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Abstract

This manuscript introduces the notion of merged-log-concavity for rational functions. We then present
new results on g-binomial coefficients and unimodal sequences of real values of rational functions, extending
g-multinomial coefficients and the Cauchy—Binet formula. The notion is modeled over the g-log-concavity
of Stanley for polynomials.

We construct explicit merged-log-concave rational functions, extending the infinite products (+¢;¢)E' =
[Ti>: (1 +1¢"~1)T! by polynomials with positive integer coefficients. We derive almost strictly unimodal
sequences of rational functions from the merged-log-concavity and Young diagrams. We then study critical
points on the almost strictly unimodal sequences. In particular, we obtain the golden ratio of quantum
dilogarithms and g-exponentials as a critical point. Also, we consider some eta products and generalized
Narayana numbers by the extended g-multinomial coefficients.

In statistical mechanics, we discuss the grand canonical partition functions of certain ideal boson
and fermion gases with or without Casimir energies (Ramanujan summation). The merged-log-concavity
identifies particle-emergence phase transitions in Helmholtz free energy vacua through critical points such
as the golden ratio.

1 Introduction

The notion of unimodal sequences includes increasing, decreasing, or hill sequences of real numbers. As
such, the notion is essential in mathematics. Also, there are log-concavities for polynomials [ALGV| |BraHuh|
But, New, [Sag| [Sta], which give unimodal sequences. We introduce the notion of merged-log-concavity for
rational functions. To study the notion, we extend g-multinomial coefficients and the Cauchy—Binet formula.
This not only gives g-polynomials with positive integer coefficients, but also the continuous variation of
unimodal sequences of real values of rational functions. Furthermore, we obtain the golden ratio and the other
metallic ratios as critical points of the variation. These critical points then give statistical mechanical phase
transitions of ideal boson and fermion gases.

m2
To give an idea of the merged-log-concavity, we consider q%—polynomials fm(q%) =q 2 of m e Zxo.
They are not q% -log-concave [But, |Sta], since they never give q% -polynomials with positive integer coefficients
by

2 2
So=toifmi =4" —q" . (1.0.1)



However, we obtain the q% -polynomial with the positive integer coefficient by

2
(l—q)(l—qz)<<lflq> —?-M) =q. (1.0.2)

We realize g-Pochhammer symbols (1), := [T <;<,,(1 —¢') in the above. We then introduce the merged-log-

concavity for 2, q% = Jn_ which merges 22 — 22, and (2), into g. Also, the merged-log-concavity
for 2 e : q

. . . 1 - . _
gives the variation of unimodal sequence 2,,(h) for0 <h=¢2 < 1in F1gure The golden ratio h = HT‘@
is the critical point of the variation, as it separates hill sequences from strictly decreasing sequences.
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Figure 1: 2,,(h) of h = 0.4 (bottom), h = *l%ﬁ (middle), and & = 0.8 (top)
The generating function of .%,, gives (tq% ;q)=! [Eull, ie.,

(tq%:9)2" =] +1a2¢™ ") = ¥ Ft™.

i>1 m>0

We also obtain the merged-log-concavity for the quantum dilogarithms and g-exponentials (:ttq’l;q)ofl
of A € Q, where double-sign corresponds. These (:l:z‘cﬂ;q)jf,1 have been heavily studied in mathematics
and physics. Therefore, the merged-log-concavity provides a framework that generalizes (:I:tq}”;q)if Uby
polynomials with positive integer coefficients and the variation of unimodal sequences. We then discuss
explicit examples with open conjectures.

For further discussion, we begin by recalling the fundamental definitions of unimodality and log-concavity
for sequences of real numbers.



1.1 Unimodality and log-concavity of real numbers

For 7. =7.U{eo} and 51,52 € Z, let [s1,52] = {i € Z | 51 < i < sp} and [s2] = [1,s2] throughout. For example,
[eo] = Z>o. Suppose a family F = (F; € U;),; € [1;c; Ui for an index set / and a set U;. If I C Z is an interval,

then F is a sequence of the length #(I) € Z, i.e., the number of elements in 1. If I = [s,] and 5, € Z>, then
F=(F,...,F,)is atuple.

52

Definition 1.1. Suppose a sequence r = (r; € R) ics1]-

1. The sequence r has a step if r; < rj for some i, j € [s1,s2].

2. The sequence r is unimodal if ry, < ... <rg >rsi) > ... for some § € 7 such that 51 <6 <. In
particular, r is a hill if such 8 € [s; + 1,55 —1].

3. When the sequence r is unimodal, r is two-sided if r has both increasing and decreasing steps, and r is
one-sided if r has either increasing steps or decreasing steps, but not both.

4. The sequence r is log-concave ifrl-2 —rip1rio1 > 0 foreach i € [s1+ 1,55 — 1].

For example, consider an infinite-length r = (r; € R) ic[0,]" First, suppose that r is unimodal. Then, 6 =0,
8 € [[o], and & = o give a decreasing sequence ro > r; > ry > ..., hill sequence rp < ... <rg > r§i1 > ..,
and increasing sequence ro < r; < rp <..., respectively. We observe that there are one-sided hill sequences
suchthatrg <...<rsg=r5.; =... and rp < 1.

Second, suppose that r is log-concave and all its terms are positive. Then, r is unimodal by % > % >

1.2 g-log-concavity and strong g-log-concavity of polynomials

Unless stated otherwise, let g be an indeterminate. We recall the g-log-concavity and strong g-log-concavity,
on which we model the merged-log-concavity. By g-polynomials Q[g¢], Laurent g-polynomials Q[g*'], and
g-rational functions Q(g), we adopt the following binary relations.

Definition 1.2. Suppose f,g € Q(q).
1. Let f >4 8 if f,g € Qlg] and f — g € Z>olq]. Also, f >4 g if f >4 g and f —g #0.
2. Let f > 01 gif f,g € Qg™ and f — g € Lolg™"]. Also, f >, 21 g if f > 01 g and f — g #0.

Stanley and Sagan have introduced the following notions of g-log-concavity and strong g-log-concavity
for polynomials [But}|Sag|]. These notions have been studied intensively [Bre} |Sta]], but have not been extended
to rational functions.

Definition 1.3. Suppose f = (fi(q) € Z>o(q]);cz-
1. The sequence f is g-log-concave if fi(q)* — fi—1(q) fi+1(q) >4 0 whenever i € Z.
2. The sequence f is strongly g-log-concave if fi(q) fi(q) — fi—1(q) fj+1(q) >4 0 whenever j > i.

Suppose a g-log-concave (fi(q) € Z>o[q]);cz such that f;(g) >, 0 for each i € Z>o. Then, we have
unimodal (fi(r) € R>0);ez., forr € R.



1.3 Merged-log-concavity of rational functions

We introduce the merged-log-concavity of rational functions, using the following g-analogs as foundational
elements.

Definition 1.4. Let a be an indeterminate.

1. For each n € L=, we have the q-Pochhammer symbol (a;q), = [Tiegp (1 — ag™") if n > 1 and
(a;q)n =11ifn=0. Let (n), = (q;q)n in our convention.

2. For each n € Z>1, we have the q-number [n]g = Yic[y] ¢ and g-factorial [n]!,= [Ticpnylilg- As
special cases, [0], = 0 and [0]!,= 1.

We use the notation (1), = (¢;q), for the g-Pochhammer symbol, as indices n become involved in several
contexts, such as (1 —y;_iy1)4. Also, the g-Pochhammer symbol notation (n), is consistent with the g-number
notation [m],.

