
=

„

i
j

ȷ

qδl

·
∏λ∈JdK( jλ )qδl

∏λ∈JdK( jλ )qα
λ

= ∑
λ∈JdK

qδl ∑κ∈Jλ−1K jκ
„

i − 1
o( j,λ )

ȷ

qδl

·
∏λ∈JdK( jλ )qδl

∏λ∈JdK( jλ )qα
λ

.

On each summand above, if jλ < 1, then
“ i−1

o( j,λ )

‰

qδl
= 0 =

“ i−1
o( j,λ )

‰

α,q
. If not, then since each αλ divides δl ,

we have
„

i−1
o( j,λ )

ȷ

qδl

·
∏λ∈JdK( jλ )qδl

∏λ∈JdK( jλ )qα
λ

=
(i−1)qδl

∏κ∈JdK(o( j,λ )κ)qδl

·
∏κ∈JdK( jκ)qδl

∏κ∈JdK( jκ)qακ

=

„

i−1
o( j,λ )

ȷ

α,q
· (1−qδl jλ )

(1−qαλ jλ )

=

„

i−1
o( j,λ )

ȷ

α,q
·
„

δl

αλ

ȷ

qα
λ

j
λ

.

Thus, we obtain the weighted q-Pascal identity.
Since

“ i
j

‰

α,q
= 1 or 0 when i ∈ Z≤0, the weighted q-Pascal identity gives the latter statement by the

induction on i ∈ Z≥0.

Example 18.12. Let αλ = p1,λ ,λ q for λ ∈ J2K. Then, we have the following unimodal q-polynomials:
„

3
p1,1,1q

ȷ

α1,q
=

(3)q

(1)q(1)q(1)q
= q3 +2q2 +2q+1;

„

3
p1,1,1q

ȷ

α2,q
=

(3)q2

(1)q(1)q2(1)q2
= q7 +q6 +2q5 +2q4 +2q3 +2q2 +q+1.

However,
“ 10

p4,3,3q

‰

α2,q
is not a unimodal q-polynomial by · · ·+2409q39 +2390q38 +2409q37 + · · · in

q76 + q75 + 3q74 + 4q73 + 9q72 + 11q71 + 21q70 + 26q69 + 43q68 + 53q67 + 80q66

+ 97q65 + 138q64 + 165q63 + 221q62 + 262q61 + 336q60 + 392q59 + 485q58 + 559q57

+ 668q56 + 761q55 + 884q54 + 993q53 + 1125q52 + 1248q51 + 1380q50 + 1512q49

+ 1637q48 + 1769q47 + 1879q46 + 2004q45 + 2088q44 + 2198q43 + 2252q42

+ 2336q41 + 2355q40 + 2409q39 + 2390q38 + 2409q37 + 2355q36 + 2336q35

+ 2252q34 + 2198q33 + 2088q32 + 2004q31 + 1879q30 + 1769q29 + 1637q28

+ 1512q27 + 1380q26 + 1248q25 + 1125q24 + 993q23 + 884q22 + 761q21 + 668q20

+ 559q19 + 485q18 + 392q17 + 336q16 + 262q15 + 221q14 + 165q13 + 138q12

+ 97q11 + 80q10 + 53q9 + 43q8 + 26q7 + 21q6 + 11q5 + 9q4 + 4q3 + 3q2 + q + 1.

Thus, it would be interesting to clarify the unimodality of weighted q-multinomial coefficients, as that of
non-weighted ones is important [Oha, Syl]. For instance, a computer program checks that

“30
j

‰

p1,4,8q,q
is a

unimodal q-polynomial for each j ∈ Z3
≥1.
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18.4 Monomial convolutions and merged determinants
We write monomial convolutions by the weighted q-multinomial coefficients and the following rational
functions by Definitions 1.13 and 1.14.

Proposition 18.13. Suppose a multimonomial index pd,w,α,γq with δ = lcm(α). Then, we have the
following.

1. M (d,w,α,γ,q,v) = ∑i∈Z≥0

∑ j∈Zd ψα,γ,q, jr
i
js

w1
α,q

(i)
w1
qδ

· vi.

2. Let s = p0,∞q, l = 1, and ρ ∈ Zl
≥1. Then, there is the merged-log-concave parcel F = Λ(s, l,w,>α,γ,q

, fs,ρ,
`

qδ
˘

,Uα,γ,q) such that fs,m = ∑ j∈Zd ψα,γ,q, j
“m1

j

‰w1

α,q
and

ZF (v) = M (d,w,α,γ,q,v).

Proof. Proof of Claim 1. We have M (d,w,α,γ,q,v) = ∏λ∈JdK

˜

∑i∈Z≥0

ψpα
λ q,pγ

λ q,q,piq

(i)
w1
qα

λ

· vi

¸

. Thus, we obtain

Claim 1, because

M (d,w,α,γ,q,v) = ∑
i∈Z≥0

¨

˝ ∑
j∈Zd

≥0,∑ j=i

ψα,γ,q, j

∏λ∈JdK( jλ )
w1
qα

λ

˛

‚vi

= ∑
i∈Z≥0

¨

˝ ∑
j∈Zd

≥0,∑ j=i

ψα,γ,q, j ·
(i)w1

qδ

∏λ∈JdK( jλ )
w1
qα

λ

· 1
(i)w1

qδ

˛

‚vi

= ∑
i∈Z≥0

∑ j∈Zd
≥0,∑ j=i ψα,γ,q, j

“ i
j

‰w1

α,q

(i)w1
qδ

· vi.