We adopt the following notations for family-to-family and family-to-scalar comparisons.

Definition 1.5. Consider A € RU {+eo}. Suppose families F = (F; € R);; and F' = (F{ € R),_,.
1. Let F > F' (or F > F') if each F; > F/ (or F; > F/).
2. Let F>A(orF>A)ifeach F; > A (or F; > A). Let F < A (or F < A) ifeach F; < A (or F; < ).
3 LetF=AifF<Aand F > A.

We call F positive if F > 0, negative if F < 0, and zero if F = 0. Similarly, we call F non-negative if F > 0
and non-positive if F < 0. Also, let |F| = (|Fj| € R>0),c;-

Also, we adopt the following notations for tuples.
Definition 1.6. Letd € Z>.

1. Consider sets V1, ...,Vy and a € [ic[q) Vi- Then, leta’ = (a; = ad,iﬂ)ieﬂd]] = (ad,.--,a1) €[icfa Va-it1
for the flip of a.

2. Consider a setU andu € U. If A C [d], then let 1* (u) € [T;cp U such that 1* (u); = u for each i € A.
Also, let 19(u) = 1140 (u) = (u,...,.u) e U =U x ... xU = [Ticfa1 U-

We consider g-numbers and the change of variable g — g for p € Z>,. This gives the following.

Definition 1.7. Let A € Z, p € Z>1, and ¢ (q) € Q(q) such that ¢ (gq) # 0. We define the base shift function

A
¢(qp) [A’]:‘Ip lf}/ EZZO7

b(l7¢,p,q)= ¢(‘1)AW q

0 otherwise.
In particular, let by ,(q) = b(A,1—q,p,q).
We state the following, as we are interested in g-polynomials with positive integer coefficients.

Lemma 1.8. Suppose an irreducible ¢(q) € Q[q] such that ¢(0) = 1. Then, the following statements are
equivalent.



1.

b(A,9,p,q) >4 0 whenever A € Z>q and p € Z>.

2. ¢(g)=1-4q

(A)gp

When ¢(q) = 1 —q, we have b(1,0,p,q) = b; ,(q) = My By these g-Pochhammer symbols, we give
the notions of ring shift factors, merged determinants, parcels, and the merged-log-concavity. The ring shift
factors extend 2 x 2 determinants to the merged determinants. We then define the merged-log-concavity of
the parcels, which are families of rational functions. Definition[I.9]is a simplified version of Definition [6.1]
which allows ¢(g) such as ¢(g) = 1 and the merged-log-concavity of parcels of finite positive terms.

Definition 1.9. Suppose u=',p,1 € Z>,. Also, suppose w € leo and a,b € 7%

1.

Let L(a,b),R(a,b) € Z! such that L(a,b); = b; — a; and R(a,b); = by,; — a;.; for i € [I]. Also, for
each F = (Fn(q") € Q") ez let

a7 a7
det(#,a,b) = det Z1L(@b) J:B(“v’b)] .
L@'.b)  FR(ab)

. In Q(q"), we define the ring shift factor

(i) (bryi) o ™!
Wi T

T(lawap7a7b7Q) = iE[[lI] (Cl,):;,; (al+i)qp

0 otherwise.

ifa,b >0,

We call p the base shift parameter of X(I,w,p,a,b,q). Furthermore, for each F = (F,(q") € Q(¢")) pezi>
we define the merged determinant

A(F)(,w,p,a,b,q) =Y (I,w,p,a,b,q)-det(F,a,b) € Q(q").

. Suppose a family f = (fn € Q(q")) ez such that fin > 21 0 if m > 0 and f,, = 0 otherwise. Then,
we define the parcel F = A(L,w, f,q,u) = (Fn € Q(q")),pez Such that
fm .
_Im im0,
T = 4 Tiepy (mi))
0 otherwise.

We refer to I, w, f, and q as the width, weight, numerator, and base of the parcel % .

. Fora,b € 7% we call (1,a,b) fitting if it satisfies the following inequalities:

a<b;
b1 <...<b<by <...< by
0<ag1<...<g <ay1 <...<ay.

Then, we call & = A(L,w, f,q,u) p-merged-log-concave (or merged-log-concave for simplicity) if each
fitting (1,a,b) satisfies

A(ﬁ)(lﬁvaaaabaq) >(qu)il 0



On Definition[T.9} we make a few comments.

* A parcel . is a family of rational functions in Q(¢") with parcel parameters. We consider % = ¥ for
parcels .# and ¢ when they are the same families of rational functions. However, in most cases, parcel
parameters are clear in the context, as we specify them.

* As Y(I,w,p,a,b,q) =1 if w =0, merged determinants generalize 2 x 2 determinants by ring shift
factors. We adopt the term “ring shift factors”, since we study A(.Z)(I,w, p,a,b,q) € Q[(¢*)*!] by the
merged-log-concavity for rational functions .%,, € Q(g¢").

» We adopt the term “merged determinants” for A(F)(I,w,p,a,b,q), as they merge Y(I,w, p,a,b,q) and
det(&#,a,b) into polynomials with positive integer coefficients.

1.4 Monomial indices
By the following notion, we construct explicit merged-log-concave parcels.

Definition 1.10. Letl € Z>|, w € lel, and v € [icp Q3. We call v = (I,w,y) a monomial index if

2Y,1 € Z for each i € [1], (1.4.1)
0<2Y v.1< Y wjforeachic]l]. (14.2)
Jelil jelil

We call I, w, and 'y the width, weight, and core of v. We refer to (I.4.1)) and (T.4.2)) as the integer monomial
condition and the sum monomial condition of V.

We use these monomial indices by the following quadratic polynomials and binary relations.
Definition 1.11. Suppose | € Z>1, ¥ € [1ic[y) Q% and o € lel with 8 = ged(oy,. .., ).
1. Letty(z) = ¥i12* + Yipz+ %3 € Q2] for each i € [I].
2. Lettyy: 7! — Q such that te (m) = Yieqi ity (mi) for each m € z.
3. Letugy= % € Q for the lowest A € Z> such that % € Z for each m € leo.
4. Let g yq = {q"*7}. Then, on Q(Hg,yq), let
>ayq =>gar and >qyg=>guay iftey(m) € Qo for eachm € Z‘éo,
>a,y.q =>gtuay Ad 2y q=2 oy Otherwise.
For simplicity, let ty =t,1y) , and uy = ;) -
Assume a monomial index (I, w, ). For each m € Z!, let

ty(m) -
_)q7 ifm>0,
frmla) = {0 otherwise.

We define the monomial parcel F,,y, = A(I,w, fy(q),q,uy) such that each m € leo satisfies

C]t7<m)
ITie 11 (mi);vi

Then, we have the following merged-log-concavity of monomial parcels.

jw,%q,m =

€ Q(g").



Theorem 1.12 (Theorem [8.40). Let p € Z>1. Then, every monomial parcel F,,y 4 is p-merged-log-concave.
In particular, each fitting (1,a,b) satisfies

q7[Y<L(a’b))7ty(R(a,b))A(yW7'}’Aq) (la w, p ya, b7 Q) >l] 0
Unless stated otherwise, we assume the following simplification in the rest of Section|[I}

* [ =1 and the width of each parcel is /;
* Fra= T
« F=(Fn= F(m) € Q(q"))mGZ for each parcel . = A(l,w, f,q,u).

We deduce 71,1 = % or 0 for .7y, by the monomial conditions of (1,(1),y). Consequently, .7y, give

. qY1‘2m+71.,3
J((O-,YI.Z-,YI.S))-,%m - (m)q ) Or
. q§+71‘2m+71,3
F = —
((%-,71,2-,71,3))7%,’" (m)q
o Yia_1i l+},. _ . . .
We call /((037172-,7173))74 and ﬁ((%%”m))ﬂ q"2-linear and q2"2-quadratic (or linear and quadratic
F 1 F
", 2 4, 2, Lo, 4, . .
for simp]icity), since % = 97( (0 n2 71‘3))!1 1 an. qz(l) 1,2 _ 92(( 77,2 71,3))11 1 In partlcular, for the q%-hnear
7 7 ((ompmnz))ao 1 “((3nans))ao

and q%-quadratic monomial parcels, we define
L = y((oép))g’ (1.4.3)

Q:f(( (1.4.4)

300)).a°
2

Then, equation (T.0.2) provides a merged determinant of 2 in Theorem fora=(0,1) and b = (1,2).
1.5 Parcel convolutions and an extended Cauchy-Binet formula

Consider parcels .% and ¢ such that multiplying the generating functions of .% and ¢ becomes the generating
function of a parcel. We then discuss the parcel convolution F x4 by the generating functions and Toeplitz
matrices of .% and ¢. Cauchy-Binet formula writes the minors of a matrix product AB by those of A and B.
Also, merged determinants extend 2 x 2 determinants by the ring shift factors.

Therefore, in Theorem [I5.T1] we extend general minors and the Cauchy—Binet formula of a general
matrix product AB to write the merged determinants of .% x ¥ by those of .# and ¢. This gives the
merged-log-concavity of parcel convolutions.

Furthermore, we define the notion of multimonomial indices to consider explicit parcel convolutions.

Definition 1.13. Letd € Z>1, w € lel’ a,BeZl, andye [Ticpag Q. If (1,w, () is a monomial index
Jor each i € [d], then we call -

“:(d7w’a’ﬁ”}/)

a multimonomial index. We refer to d, w, a, B, and 7y as the depth, weight, inner-exponent, outer-exponent,
and core of W. In particular, if B = 14(1), then we call

(d,w,a,y)

a reduced multimonomial index (or a multimonomial index for short).



We now define the following g-monomials by multimonomial indices.

Definition 1.14. Consider a multimonomial index (d,w, o, y). Let

Varq = (Vauras € @(qua’y))jezd

such that

Vo — 40T 720,
A 0 otherwise.

Furthermore, we discuss the change of variable g — g for p € Z>. Hence, we define the following
weighted q-multinomial coefficients, extending g-multinomial coefficients. For d € Z>1 and o € Z‘é] , let
lem(a) and ged(@) denote the least common multiple and greatest common divisor of @, ..., 0.

Definition 1.15. Letd € Z>, o € Z‘él, and & = lem(a). Suppose i € Z and j € Z%. Then, we define the
weighted g-multinomial coefficient:

(i)q5l
; ————ifj>0and Y j=i
[ 1 =< Maepap(a)= Aeld]
Jlag ,
0 otherwise.

i
J
q-binomial coefficient.

If 6 = 1, then let [ ]q = [;.]a qfor the g-multinomial coefficient. If k € Z, then let [;(]q = [(k iifk)] for the
; ’ q

For the weighted g-multinomial coefficients, we prove the weighted g-Pascal identity. In particular, we
have g-polynomials with positive integer coefficients such that [;]a . qug 0 of 5, = ged(a).

For example, if o = (1,2), then the weighted g-Pascal identity asserts the following weighted g-Pascal’s
triangle (written in a rectangular form to save space), where polynomials along arrows indicate multipliers.

1 1
[(o?oﬂw -1 4 [(0}1)]% —1 — [(o?z)]a!q =1
) 2
[(1}0)]04,(, =[2], N [(1271)]06# = [4], £, [(1?2)]04,[, = [6],

4
2 _ q 3 _ 746 5 4 3 2 q 4 -
[(270)](1 =M, — [(271)](”1 =q +¢*+2¢ +2¢* +2¢° +2¢* +q+1 — [(272)]% =...
By weighted g-multinomial coefficients, the convolutions of monomial parcels give explicit merged-log-
concave parcels .% = A(I,w, f,q,u) such that each i € Z> satisfies

Yjezd Vo Y-qj[i']m

R AN Bl J "

‘%(qu) = ( wi 24
i) 5

q

Furthermore, the merged determinants of these .% give the following polynomials with positive integer
coefficients.



Theorem 1.16. (Theorem|18.15) Suppose a multimonomial index p = (d,w, e,y). Let § = lem(a), 6, =
ged(@), and p € Z>. For a fitting (1,a,b), consider integers m = L(a,b);, n=R(a,b);, and k =R(a",b); —
n. Then, we have the following strict positivity:

bl w1 b2 w1 ” m w1 n w1
|: ] |: :| bm’p( 6’) 'b Z Wa v.q,j1 |:]1:| Z ‘I’a,%q.jz[ . :|
q

ay | op J2

az qélp j1 €74 a.q j, ezd a,q
b] el bz Wi by Si\w m — k "1 n + k e
- [a s a s bmfk,p (q ! )Wl bn+k-,p (q ])W] Z ‘I’Om/.q,jl . Z Wa’%qﬁjz .
2 g P ! q P J1 ezd J1 ®.q j, czd J2 x,q
>ay4 0-

In particular, suppose & = 14(1) of d € Z>1, w=p = (1), a= (0,1), and b = (h,h+1) of h € Z>.
Then, the convolutions of linear monomial parcels give the following g-polynomials with positive integer
coefficients:

2

h h+1 h—1
(R (VR R I O o S B 1 ol
jrezd Ulq peza L IV g |\ jezal J2 g

Also, the convolutions of quadratic monomial parcels give the following g-polynomials with positive integer
coefficients:

(ESIAID) (Hq””" )["]

jrezd \ic[d] Jilq

Jrilni—1 h+1 J2,ilig,i—1 h—1
—m,| ¥ (qu )[ | ] y (nq ; )[ . ] =0,
1€z4 \i€[d] Ju g jrezd \ic[d] J2 14

1.6 Almost strictly unimodal sequences
We recall the following almost strictly unimodal sequences [Real Section 2.2] and strictly log-concave

sequences. We consider the variation of almost strictly unimodal sequences under the merged-log-concavity.

Definition 1.17. Suppose a sequence r = (r; € R)ie{[sl,szl]'

1. The sequence r is almost strictly unimodal if there exists & € 7 with sy < 8 < 55 such that
* (1)ic[s, 5] I8 strictly increasing,
* rs >rsyq, and

. (ri)ie[[5+1,s2]] is strictly decreasing.
We refer to such 8 as the mode of r.
2. The sequence r is strictly log-concave ifrl-2 —riz1ris1 > 0 foreachi € [s;+ 1,50 —1].

Notice that including the cases rg = rg1, we call  the mode of r for our convenience.
For instance, let r = (r; € R+) ic[s1,52] be strictly log-concave. Then, r is almost strictly unimodal by
Tsp+1 Ts|+2
sy Tsp+1
study them as almost strictly unimodal sequences for the following two reasons.