Proof of Claim 2. Claim 2 follows from Theorem 18.3 and Claim 1.

We define the following merged determinants of monomial convolutions.

Definition 18.14. Let l = 1, ρ ∈ Zl
≥1, m,n ∈ Zl , and k ∈ Z2l . Consider a multimonomial index pd,w,α,β ,γq

with x =
´

qlcm(α)
¯

and X= Uα,γ,q. Then, we define the merged determinant

∆(d,w,α,β ,γ,m,n,k,ρ,q)

= ϒ(s, l,w,m,n,k,ρ,x,X)det
„

M (d,w,α,β ,γ,q)m1 M (d,w,α,β ,γ,q)n1+k2
M (d,w,α,β ,γ,q)m1−k2 M (d,w,α,β ,γ,q)n1

ȷ

∈Q(X).

Let ∆(d,w,α,γ,m,n,k,ρ,q) = ∆(d,w,α, ιd(1),γ,m,n,k,ρ,q) for a reduced multimonomial index pd,w,α,γq.

Then, we obtain the following strict inequality by monomial convolutions and weighted q-multinomial
coefficients. This appears as Theorem 1.16 in Section 1 with a different notation.
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Theorem 18.15. Suppose a multimonomial index µ = pd,w,α,γq. Let δl = lcm(α), s = p0,∞q, l = 1,
≻=>α,γ,q, and ρ ∈ Zl

≥1. Then, for each fitting ps, l,m,n,kq, we have the following strict inequality:

∆(d,w,α,γ,m,n,k,ρ,q) ≻ 0.

Proof. The assertion holds, because Claim 2 of Proposition 18.13 gives the ≻-merged-log-concave parcel
F = Λ(s, l,w,≻, fs,ρ,

`

qδl
˘

,Uα,γ,q) such that M (d,w,α,γ,q,v) = ZF (v).

Example 18.16. Consider the multimonomial index pd,w,α,γq such that d = 2, w = p1q, α = p2,3q, and
γ = pp0,0,0q ,p0,1,0qq. Then, >α,γ,q=>q. Let x =

´

qlcm(α)
¯

. Then, we have

(m)w
x M (d,w,α,γ,q)m >q 0

for each m ∈ Z≥0. For example,

(0)xM (d,w,α,γ,q)0 = 1,
(1)xM (d,w,α,γ,q)1 = q6 + q4 + q3 + q2 + 1,
(2)xM (d,w,α,γ,q)2 = q16+q15+q14+q13+3q12+q11+2q10+2q9+3q8+q7+3q6+q5+2q4+q3+q2

+ 1,
(3)xM (d,w,α,γ,q)3 = q31 + q30 + q29 + 2q28 + 3q27 + 3q26 + 3q25 + 5q24 + 4q23 + 6q22

+ 5q21 + 7q20 + 5q19 + 9q18 + 5q17 + 8q16 + 6q15 + 8q14 + 4q13 + 8q12

+ 4q11 + 6q10 + 4q9 + 5q8 + 2q7 + 4q6 + q5 + 2q4 + q3 + q2 + 1.

Furthermore, let k = p0,1q and ρ = p1q. Then, Theorem 18.15 gives the following q-polynomials with
positive coefficients:

∆(d,w,α,γ,(0) ,(0) ,k,ρ,q) = 1;
∆(d,w,α,γ,(1) ,(1) ,k,ρ,q) = q18 + q16 + q15 + 2q14 + q13 + 3q12 + q11 + 3q10

+ 2q9 + 2q8 + q7 + 3q6 + q5 + q4 + q3 + q2;
∆(d,w,α,γ,(2) ,(2) ,k,ρ,q) = q44 + q43 + 2q42 + 2q41 + 5q40 + 4q39 + 7q38 + 7q37 + 13q36

+ 10q35 + 17q34 + 16q33 + 22q32 + 19q31 + 28q30 + 22q29 + 31q28

+ 28q27 + 32q26 + 27q25 + 37q24 + 27q23 + 32q22 + 28q21 + 31q20

+ 22q19 + 28q18 + 19q17 + 22q16 + 16q15 + 17q14 + 10q13

+ 13q12 + 7q11 + 7q10 + 4q9 + 5q8 + 2q7 + 2q6 + q5 + q4;
∆(d,w,α,γ,(3) ,(3) ,k,ρ,q) = q80 + q79 + 2q78 + 3q77 + 6q76 + 6q75 + 12q74 + 14q73 + 21q72 + 25q71

+ 37q70 + 40q69 + 56q68 + 64q67 + 83q66 + 92q65 + 118q64 + 129q63

+ 158q62 + 171q61 + 206q60 + 216q59 + 259q58 + 271q57 + 310q56

+320q55 +373q54 +367q53 +418q52 +420q51 +464q50 +452q49 +508q48

+478q47 +529q46 +504q45 +539q44 +499q43 +550q42 +490q41 +525q40

+475q39 +502q38 +435q37 +467q36 +396q35 +416q34 +352q33 +364q32

+296q31 +313q30 +248q29 +252q28 +200q27 +205q26 +152q25 +156q24

+ 115q23 + 115q22 + 82q21 + 81q20 + 55q19 + 56q18 + 36q17 + 34q16

+ 22q15 + 21q14 + 12q13 + 11q12 + 6q11 + 6q10 + 3q9 + 2q8 + q7 + q6.
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In Example 18.16, ∆(d,w,α,γ,piq ,piq ,k,ρ,q) are not log-concave q-polynomials for i ∈ J3K. Even

∆(d,w, ι2(1),γ,p1q ,p1q ,k,ρ,q) = q3 +q2 +2q

is not a log-concave q-polynomial either. However, we state the following conjecture.