> .... Even when the merged-log-concavity yields strictly log-concave sequences, we often



» We discuss the almost strictly unimodal (log(r;) € R)
concave.

ic[sy.5,]> Which is not necessarily strictly log-

* Each almost strictly unimodal sequence has at most one equation rg = rs, |, which sits between
r§ <rsy1 and rs > rg 1. Then, as almost strictly unimodal sequences vary, we discuss critical points
and phase transitions in Section[1.6.1]

1.6.1 Critical points and phase transitions

First, let us obtain strictly log-concave sequences by the merged-log-concavity. Let &% = A(l,w, f,q,u) be
p-merged-log-concave. Also, suppose & € R such that

0<h=g"<1, (1.6.1)

ﬁ exists as a positive real number. Also, by the positivity condition of f in Itemin Definition [1.9}, we

derive the sequence u(.7,h) = (Fu(h) € R>0),e7. -
Furthermore, u(.%, h) is strictly log-concave as follows. Let m € Z>. By inequality (T.6.1), we have

which gives temperature inequality [1.11.1|in our statistical mechanical discussion later. By inequality (1.6.1]),

Y(I,w,p,(0,1), (m,m+1), 1" ) = w > 0. (1.6.2)
PO | e
Also, the merged-log-concavity yields
A(F) (1, w,p,(0,1), (m,m+1),q) > guys1 0. (1.6.3)
By inequalities (T.6.2) and (1.6.3), we derive
Fn(h)? = T (h)-Fmi1 (h) > 0. (1.6.4)

More generally, Young diagrams give rise to strictly log-concave sequences in Section[I2] where we obtain

that the trivial Young diagram corresponds to the tuples (m,m+1).

Second, let us discuss the critical points and phase transitions. Among almost strictly unimodal sequences
such as u(.%,h), there are sequences that are hill sequences and decreasing sequences simultaneously. If
u(:Z,h) is one of these boundary sequences, then we call £ a critical point of .%. In particular, since u(.%, h)
is almost strictly unimodal, u(.%#,h) is a hill and decreasing sequence if and only if there is a critical point &
such that

Fo(h) = F1(h). (1.6.5)

As for the term “critical points”, these & give the zero discrete derivatives 0 = %0‘%(’1) for the discrete
variable m € Z>o of u(.F#,h) = (Fu(h) € R>0)mezzo'

Also, we say that .# has a phase transition if along 0 < & < 1, u(%,h) changes from a strictly de-
creasing sequence to a two-sided hill or strictly increasing sequence. This phase transition passes through

equation (I.6.3).

10



1.7 Metallic ratios as explicit critical points

/2 V2 . N
For n € Z>1, it is well-known that ”Jrf"“ 1=1: W. Based on this proportionality, we call the

following real numbers

—n++vn2+4
— <1
2
metallic ratios in our convention, instead of LA Ve e V2"2+4 > 1 in [|GilWor], Section 1]. For instance, *];‘/‘;’ =
0.618... and ’2%\/5 =0.414... are the golden and silver ratios.

. . _ . . . Lo . .
In particular, the golden ratio h = 1%\/3 is the critical point of the g2 -linear monomial parcel .Z in

. . L ¥l
equation (T.43), since h=g2 = ¢ (%29) solves

Therefore, £ has the phase transition at the golden ratio in Figure 2] (see Figure[T]for 2).
Zin(h)

0.5 ° 1

0.0~ ® ® ® L J ~ L @

|
0 2 4 6 8 10 m

Figure 2: %, (h) of h = 0.4 (bottom), h = _1%5 (middle), and & = 0.8 (top)

Furthermore, we consider the n-fold convolutions .#*" for n € Z>1. Then, all the critical points of .Z*"
are precisely the metallic ratios, as they solve

1
£"(q?) =1= =2"(q?)

for 0 < g2 < 1. For the g2 -quadratic monomial parcel 2 in equation (T.4.4), the same applies to the n-fold
convolutions 2*", since 2y = % and 2, = 4.

11



1.8 Characterizations of .¥ and 2

As we are interested in g-polynomials, we introduce the following notion.

Definition 1.18. Let p € Z>,. Also, let 7 = A(l,w, f,q,u). Then, we call F p-ideal if F is p-merged-log-
concave and each m € Z> satisfies

A(F)(Lw,p,(0,1), (mym+1),q) >4 0.
Section verifies that if a monomial parcel .7, , is p-ideal for some p € Z>1, then .%, , is p’-ideal for

any p’ € Z>1. Hence, we simply call .7, , ideal if it is p-ideal for some p € Z>.

. . . Lo, .
Consider all the ideal monomial parcels .%, ,. Then, the ¢ -linear .Z is extremal among them by phase
transitions as follows. If f%q has a phase transition, then in Section , we prove that %, is the maximum

among the values ?’—"’(’)‘ inR foreachm € Z>pand 0 < g < 1;1i.e.,
74, =

L q?
o%n = Y = >
) (m)q

2
or
qYl,lm +Nom B J%%m

), = Frao (1.8.1)

for each m € Z>p and 0 < g < 1. Likewise, the q%—quadratic 2 is extremal among all the ideal quadratic
Fy, that have phase transitions.
We now adopt the following notation for generating functions.

Definition 1.19. Let t be an indeterminate. For each F = A(l,w, f,q,u), we define the generating function

Z50)= Y FulgW"

meZxg
In particular, let 2,y 4(t) = 27, (t) and 2y4(t) = 2z, (t).
1.8.1 The golden ratio of quantum dilogarithms and g-exponentials
We recall the following equations [Eul, Chapter 16], which also hold for ¢, € C such that ||, |¢|< 1.

Definition 1.20. Assume the ring of formal power series Q[[q,t]]. Then, we call the following the Euler
binomial identities:

1 *
(t:9) = —_—
ez, Mg
A(A—1)
2
(~1:q)e = q()L) i*.
AGZZO q

For simplicity, suppose %y 40 = 1. Then, y13 =0. Since 1,1 =0or ¥, = % by the monomial conditions,
we have

4 c]%,ﬂL 1.
(tg"q)s' = ) Gy ttifna =0,
714247122 A€Z>p ( )q
p _ q A =

ra(t) = Z Mg = A o 1

AEZ 1 7T, .
e (—1q7™M2;9) " = 1 ifn =5

AEZ> ( )11

12



Hence, ffm(t) are quantum dilogarithms [FadKas, |[FadVol, Kir, [KonSoil Rom| |Schu, Zag], as they satisfy
pentagon identities (see Section[I7.1). They have been studied intensively, but to our knowledge, the golden
ratio of quantum dilogarithms has not been obtained in the literature. Also, (+¢;¢)x! are g-extensions of the
exponential function [KoeSwa, equations (0.7.7) and (0.7.8)], since

¢ = lim (£(1—q);9)E' = (1.8.2)
Jm (£ =4)r:q) lim (~(1=g)t:q)-
q—1=

It follows that 2 ,(¢) are not only quantum dilogarithms, but also g-exponentials.
Therefore, we obtain the golden ratio of the quantum dilogarithms and g-exponentials 2, ,(t) as the

critical point of ., since the g2-linear . is the single extremal parcel among %, , and the critical point of
4 is the golden ratio as in Section[I.8]

Remark 1.21. By Lemma we are often interested in .%y,,. However, let 4,4 = (%y.4.m € Q(¢"7))
such that

mez

q%‘,lmzﬂfl om )
I ifmeZs,
Gyqm = [m] lq

0 otherwise.