Conjecture 18.17. Let λ1,λ2 ∈ Z≥1 and λ3 ∈ Z≥0. Consider the multimonomial index
`

d,w,α,βλ1 ,γ
˘

such
that d = 2, w = p1q, α = ιd(1), βλ1 = ιd(λ1), and γ =

`` 1
2 ,−

1
2 ,0

˘

,p0,1,0q
˘

. Then, the merged determinant

∆(d,w,α,βλ1 ,γ,pλ3q ,pλ3q ,p0,1q ,pλ2q ,q)

is a log-concave q-polynomial.

For the multimonomial index
`

d,w,α,βλ1 ,γ
˘

in Conjecture 18.17, suppose β ′
λ1

= pλ1,−λ1q and κ =

p−1,2q. By Proposition 18.7, we have the (q, t)-analog M(d,w,α,βλ1 ,γ(β
′
λ1
,κ),q,z) of the eta product

1 = η(τ)λ1 ·η(τ)−λ1 = Ed,α,β ′
λ1
(τ).

We now obtain the merged determinant in Conjecture 18.17 by the monomial convolution M (d,w,α,βλ1 ,γ(β
′
λ1
,κ),q,v)

of the (q, t)-analog (see Section 1.10).

18.5 Examples and conjectures for merged determinants of monomial convolutions
We consider multimonomial indices pd,w,α,γq such that γ = ιd(

` 1
2 ,−

1
2 ,0

˘

), ιd(p0,0,0q), or ιd(p0,1,0q).
They give the eta products ∏i∈JdK η(αiτ) or ∏i∈JdK η(αiτ)

−1 in Proposition 18.7, multiplied by the constant
overall factors.

Example 18.18. For d ∈Z≥1 and α ∈Zd
≥1, γ1 = ιd(p0,0,0q) and γ2 = ιd(p0,1,0q) give the same eta products

∏i∈JdK η(αiτ)
−1. But, their merged determinants differ non-trivially.

Let s = p0,∞q, l = 1, d = 2, w = p1q, α = p1,2q, k = p0,1q, and ρ = p1q. Also, let mi = piq ∈ Zl
≥0 so that

ps, l,mi,mi,kq is fitting for each i ∈ Z≥0. First, γ1 gives

∆(d,w,α,γ1,m1,m1,k,ρ,q) = 1 + 2q + 3q2 + 2q3 + q4,

∆(d,w,α,γ1,m2,m2,k,ρ,q) = 1 + 2q + 6q2 + 8q3 + 13q4 + 14q5 + 11q6 + 12q7 + 7q8 + 4q9 + 3q10,

∆(d,w,α,γ1,m3,m3,k,ρ,q) = 1 + 2q + 6q2 + 12q3 + 21q4 + 32q5 + 49q6 + 58q7 + 69q8 + 78q9 + 77q10

+76q11+68q12+58q13+44q14+34q15+22q16+12q17+7q18+2q19+q20.

Second, γ2 gives

∆(d,w,α,γ2,m1,m1,k,ρ,q) = 2q3 + 2q4 + 2q5 + 3q6,

∆(d,w,α,γ2,m2,m2,k,ρ,q) = 3q6 +4q7 +7q8 +12q9 +11q10 +14q11 +13q12 +8q13 +6q14 +2q15 +q16,

∆(d,w,α,γ2,m3,m3,k,ρ,q) = 4q9 +6q10 +12q11 +23q12 +30q13 +46q14 +58q15 +69q16 +76q17 +80q18

+78q19+67q20+60q21+44q22+32q23+22q24+12q25+7q26+2q27+q28.

We define the following differences by merged determinants of monomial convolutions.
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Definition 18.19. Suppose a multimonomial index pd,w,α,β ,γq. Let k = p0,1q, δ = lcm(α), and λ1,λ2,λ3 ∈
Z≥0. Then, in Q[q±uα,γ ], we define

ξ (d,w,α,β ,γ,λ1,λ2,λ3,ρ,q) = ∆(d,w,α,β ,γ,pλ1 +λ3q ,pλ1 +λ2 +λ3q ,k,ρ,q)

−∆(d,w,α,β ,γ,pλ1q ,pλ1 +λ2q ,k,ρ,q).

If β = ιd(1), then let ξ (d,w,α,γ,λ1,λ2,λ3,ρ,q) = ξ (d,w,α,β ,γ,λ1,λ2,λ3,ρ,q).

We then conjecture the following positivity of ξ .

Conjecture 18.20. Let d ∈ Z≥2, w,ρ ∈ Z1
≥1, and α ∈ Zd

≥1. Consider the multimonomial index pd,w,α,γq

such that γ = ιd(p0,0,0q). Then, for each λ1,λ2 ∈ Z≥0, we have

ξ (d,w,α,γ,λ1,λ2,1,ρ,q)>q 0.

Example 18.21. Suppose the multimonomial index pd,w,α,γq such that d = 2, w = p1q, α = p1,1q, and
γ = ιd(p0,0,0q). Let k = p0,1q and ρ = p1q. Then,

∆(d,w,α,γ,(0) ,(0) ,k,ρ,q) = 1,
∆(d,w,α,γ,(1) ,(1) ,k,ρ,q) = 3q + 1,
∆(d,w,α,γ,(2) ,(2) ,k,ρ,q) = q4 + 3q3 + 8q2 + 3q + 1,
∆(d,w,α,γ,(3) ,(3) ,k,ρ,q) = 3q7 + 5q6 + 12q5 + 14q4 + 18q3 + 8q2 + 3q + 1,
∆(d,w,α,γ,(4) ,(4) ,k,ρ,q) = q12 + 3q11 + 12q10 + 18q9 + 30q8 + 39q7

+ 46q6 + 39q5 + 38q4 + 18q3 + 8q2 + 3q + 1.

Thus, the following are q-polynomials with positive integer coefficients:

ξ (d,w,α,γ,0,0,1,ρ,q) = 3q;
ξ (d,w,α,γ,1,0,1,ρ,q) = q4 + 3q3 + 8q2;
ξ (d,w,α,γ,2,0,1,ρ,q) = 3q7 + 5q6 + 12q5 + 13q4 + 15q3;
ξ (d,w,α,γ,3,0,1,ρ,q) = q12 + 3q11 + 12q10 + 18q9 + 30q8 + 36q7 + 41q6 + 27q5 + 24q4.

Example 18.22. Conjecture 18.20 does not extend to the case of d = 1. Suppose the multimonomial index
pd,w,α,γq such that d = 1, w = p1q, α = p2q, and γ = pp0,0,0qq. Let k = p0,1q and ρ = p1q. Then, we have
ξ (d,w,α,γ,2,1,1,ρ,q) ̸>q 0, since

∆(d,w,α,γ,p2q ,p3q ,k,ρ,q) = q6 +q4,

∆(d,w,α,γ,p3q ,p4q ,k,ρ,q) = q8 +q6.

Example 18.23. Conjecture 18.20 does not extend to the case of γ = ιd(p0,1,0q) either. Consider the
multimonomial index pd,w,α,γq with d = 2, w = p1q, α = p2,1q, and γ = ιd(p0,1,0q). Let k = p0,1q and
ρ = p1q. Then, ξ (d,w,α,γ,0,0,1,ρ,q) ̸>q 0, because

∆(d,w,α,γ,p0q ,p0q ,k,ρ,q) = 1,

∆(d,w,α,γ,p1q ,p1q ,k,ρ,q) = 3q6 +2q5 +2q4 +2q3.

In Claim 2 of Theorem 18.3, ∆(d,w,α,β ,γ,m,n,k,ρ,q) ∈ Q[q±uα,γ ]. By Cquα,γ in Definition 14.4, we
define the following notation to state another conjecture for γ = ιd pp0,1,0qq of d ∈ Z≥2.
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Definition 18.24. Consider a multimonomial index pd,w,α,β ,γq. Let l = 1, m,n ∈ Zl , k = p0,1q, and
λ1,λ2,λ3 ∈ Z≥0. Then, in Q[quα,γ ], we define

∆C(d,w,α,β ,γ,m,n,k,ρ,q) =Cquα,γ (∆(d,w,α,β ,γ,m,n,k,ρ,q)),

ξC(d,w,α,β ,γ,λ1,λ2,λ3,ρ,q) = ∆C(d,w,α,β ,γ,pλ1 +λ3q ,pλ1 +λ2 +λ3q ,k,ρ,q)

−∆C(d,w,α,β ,γ,pλ1q ,pλ1 +λ2q ,k,ρ,q).

If β = ιd(1), then let ξC(d,w,α,γ,λ1,λ2,λ3,ρ,q) = ξC(d,w,α,β ,γ,λ1,λ2,λ3,ρ,q).

Let us recall the following generalized Narayana numbers [Guy].

Definition 18.25. Let d ∈ Z≥1 and h,λ ∈ Z≥0. Then, the generalized Narayana number N(λ ,d,h) satisfies

N(λ ,d,h) =
λ +1

d

ˆ

d
h

˙ˆ

d
h−1−λ

˙

.

For instance, N(0,d,h) are Narayana numbers, which refine Catalan numbers. We also employ the
following numbers.

Definition 18.26. Let d ∈ Z≥2, h1,h2 ∈ Z, and α ∈ Zd
≥1. Then, we define

p(d,h1,h2,α) = (d −Lh2(α))h2 +h1Lh2(α) ∈ Z.

Notice that h2 > h1 ≥ 1 implies p(d,h1,h2,α)≥ 2. We now conjecture the following positivity on ξC,
periodicity on ∆C and p(d,h1,h2,α), and equality on ∆C and N(λ ,d,h).

In particular, Conjectures 18.20 and 18.27 claim different positivities for ιd(p0,0,0q) and ιd(p0,1,0q),
which give the same eta products (see Example 18.18).