Then, these Q‘”%,q (¢) are quantum dilogarithms and g-exponentials, which are also often studied.
Furthermore, ¢, , are merged-log-concave in the general merged-log-concavity of Definition which
allows [m]!, for (m), in Item of Definition Then, just like u(Fyq4,h), u(9yq,h) are almost strictly
unimodal sequences for 0 < h = ¢"r < 1.
However, unlike u(.%y4,h), u(%y4,h) have no phase transitions for 0 < 7 = ¢"r < 1, since h does not
satisfy

1 =9 40=% 41 = URRES

Therefore, even with ¢, ,, the golden ratio still emerges as the critical point of the quantum dilogarithms and

. . Lo . . .
g-exponentials 25 ,(r) and Zy,, (1), since the g2 -linear .Z is the unique extremal parcel among .%#, , and its
critical point is precisely the golden ratio.

1.9 Comparison with the strong g-log-concavity and g-log-concavity

First, we compare the strong g-log-concavity and the merged-log-concavity. By Definition we focus
on positive merged determinants and infinite positive terms in Section |1} However, let 51,5, € 7. Then, a
strongly g-log-concave f = (fiu(q) € Z>0(q]),,c7 such that f,, >, 0 for m € [s1,s,] is a weight-zero merged-
log-concave parcel by the full merged-log-concavity in Definition [6.1] We explain this in more detail in
Section 11l

Also, we introduce Hadamard (term-wise) products of parcels for the merged-log-concavity. Consequently,
if there is a strongly g-log-concave f = (fin(q) € Z>0q]),,cz such that f,, >, 0 for m > 0 and f,, = 0 for
m < 0, then we obtain the weight-one merged-log-concave parcel .# such that each m > 0 satisfies

Jm

«g.m = (m)q

13



m(m—1)

However, the converse is not true, since the numerators g~ 2 of %, ((

concave by equation (T.0.I).
Second, we compare the g-log-concavity and the merged-log-concavity. This gives g-log-concave

polynomials from weight-zero merged-log-concave parcels. Also, a merged-log-concave parcel deduces the
strict analog of g-log-concavity (1.6.3)), which in turn gives almost strictly unimodal sequences of our interest.

0)).q &€ not strongly g-log-

1.9.1 On Newton’s log-concavities

More explicitly, we compare the g-log-concavity and the merged-log-concavity by finite or infinite geometric
sequences.

For finite geometric sequences, we recall the following Newton’s log-concavities on polynomials. For
d € Z> and o0 = (0 € R=0)3cpqp et Pa = (Pop € R>0>7Le[[o,d]] such that

H(1+(Xil): Z paﬂtl.

ic[d] Aef0,d]

Then, Newton claimed %Hdi;iflpczx.l —Par—1Pasrt+1 > 0forall A € [d —1] [New, p241-p243] (see [Bra,
Lemma 1.1] for a proof). In particular, since %deﬁ < 1,all A € [d — 1] satisfy
p(zij —Poar-1Por+1 >0,

which we call Newton’s log-concavity of . This gives the unimodality of p, such as the unimodality of
binomial coefficients py, when o = 1%(1).
First, let 0 < h < 1. For d € Z>,, we consider the finite geometric sequences

glh,d) = (n*)

The g-log-concavity of (—t;q), extends Newton’s log-concavity of g(h,d) as follows. By the ¢g-binomial
theorem, consider #(d, A, q) € Q[qg] such that

A(A-1) d
(—t:9)a= ), q 2 [l} =Y BdAqrt
A€[0.d] q re0,d]

refod]

Then, [Sag, Theorem 3.2] (see [But, Kra]) gives the g-log-concavity:
B(d,A,q)* — B(d,A—1,9)B(d, L +1,q) >,0. (1.9.1)

This inequality implies Newton’s log-concavity of g(h,d), when we substitute g = h.
Second, we extend to the following infinite case by the infinite geometric sequences

g(h,e0) = (hl>xe[[o7oo]] ’

By the Euler binomial identity, we have

(=1:9)= = Z((1 _1.0)),4()

272

Also, the merged-log-concavity in Theorem and the ideal property for .7 ((1,-10))a give

A(y((%77%70))7q)(l7W7p7aabaq) >q 0

14



for each fitting (/,a,b) and p € Z>. Therefore, this inequality extends Newton’s log-concavity of the finite
geometric sequences g(h,d) to the infinite geometric sequences g(h,0) via the above g-polynomials with
positive integer coefficients.

We have (1:¢)5' = Z(0,0,0)),4(t) by the Euler binomial identity. We also introduce separable products
of parcels, which correspond to multiplying suitable %4 (¢) and 2% (¢') for distinct indeterminates 7 and ¢'.
Hence, the merged-log-concavity generalizes the quantum dilogarithms and the g-exponentials (+7;¢)J by
monomial parcels with convolutions and Hadamard/separable products.

1.10 Monomial convolutions and eta products
We recall the eta function and eta products as follows. These functions, along with exponentials, have been
studied intensively [HeiNeu, HonZhal [Koh, NekOko].

Definition 1.22. For the imaginary unit i, let ¢ = ¢*™* of © € C such that Tm(t) > 0. Then, we have the
(Dedekind) eta function:

-

N(7) = % (¢;9) -

Also, letd € Z>1, a € Z‘él, and B € Zio. Then, we have the eta product:

Ed,a,B(T): H n(allf)ﬁl'
red]

Weight-one linear and quadratic monomial parcels specialize to the eta function 1(7) and exponential.
Hence, we introduce the following notions of graded monomial products and monomial convolutions by
the generating functions of monomial parcels. Then, merged-log-concave parcels give (g,7)-analogs of
exponentials and eta products for some tuple ¢ of indeterminates.

Definition 1.23. Suppose a multimonomial index (d,w,a,,7).

1. Let z=(z) ic[d] be a tuple of indeterminates. Then, we define the graded monomial product

B
Miamaprad) = I1 (2,0, o) Qo

Aefd]

2. Let v be an indeterminate. Then, we define the monomial convolution

A (d,w, ., B,7,q,v) =M(d,w,a,B,7,q, ld(v)) = Z jl(dawvavﬁv%qav)lvl'
},GZEO

We call M(d,w,a,B,7,q,z) graded, because it is graded as formal power series of z. For each A, the

By
monomial convolutions (Qp 7 (1) (z,l)> correspond to parcel convolutions. Furthermore, multiplying
w7, )4

B
(;@p F ) a (z;L)) in M(d,w,a,f,7,q,z) for different A corresponds to separable products of parcels.
w,(1 )4

Also, when w = (1), Z,, (1).q% are linear and quadratic monomial parcels, which satisfy 73 ; = 0 or

a1 = % with arbitrary 7, 5,7, 3 € Q. Hence, we introduce the following notation to obtain the (g,)-analogs.

15



Definition 1.24. Letd € Z>1, o0 € Z‘él, Be Zio’ and x € Q. Suppose a tuple 7z = (Q)/le[[d]] of indetermi-
nates.

1. Let y(B,x) € [Tacqq] Q3 such that
0 K) _71 if ﬁ; < —1
’ ’ 24 l ’

1 Ky 1 .
(2,2,24> otherwise.

2. Let T(Z7CI’(X’B’ K) = (T(Zaq7a7B7 K)l)le[[d]] such that

Y(ﬁa K)), =

g TN i By < -1,
T(ZaqaavﬁvK)l = 1k
—q~ 2 % .z, otherwise.