Conjecture 18.27. Let d ∈ Z≥2, w,ρ ∈ Z1
≥1, α ∈ Zd

≥1, and k = p0,1q. For i ∈ J2K, consider multimonomial
indices pd,w,α,γiq such that γ1 = ιd(p0,1,0q) and γ2 = ιd(

` 1
2 ,−

1
2 ,0

˘

).

1. If λ1,λ2 ∈ Z≥0, then we have

ξC(d,w,α,γ1,λ1,λ2,1,ρ,q)>q 0.

2. Let h1,h2 ∈ Z≥1 with h2 > h1. Suppose αi = h1 or αi = h2 for each i ∈ JdK. Then, whenever λ1,λ2 ∈
Z≥0, we have the following periodicity of ∆C: first, if Lh1(α)> 0 and Lh2(α)> 0, then

ξC(d,w,α,γ2,λ1,λ2, p(d,h1,h2,α),ρ,0) = 0;

second, if Lh1(α) = d or Lh2(α) = d, then

ξC(d,w,α,γ2,λ1,λ2,d,ρ,0) = 0.

3. Assume α = ιd(1) and λ ,h ∈ Z≥0 such that h ≤ d −λ . Then, we have

∆C(d,w,α,γ2,phq ,ph+λ q ,k,ρ,0) = N(λ ,d +1,h+1+λ ).
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In particular, weighted q-multinomial coefficients would extend the generalized Narayana numbers
N(λ ,d +1,h+1+λ ) by ∆C(d,w,α,γ2,phq ,ph+λ q ,k,ρ,0)> 0.

Example 18.21 supports Claim 1 in Conjecture 18.27. To see this, suppose multimonomial indices
pd,w,α,γq of w = p1q, d = 2, α = ιd(1), and γ = ιd(p0,1,0q). Also, let k = p0,1q, ρ = p1q, and γ ′ =
ιd(p0,0,0q). Then, we have ∆C(d,w,α,γ,piq ,piq ,k,ρ,q) = ∆C(d,w,α,γ ′,piq ,piq ,k,ρ,q), since α is flat.
Example 18.23 is also consistent with Claim 1 in Conjecture 18.27, as ∆C(d,w,α,γ,p1q ,p1q ,k,ρ,q) =
3q3 +2q2 +2q+2.

The following supports Claims 2 and 3 in Conjecture 18.27.

Example 18.28. Consider the multimonomial index pd,w,α,γq such that d = 3, w = p1q, α = ιd(1), and
γ = ιd(

` 1
2 ,−

1
2 ,0

˘

). Let k = p0,1q and ρ = p1q. Then,

∆(d,w,α,γ,(0) ,(0) ,k,ρ,q) = 1,
∆(d,w,α,γ,(1) ,(1) ,k,ρ,q) = 3q + 6,
∆(d,w,α,γ,(2) ,(2) ,k,ρ,q) = 6q4 + 18q3 + 33q2 + 18q + 6,
∆(d,w,α,γ,(3) ,(3) ,k,ρ,q) = 10q9 + 35q8 + 88q7 + 155q6 + 162q5 + 144q4 + 83q3 + 43q2 + 8q + 1,
∆(d,w,α,γ,(4) ,(4) ,k,ρ,q) = 15q16 + 57q15 + 162q14 + 357q13 + 642q12 + 858q11 + 1041q10

+ 1041q9 + 912q8 + 678q7 + 447q6 + 222q5 + 96q4 + 27q3 + 6q2,

∆(d,w,α,γ,(5) ,(5) ,k,ρ,q) = 21q25 + 84q24 + 255q23 + 618q22 + 1296q21 + 2328q20 + 3528q19

+ 4905q18 + 6105q17 + 6951q16 + 7161q15 + 6882q14 + 5958q13 + 4791q12

+ 3450q11 + 2280q10 + 1308q9 + 690q8 + 294q7 + 111q6 + 27q5 + 6q4,

∆(d,w,α,γ,(6) ,(6) ,k,ρ,q) = 28q36 + 116q35 + 367q34 + 938q33 + 2114q32 + 4229q31 + 7638q30

+ 12248q29 + 18374q28 + 25457q27 + 33106q26 + 40206q25

+ 46214q24 + 49983q23 + 51342q22 + 49690q21 + 45663q20

+ 39534q19 + 32462q18 + 24969q17 + 18121q16 + 12227q15 + 7745q14

+ 4463q13 + 2382q12 + 1124q11 + 476q10 + 164q9 + 52q8 + 8q7 + q6.

We have L1(α) = d. Thus, Claim 2 and 3 in Conjecture 18.27 agree with ξC(d,w,α,γ, i,0,3,ρ,0) = 0 for
i ∈ J0,3K, and with

∆C(d,w,α,γ,p0q ,p0q ,k,ρ,0) = 1 = N(0,4,1),
∆C(d,w,α,γ,p1q ,p1q ,k,ρ,0) = 6 = N(0,4,2),
∆C(d,w,α,γ,p2q ,p2q ,k,ρ,0) = 6 = N(0,4,3),
∆C(d,w,α,γ,p3q ,p3q ,k,ρ,0) = 1 = N(0,4,4).