In particular, let w = (1) and t = T'(z,q, o, B, k). Also, let g = e*™ for some 7 € C such that Im(7) > 0.
Then, as z € C¢ varies, the dominated convergence theorem implies

Eqap(t)= lim M(d,wa,|B|,¥(B,K),q,2). (1.10.1)

t—14(1)
Hence, M(d,w,a,|B|,v(B,),q,z) is the (g,t)-analog of
« the exponential eX4€ldl %P2 when g — 1~ by equation (I82), and
* the eta product E, 4 g(7) when t — 1%(1) by equation (T.T0-T).

We prove that all graded monomial convolutions and monomial convolutions are generating functions
of merged-log-concave parcels, where the parcels of graded monomial convolutions are of general widths.
In particular, we obtain the merged-log-concavity of the (g,t)-analogs M(d,w, a,|B]|,Y(B,K),q,z) and the
monomial convolutions .Z (d,w, a,|B|,7(B,K),q,v). Then, merged determinants give polynomials with
positive integer coefficients by the weighted g-multimonomial coefficients in Theorem[I.16] Furthermore, we
give conjectures on these polynomials with positive integer coefficients. For example, let A € Z>. Then, in
Conjecture[I8.17] we conjecture a new log-concavity for the trivial eta product

1=n(o*-n(1)™*,

which becomes non-trivial by the (g,¢)-analogs. Also, we conjecture a periodicity on the polynomials with
positive integer coefficients by the generalized Narayana numbers [Guy].

1.11 Statistical-mechanical phase transitions by the merged-log-concavity

Bose, Einstein, and Fermi [Bos, |[Ein, [Fer]] pioneered the mathematical models of non-interacting particles
as ideal boson and fermion gases. Sections [[.11]and [I9]consider the grand canonical partition functions
of some ideal boson, fermion, or (mixed) boson—fermion gases by monomial convolutions introduced in
Section[I.10] since the grand canonical partition functions of these ideal boson and fermion systems coincide
with monomial convolutions in Definition [[.23]

We observe the vacua that have the lowest Helmholtz free energies in these ideal boson and fermion
systems at different temperatures. For this purpose, we examine the grand canonical partition functions by
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the merged-log-concavity introduced in Section[I.3] which provides a mathematical framework to analyze
certain generating functions of rational functions by polynomials. Then, we obtain statistical-mechanical
phase transitions on vacua. In particular, zero particle vacua transition to non-zero particle vacua when the
temperature crosses critical thresholds, which are determined by the golden ratio and other metallic ratios.
Unlike Bose-Einstein condensations, particle numbers in the vacuum determined by the golden ratio continue
to increase as the temperature increases. The golden ratio emerges from geometric properties of almost strictly
unimodal sequences obtained by the merged-log-concavity, where the almost strictly unimodal sequences
realize sequences of Helmholtz free energies.

More explicitly, we discuss the following.

* Section considers the grand canonical partition functions of the ideal boson or fermion gases by
monomial parcels in Section[I.4] In particular, we discuss the grand canonical partition functions of

the extremal .Z and 2, which are the q% -linear and q% -quadratic monomial parcels in Section

* Section[I9]considers the grand canonical partition functions of the boson—fermion gases with or without
Casimir energies (Ramanujan summation of zero-point energies) by monomial convolutions, which
generalize monomial parcels.

Unless stated otherwise, Sectlon- assumes the thermodynamic beta 8 > 0 and chemical potential
p<O0withg=eP u' =—pup >0, andr=e*, where t represents the fugacity. Then, we have

0<gqt<l. (1.11.1)

The above 0 < ¢ < 1 is a temperature inequality, since the temperature 7T satisfies

B= TTB (1.11.2)

for the Boltzmann constant kg = 1.380649 x 10723 J-K~! by the Joule and Kelvin units J and K. In particular,
the temperature inequality 0 < g < 1 gives mathematical inequality (T.6.1)).

For background on the fundamental concepts of statistical mechanics in this manuscript, the reader is
referred to [KapGal, Chapter 1].

1.11.1 Ideal boson gases

Let §, / for A,A” € Q denote the Kronecker delta function such that &, 5, = 1 if A =4’ and ) » =0
otherwise. We cons1der the following operators and numbers to describe ideal boson gases.

Definition 1.25. Suppose A € Z>, and v € Q.

1. Letay; and az 5, be the boson annihilation and creation operators that satisfy the following commutator
relations: 7

[ab,lvaL}L/] = 8k,k’§

[y 2@ 2] = lapp,ap,2/] = 0.
2. Let

&1 =A—-veQ.
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Also, let Hy, ,, and Ny, be the Hamiltonian and number operators such that

Hyv= Y ev";ta;lab",l, (1.11.3)
A’EZ’ZI

sz Z a;lab’l.
AEZZI

3. Let v, = ((0,1 —v,0)) € Q*.

Then, the boson system B(1,v) defined by H;,,, and N, represents an ideal boson gas. The boson system
B(1,v) has the grand canonical partition function

L1 (qt) =Tr (e*‘3 (”W“Nb)) =Tt (e_ﬁH’” «e_'ulN">
such that

%(1,\/)(‘]71‘) = ﬁp)/h.v,q(t)v (1114)

where 2, ,(t) is the generating function of the monomial parcel .,  , in Definition|1.19
Let us obtain the f-expansion of Zp; ,)(¢,t) (known in physics [Dim, Chapter 1]). We have the eigen-

values ny € Zxq of az 2,ap,2. for the eigenvectors [ny) = \/%(al 2)"*|0), where ny indicates the occupation
- B ’ At B
number of a state A. Then, the system has the boson Fock space with basis vectors |n1,ny,...,n,...) such

that Y5 ¢z, ny < oo for states with finitely many particles. In particular, for A € Z> and ny, € Z>o,

—BHy, . ,—W'N, —BYirez.,mbn M Yacz., M
(n1,n2,...,ng,...le BHy. . =1 blay,ng, ... ng,...)=e Clz1 TAA g €lz17A

The Euler binomial identity in Definition [I.20| gives equation (I.IT.4), since multiplying the above over all
states A € Z>1, we obtain

Zawla) = T X ePusretm= T ¥ (@0 =(q" "s0)a" = 2,400

AEZEI "AEZEO AGZZI”},EZZO

For each n € Z>1, suppose that B(n, v) has n sub-systems with negligible interactions and B(1, v) represents
each sub-system. This system B(n,v) describes an ideal boson gas with the grand canonical partition function

L (1)".
1.11.2 Ideal fermion gases

Similarly, we consider the following operators and numbers for ideal fermion gases by the energies €,; in
Definition [L.25]

Definition 1.26. Assume A € Z> and v € Q.

1. Letay ) and a} 4, be the fermion annihilation and creation operators that satisfy the anti-commutator
relations: ’

{aga,a} =8
{a;'7laa}71’} = {af,lvaf,l’} =0.
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2. Let Hy, and Ny be the Hamiltonian and number operators such that

Hpv= Y, &aap,az,
AEZZI

_ t
Ny= Y apap.
/16221

3 Letypn = (1,1 —0,0)) € Q.

We obtain the fermion system F(1,v) of Hy, and Ny, which is of an ideal fermion gas. This system
F(1,v) has the grand canonical partition function

Zr(1)(go1) = Tr (e P07 )
such that
Zrn(@1) = Zrpa(t)- (L115)

Let us derive equation (I.TT.5). Let A € Z>,. Then, ny € {0,1} are the eigenvalues of a;’ a5 for the

eigenvectors |0) and a;‘ ,10) by the Pauli exclusion principle. This gives the fermion Fock space with basis
vectors |ny,na,...,n,...) such that Y3 .5 ny < oo. It follows that

144"V 1= Z e P ot
n;LE{O.,l}

— T — g, TU
(ny,no,...,ng,...le By . ¢ FNfny o, .ok, ... =e PLico, mén ,k 2“221"’1,
. 7+(3-)r SV ,
Since %y, 4(t) = Lrez.y 2 m = (=tq'7";q)« by the Euler binomial identity, equation (L.I1.5)

follows.[1]

Assume that for each n € Z>, F(n,v) has n sub-systems with negligible interactions and F (1, v) represents
each sub-system. Consequently, F(n,v) represents an ideal fermion gas with the grand canonical partition
function 2y, ,(1)".

1.11.3 Extremal .Z and 2 on free energies
Consider the 7-series coefficients of 2, ,(1)" and 2, ,(t)":

A
g)’b,v#{(t)n: Z Zf}v,m?t(‘]””)" 5
/’LGZZO

N\ A
%’f’w«,q (t)” = Z ZF,v,n,)L (quny )t .
AEZZO

These Zy ., 2 (¢""+) and Z ) (¢"™) of particle numbers A are the canonical partition functions of B(n,v)
and F(n,v). In particular, n € Z>; and A € Z>( give nyv,,,y;t(q""h") € R-o and Z;, , 3 (") € Rsg by

IThis equation (.TT.3) does not require |¢|= |e#'|< 1 [Koh, Lemma 1.2]. But, we assume u’ > 0, i.e., 4 < 0, for simplicity. See
also [Cow, Fig 1 and 2] for u in high temperatures.
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inequality (T-TT.T). We then recall the Helmholtz free energies (or free energies for short) Ay ,,, 2 (¢""+) and
Afyni (¢"") of the canonical partition functions such that

1o2(Zyna(d))
ﬁ b

o log(zf,v,m)t (q"‘Y/_v ))
ﬁ .

By inequality (T.6.4), the free energies satisfy the following inequalities of real numbers:

28,02 (@)= Y Apyaasi(gd ™) <O (1.11.6)
ie{—1,1}

287,02 @)= Y Apyaagi(dr) <O0. (1.11.7)
ie{-1,1}

Abw,n,l (q“yb‘v ) =

Af,v,n,l (q”Yf‘v ) =

The merged determinants of monomial convolutions decompose energy inequalities (T.11.6)) and (T.11.7)
into Laurent g% - or ¢""»-polynomials in Theorem|[1.16]
In particular, suppose ideal monomial parcels ﬁyb’vﬂ and ﬂy_mq that have phase transitions. Then, the
merged determinants decompose the inequalities into g-polynomials. Furthermore, by inequality (T-8:1)),

Ab.,%,l,l (q%) of the q%-linear monomial parcel .# are the lowest among A, 2(¢""+) and Af, 1 2 (¢"");
ie,0<g<1and A € Z> satisfy

1

Ay 112(4%) S Apyia(d™),
1

Ab,%ﬁl,l (q2) S Af.,V,l,k (quyf,v).

Also, A £302 (q %) of the q% -quadratic monomial parcel 2 satisfy the same inequalities to Ay ,, ;. Therefore,

& and 2 are extremal on the free energies A;, ,,; 2 (") and A FulA (¢""+), where the corresponding .7y,
and yyf'wq are ideal monomial parcels that have phase transitions.

1.11.4 Phase transitions

We consider the n-fold convolutions .Z*" and 2*" of the extremal .Z and 2. Then, we have

Bn, ) (@1)" = L ()" = L (1),
| (@1) = Za(t)" = Zom(r)

Also, since uy | =uy | = 3. let
4 .,
-,é-, s )>AEZZU,
Aon(a?) = (Aoaalad) =47y, ("),
>

Then, since 8 > 0, the positivities in Theorem yield the following phase transitions on these free energies
by critical points in the mathematical sense of Section[T.6]
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Corollary 1.27. (Corollary by the terminology of Section[I.11) Let n € Z>.

1. Then, we have the almost strictly unimodal sequences —A =y’,,(q%) by the critical point 0 < cy , < 1

and modes my ,, (q%) as follows.

(a) Foreach (0 < q% <CgLp Mgy (q%) = 0 gives the strictly decreasing sequence:

1 1 1
—A 1(q2) > ~Ag201(q2) > Az n2(q?) > ...
s{f-,n-,mf,n(qz )

(b) Ifq% = Cqpp, then mgn(q%) = 0 gives the hill and decreasing sequence:

=

1 1
—A 1 (qz)__Af,n,l(q )>_Aff,n,2(q2)>""

Lnmyg , (qf )

(c) Foreach 1> q% >con mﬁg,n(q%) € Z> gives the two-sided hill sequence:

Bl—=

—Agno(q?) < <A )>—A (q2)>....

(¢

1 1
fﬁ”:mf,n(qz) H(Zvn;mi"n(qj)"'l

. . 1 .. .
2. We have the same for the almost strictly unimodal sequences —A g ,(q2) by the critical point 0 <
1
Ccon=cCyy<land modes mg,(q2).
3. In particular, we have the metallic ratios

nt VT Ed

Csn=Co9n= )

which is the golden ratio for n = 1.

By equation (T.TT.2), as the temperature T increases, Corollary [I.27]implies particle-emergence phase
transitions in the free energy vacua:

D=
=

A |
ja”vm.f.n<q7 ) (q

))s

(q?) =min(Ag,(q?)).

) =min(A ¢ ,(q

Q,n,mg‘n (¢2)

Specifically, a low temperature 7" such that 0 < q% < cg, gives the zero particle mode

myn(q?) =maon(q?) =0,

. . 1 . .
while a high temperature T such that 1 > g2 > c.#, gives the non-zero particle mode

1 1
mff,n(qz )7m9,n(q2 ) > 1.
In particular, the temperatures 7, of c» , = c 9, are

1
T, = K

“2log <—"+ V2"2+4) (138 x 10-23)
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such that

T =0.75--- x 10K,
T, =041---x 107K,

There are critical points even for lower temperatures, because we have critical points on B(n,v) and F (n,v)
of n € Z>; and v € Qy, solving

for0 < ¢!~ % < 1.
We now reinterpret Flgure Figure [3|illustrates the phase transition of the boson free energies A ¢ 1 (¢2)
with the zero and non-zero particle vacua by the golden ration ¢ & ;. We have a similar figure for the fermion

free energies A o | (q% ).