Example 18.29. Suppose the multimonomial index pd,w,α,γq such that d = 4, w = p1q, α = ιd(1), and
γ = ιd

`` 1
2 ,−

1
2 ,0

˘˘

. Let ρ = p1q, k = p0,1q, and λ = 2. Then, as in Claim 2 of Conjecture 18.27, we have
the following periodicity:

∆C(d,w,α,γ,p0q ,p0+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p4q ,p4+λ q ,k,ρ,0) = 6;
∆C(d,w,α,γ,p1q ,p1+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p5q ,p5+λ q ,k,ρ,0) = 15;
∆C(d,w,α,γ,p2q ,p2+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p6q ,p6+λ q ,k,ρ,0) = 6;
∆C(d,w,α,γ,p3q ,p3+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p7q ,p7+λ q ,k,ρ,0) = 16.
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In particular, the generalized Narayana numbers in Claim 3 of Conjecture 18.27 give the first three numbers
in the above, since 0 ≤ h ≤ d −λ = 2 and

N(λ ,d +1,0+1+λ ) = N(2,5,3) = 6,
N(λ ,d +1,1+1+λ ) = N(2,5,4) = 15,
N(λ ,d +1,2+1+λ ) = N(2,5,5) = 6.

For another example, let λ = 3. Then, we obtain the following periodicity:

∆C(d,w,α,γ,p0q ,p0+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p4q ,p4+λ q ,k,ρ,0) = 4;
∆C(d,w,α,γ,p1q ,p1+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p5q ,p5+λ q ,k,ρ,0) = 4;
∆C(d,w,α,γ,p2q ,p2+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p6q ,p6+λ q ,k,ρ,0) = 24;
∆C(d,w,α,γ,p3q ,p3+λ q ,k,ρ,0) = ∆C(d,w,α,γ,p7q ,p7+λ q ,k,ρ,0) = 24.

Then, the generalized Narayana numbers in Claim 3 of Conjecture 18.27 account the first two numbers,
because 0 ≤ h ≤ d −λ = 1 and

N(λ ,d +1,0+1+λ ) = N(3,5,4) = 4,
N(λ ,d +1,1+1+λ ) = N(3,5,5) = 4.

We compute the following for some non-flat α in Claim 2 of Conjecture 18.27.

Example 18.30. Consider the multimonomial index pd,w,α,γq such that d = 2, w = p1q, α = p1,2q, and
γ = ιd(

` 1
2 ,−

1
2 ,0

˘

). Let ρ = p1q and k = p0,1q. Also, let h1 = 1 and h2 = 2. Then, L2(α) = 1 gives
p(d,h1,h2,α) = 2 ·2−1 ·1 = 3. Furthermore, Claim 2 of Conjecture 18.27 is consistent with

∆C(d,w,α,γ,p0q ,p0q ,k,ρ,0) = ∆C(d,w,α,γ,p3q ,p3q ,k,ρ,0) = 1,
∆C(d,w,α,γ,p1q ,p1q ,k,ρ,0) = ∆C(d,w,α,γ,p4q ,p4q ,k,ρ,0) = 3,
∆C(d,w,α,γ,p2q ,p2q ,k,ρ,0) = ∆C(d,w,α,γ,p5q ,p5q ,k,ρ,0) = 1.

19 Monomial convolutions and ideal boson–fermion gases
Generalizing Section 1.11, Section 19 considers some ideal (mixed) boson–fermion gases with or without
Casimir energies by monomial convolutions. Thus, we obtain statistical-mechanical phase transitions by the
merged-log-concavity.

Unless stated otherwise, Section 19 assumes the following. Let s = p0,∞q, l = 1, w = p1q, and v ∈ Q.
Also, as in Section 1.11, let q = e−β by the thermodynamic beta β > 0 and t = e−µ ′

by µ ′ = −µβ of the
chemical potential µ < 0.

19.1 Monomial convolutions without Casimir energies
We have the following systems of boson–fermion gases without Casimir energies by monomial convolutions.
Suppose integers 0 ≤ d1 ≤ d2 such that d2 ∈ Z≥1 and κ ∈Qd2 . Consider the boson–fermion system Md1,d2(κ)
that has sub-systems B(1,κλ ) for λ ∈ Jd1K and sub-systems F(1,κλ ) for λ ∈ Jd1 + 1,d2K with negligible
interactions among sub-systems. Thus, Md1,d2(κ) has the grand canonical partition function

ZMd1 ,d2 (κ)
(q, t) = ∏

λ∈Jd1K
Tr
(

e−βHb,κ
λ · e−µ ′Nb

)
· ∏

λ∈Jd1+1,d2K
Tr
(

e−βH f ,κ
λ · e−µ ′N f

)
.
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Moreover, α = ιd2(1) gives the multimonomial index pd2,w,α,γκ q such that

γκ,λ =

{
γb,κλ

for each λ ∈ Jd1K,
γ f ,κλ

for each λ ∈ Jd1 +1,d2K.

Then, by equations (1.11.4) and (1.11.5), we realize

ZMd1 ,d2 (κ)
(q, t) = M (d2,w,α,γκ ,q, t).

19.2 Monomial convolutions with Casimir energies
Sections 1.11 and 19.1 ignore zero-point energies, a common practice in statistical mechanics [KapGal].
However, let us not ignore them. By monomial convolutions, we incorporate the Casimir energies as the
following Ramanujan summation of the zero-point energy sums of B(1,v) and F(1,v).

Suppose an entire function a(y) of y ∈ C such that the exponential type of a(y) is less than π . Then, by
the Bernoulli numbers Bλ+1, we recall the Ramanujan summation [Can]:

R

∑
λ∈Z≥1

a(λ ) =
∫ 1

0
a(y)dy− 1

2
a(0)− ∑

λ∈Z≥1

a(λ )(0)
Bλ+1

(λ +1)!
. (19.2.1)

For example, av(y) = y− v gives ∑R
λ∈Z≥1

av(λ ) =
5
12 −

v
2 , which is − 1

12 [Ram] when v = 1.

19.2.1 Ideal boson gases

We have the following operators with zero-point energies.

Definition 19.1. For v ∈Q, let Hb,v denote the Hamiltonian operator such that

Hb,v = ∑
λ∈Z≥1

εv,λ

2
{a†

b,λ ,ab,λ}

= ∑
λ∈Z≥1

´

εv,λ a†
b,λ ab,λ +

εv,λ

2

¯

. (19.2.2)

If u ∈ Z≥1, then let Hb,v,u and Nb,u denote the Hamiltonian and number operators such that

Hb,v,u = ∑
λ∈JuK

´

εv,λ a†
b,λ ab,λ +

εv,λ

2

¯

,

Nb,u = ∑
λ∈JuK

a†
b,λ ab,λ .

Also, let γR
b,v =

``

0,1− v, 5
24 −

v
4

˘˘

.

Consider the boson system B(1,v) of Hb,v and Nb in Definition 1.25. Unlike in equation (1.11.3),
εv,λ

2
in equation (19.2.2) represent zero-point energies. Thus, B(1,v) extends B(1,v) by the zero-point energies.
Also, B(1,v) proposes the grand canonical partition function

ZB(1,v)(q, t) = Tr
´

e−βHb,v · e−µ ′Nb
¯

.
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However, ZB(1,v)(q, t) has q
∑1≤λ

εv,λ
2 of the divergent zero-point energy sum ∑1≤λ εv,λ

2 . This would make
ZB(1,v)(q, t) = 0 by 0 < q < 1. Thus, we consider the regularized grand canonical partition function
Z R

B(1,v)(q, t) of B(1,v) by the Ramanujan summation and a monomial convolution as follows.
For each u ∈ Z≥1, there exists the boson system B(1,v,u) of Hb,v,u and Nb,u. Also, for each λ ∈

Z≥1 and nλ ∈ Z≥0, we have ⟨nλ |e
−βεv,λ

´

a†
λ

αλ+
1
2

¯

· e−µ ′a†
λ

αλ |nλ ⟩ = e−βεv,λ nλ · e−µ ′nλ · e−β
εv,λ

2 . Thus, by

∏λ∈JuK e−β
εv,λ

2 = q
∑λ∈JuK εv,λ

2 , B(1,v,u) has the grand canonical partition function

ZB(1,v,u)(q, t) = Tr
´

e−βHb,v,u · e−µ ′Nb,u
¯

= (q1−vt;q)−1
u ·q∑λ∈JuK

εv,λ
2 . (19.2.3)

In equations (19.2.3), u → ∞ yields the divergent zero-point energy sum

lim
u→∞

1
2 ∑

λ∈JuK
εv,λ .

But, the Ramanujan summation (19.2.1) gives the following regularization (c.f. [Pol, Section 1.3] for v = 1):

lim
u→∞

1
2 ∑

λ∈JuK
εv,λ →1

2

R

∑
λ∈Z≥1

εv,λ =
5
24

− v
4
,

which is the Casimir energy of B(1,v). Thus, we have the regularized grand canonical partition function
Z R

B(1,v)(q, t) of B(1,v) such that

Z R
B(1,v)(q, t) := ZB(1,v)(q, t)q

1
2 ∑R

λ∈Z≥1
εv,λ = Z

γR
b,v,q

(t) (19.2.4)

by equation (1.11.4). In particular, this Z R
B(1,v)(q, t) is non-trivial.

19.2.2 Ideal fermion gases

Let us take the following with zero-point energies.

Definition 19.2. For v ∈Q, let H f ,v denote the Hamiltonian operator such that

H f ,v = ∑
λ∈Z≥1

εv,λ

2
[a†

f ,λ ,a f ,λ ]

= ∑
λ∈Z≥1

´

εv,λ a†
f ,λ a f ,λ −

εv,λ

2

¯

. (19.2.5)

If u ∈ Z≥1, then let H f ,v,u and N f ,u be the Hamiltonian and number operators such that

H f ,v,u = ∑
λ∈JuK

´

εv,λ a†
f ,λ a f ,λ −

εv,λ

2

¯

,

N f ,u = ∑
λ∈JuK

a†
f ,λ a f ,λ .

Also, let γR
f ,v =

`` 1
2 ,

1
2 − v,− 5

24 +
v
4

˘˘

.
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Consider the fermion system F (1,v) of H f ,v and Nb, which extends F(1,v) by the zero-point energies
− εv,λ

2 in equation (19.2.5). Also, F (1,v) suggests the grand canonical partition function

ZF (1,v)(q, t) = Tr
´

e−βH f ,v · e−µ ′N f
¯

.

However, this has q−
∑λ∈Z≥1

εv,λ
2 , which would make 1

0 . Hence, we consider the regularized grand canonical
partition function Z R

F (1,v)(q, t) of F (1,v) by the Ramanujan summation and a monomial convolution as
follows.

For each u∈Z≥1, there is the fermion system F (1,v,u) of H f ,v,u and N f ,u. Also, λ ∈Z≥1 and nλ ∈ {0,1}
imply

⟨nλ |e
−βεv,λ

´

a†
λ

αλ− 1
2

¯

· e−µ ′a†
λ

αλ |nλ ⟩= e−βεv,λ nλ · e−µ ′nλ · e−β ·
−εv,λ

2 .

This gives the grand canonical partition function of F (1,v,u):

ZF (1,v,u)(q, t) = Tr
´

e−βH f ,v,u · e−µ ′N f ,u
¯

= (−q1−vt;q)u ·q
−1
2 ∑λ∈JuK εv,λ .

Then, the Ramanujan summation (19.2.1) gives the regularization

lim
u→∞

−1
2 ∑

λ∈JuK
εv,λ →− 1

2

R

∑
λ∈Z≥1

εv,λ =− 5
24

+
v
4
,

which is the Casimir energy of F (1,v). Hence, we have the regularized grand canonical partition function
Z R

F (1,v)(q, t) of F (1,v) such that

Z R
F (1,v)(q, t) := ZF(1,v)(q, t)q

− 1
2 ∑R

λ∈Z≥1
εv,λ = Z

γR
f ,v,q

(t) (19.2.6)

by equation (1.11.5). In particular, this Z R
F (1,v)(q, t) is mathematically defined.

19.2.3 Ideal boson–fermion gases

Suppose integers 0 ≤ d1 ≤ d2 such that d2 ∈Z≥1 and κ ∈Qd2 . Consider the boson–fermion system Md1,d2(κ)
that has sub-systems B(1,κλ ) for λ ∈ Jd1K and sub-systems F (1,κλ ) for λ ∈ Jd1 +1,d2K with negligible
interactions among sub-systems. Also, Md1,d2(κ) proposes the grand canonical partition function:

ZMd1 ,d2 (κ)
(q, t) = ∏

λ∈Jd1K
Tr
(

e−βHb,κ
λ · e−µ ′Nb

)
· ∏

λ∈Jd1+1,d2K
Tr
(

e−βH f ,κ
λ · e−µ ′N f

)
,

which have divergent zero-point energy sums. However, equations (19.2.4) and (19.2.6) give the regularized
grand canonical partition function Z R

Md1 ,d2 (κ)
(q, t) of Md1,d2(κ) such that

Z R
Md1 ,d2 (κ)

(q, t) := ∏
λ∈Jd1K

Z R
B(1,κλ )

(q, t) · ∏
λ∈Jd1+1,d2K

Z R
F (1,κλ )

(q, t),

which is mathematically defined and non-trivial.
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Furthermore, α = ιd2(1) yields the multimonomial index
`

d2,w,α,γR
κ

˘

such that

γ
R
κ,λ =

{
γ

R
b,κλ

if λ ∈ Jd1K,
γ

R
f ,κλ

if λ ∈ Jd1 +1,d2K.

By equations (19.2.4) and (19.2.6), we obtain the monomial convolution

Z R
Md1 ,d2 (κ)

(q, t) = M (d2,w,α,γR
κ ,q, t). (19.2.7)

Also, Md1,d2(κ) has the Casimir energy

∑
λ ∈Jd1K

(
− 5

24
+

κλ

4

)
+ ∑

λ ∈Jd1+1,d2K

(
5
24

− κλ

4

)
= −5(2d1 − d2)

24
+

∑κ[1 : d1]− ∑κ[d1 + 1 : d2]

4
.

Thus, we obtain

Z R
Md1 ,d2 (κ)

(q, t) = ZMd1 ,d2 (κ)
(q, t) ·q−

5(2d1−d2)
24 +

∑κ[1:d1 ]−∑κ[d1+1:d2 ]
4 . (19.2.8)

Now, equations (19.2.7) and (19.2.8) give the explicit description of Z R
Md1 ,d2 (κ)

(q, t) by q-multinomial
coefficients in Claim 1 of Proposition 18.13 (see Proposition 18.7 for eta products when κλ = 1 for each
λ ∈ Jd2K).

19.3 Phase transitions of ideal boson–fermion gases
As in Section 1.11, the t-power series of ZMd1 ,d2 (κ)

(q, t) realize the Helmholtz free energies of the ideal
boson–fermion systems Md1,d2(κ) without the Casimir energies. Hence, the systems Md1,d2(κ) obtain
statistical-mechanical phase transitions by the merged-log-concavity in Proposition 17.20. The same holds
for Md1,d2(κ) with the Casimir energies in equation (19.2.8).

In particular, inequalities (17.3.1) and (17.3.2) that give phase transitions in Proposition 17.20 imply
1− v > 0 and 1

2 − v >− 1
2 in equations (1.11.4) and (1.11.5). Therefore, we obtain the energy positivity

εv,λ = λ − v > 0

for λ ∈ Z≥1 in the Hamiltonians Hb,v and H f ,v by the phase transitions.
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