Agia(q?)

| L L L | L L L L I L L L |

0 e 8 T ———

D=

Figure 3: Ay 5 (q2) of g = 0.4 (top), g% = c.z; (middle), and g2 = 0.8 (bottom)

Bose-Einstein condensations differ from the phase transitions in Figure[3] because non-zero particle vacua
keep appearing for higher temperatures. More precisely, for each A € Z>, we obtain the A-particle vacuum
at the temperature that solves
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. . . . P I
It is natural to consider many states at high temperatures. But, instead of the infinite product (—#¢2;¢)cw,
. . . . 1 .
there is the following finite analog to the phase transition on A 2 ;(¢2). Consider

1 3 1 .
(~1q7:q)2 =1+ (q? +¢2 )i+ = Y, Flg?)it"
i€[0,2]

Then, F(q%) = (F(q%),' € R>o> 02] for each 0 < q% < 1 is strictly log-concave by the discriminant of
1 :

i€[0,2
the #-polynomial (—#¢2;q)2 (c.f. inequality (T.9.1)). We have the critical point ¢ = 0.68233... that solves
1= q% + q%. Therefore, F (q%) is a strictly decreasing sequence for 0 < q% < ¢, ahill and decreasing sequence
for q% = ¢, and a two-sided hill sequence for ¢ < q% < 1.
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2 Notations for families, rings, and some g-analogs
We fix some notations to develop our theory of the merged-log-concavity.
2.1 Families
Definition 2.1. Sulzpose a family F = (F; € U)icr of some set U. Then, F is flat if F; = Fj whenever i, j € L.
Let L(F) =#(I) € Z. Also, forue U, let L,(F) =#({i €| F, = u}).
Also, we adopt the following notation of families by rings.

Definition 2.2. Let R be a commutative ring. Consider families F = (F; € R);c; and F' = (F/ € R),.,.

whenever every Fﬁ € R is defined.

i€l

/ ./
I Let ¥ = (F" € R)

Let F+F = (F+F)),,

l

Let FoF' = (F;F}),., for the Hadamard product (term-wise product).

For a scalar A € R, suppose F" = (A.),c;. Then, let A+ F =F £ A =F"+F and A\F =FA =F"oF.

A N

LetY F =Y ;i Fi and [1F =[l;c; Fi whenever they are defined.
We define the following tuples by increasing integers.

Definition 2.3. Suppose d € 7>, and A € 7>.
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1. Let To(d,A) = {m ez4 [ A <mp<--<my < 2,2} and T (d,Ap) =T (d,(1,A,)).

2. LetT<(d,A)={meZ | My <m <...<my <A} and T<(d,2) =T<(d,(1,12)).

We adopt the following notation by tuples. For our convenience, let [s] = [(s1,s2)] = [s1,52] if s € Z2,
Definition 2.4. Consider d,d' € Z>1, A € T<(2,d), andl = Ay — A + 1. Foraset U, let f € U, m € U,
m' € U?, andm" € U'.

1. Let m+-m' = (my,...,mgq,m},...,ml,) € Ut for the concatenation. If 11 € Z>1, then let m*H =

m+---+m € U for the u-fold concatenation.

2. Let m” = m-+m" € U for the palindromization.

. _ 1
3. Letm[A) : ] = (m,llﬂ-,l)ie[[l]] € U' for the subtuple.
4. Suppose that U is a ring. Then, let
m' 4y m=m+,m" =ml: A — 1] (m[Ay : d) +m"[1: 1) #m[Ay+1:d] € U¢

for the segment addition. Also, let m" +) m = —(—m" +, m) and m —y m" = —(m" —; m) for the
segment subtraction.

Notice that when L(m) = [, then m" 4+, m = m+, m" = m+m". Hence, m" £+, m are well-defined.
2.2 Rings

We adopt the following notation for rings of polynomials, Laurent polynomials, and rational functions. Unless
stated otherwise, let

X={X,.... X} = {Xi}icqp

denote a finite set of free indeterminates X, ..., X}, for some L € Z>. We often refer to X as a coordinate. If
needed, we write X; = {X 1,,~}i€[[Llﬂ X0 = {X2~,i}ie[[L2]} ,... for multiple finite sets of free indeterminates.

First, Q[[X]] = Q[[X1,...,X.]], Q[X] = Q[X1,...,Xr], and Q[X*!] = Q[X{"',..., X;*"] denote the rings
of formal power series, polynomials, and Laurent polynomials, respectively. We write an element f in each
of these rings as

_ . CyJiyl2 JL
f_ Z f]l7]27"'1.1LX1 X2 XL
JEZL

possibly with zero fj, j, .. j, € Q. If 0 # f € Q[X*'], then degy, f € Z and ordy, f € Z denote the degree and
order of f as the Laurent X;-polynomial. Let —degy. (0) = ordy, (0) = o for our convention.

Second, Q(X) = Q(Xy,...,Xr) is the field of rational functions. We often look at the real values of
rational functions. For this, let f € Q(X) and r = (ry,...,r.) € RE. Then, we assume

fr)=f'(r) eR,

if f=f €Q(X)and f'(r) € R. We write f(r) by f(r1,...,r.) as well. For a family F = (F; € Q(X))

i€l
and r € RE let F(r) = (F(r); = F(r) €R)

iel*
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2.3 Some g-analogs

We adopt the following tuple notation for the g-analogs in Definitions [T.4] and Forl € Z>,, we call
x € Q(X)' an indeterminate if each x; is an indeterminate.

Definition 2.5. Let [ € Z>1 and m,m’,w € ZL ;. Suppose an indeterminate x € Q(X)". Let

(m)y = [T (ma)3,

iel]

]y = T il
ie[l]

]ty = [T miltyr
i€l

m]"” m; |

]I

for the x-Pochhammer symbol, x-number, x-factorial, and x-binomial coefficient, respectively.
In particular, ifx = 1'(q) for an indeterminate q € Q(X), then let (m)y = (m)Y, [mly = [m]y, [m]!y = [m]'Y,
and [;;’,];V = [::,];V Also, we often omit the superscript w when w = ll(l).
3 Fitting condition
We first introduce the following notions of gates, c—operator, o-plus and 6-minus, and G-equivalence.
Definition 3.1. Suppose s € 2. We call s a gate if s| < o0 and s\ < s5. Suppose that s is a gate.
1. We call so —s1 + 1 the width of s.
2. We call s finite if the width of s is finite; otherwise, we call s infinite.
We now extend the notion of fitting condition in Definition[T.9]
Definition 3.2. Forl € 7>y, letm € Q(X)" and k,k' € Q(X)?.
1. We define the c-operator o (k) € Q(X)! such that
o(k)i=Y kli+1:21—i+1] foreachie [I].
2. InQ(X), let
mEk=m+o(k)",
mBk=m—o(k).
We call EH and 3 the c-plus and ¢-minus.
3. We call k and k' o-equivalent (or equivalent for short) if (k) = o (k).
More explicitly, o-equivalent k and k' satisfy the following equations:

(mEk); =m;+ 0 (k)—ir1 = (mEK);
(mEk), =m; — G(k)i = (mEk'),-.
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Remark 3.3. For [ € Z>1, leta € Q(X)’. This allows expressions such as a4 a+a+a and aca —a. To
clarify, we adopt the following order of operations: (1) flip, palindromization; (2) o, scalar multiplication; (3)
4, B, &; (4) tuple addition/subtraction; (5) scalar addition/subtraction. Other than the order of operations, we
use the parentheses and center dots to avoid confusion.

Definition 3.4. For [ € Z>1, consider m,n € 7! and k € 7* with a gate s > 0. Let u = (s,1,m,n, k). We call
I, m, n, and k the width, left ladder; right ladder, and support of L. Also, we call k| the free parameter of L.

1. In 7%, we define

v(k) = (}_k[1: i])iem ,

v(m,n,k) = v(k) +m+n.

2. Leta=v(k) and b= v(m,n,k). We call U fitting if its ladders and support satisfy the following:

m+-n € [[s]]y7 (3.0.1)
blg...§b1<b1+1§...§b21, (3.0.2)
OgalS...§a1<al+1§...§a21. (3.0.3)

We refer to (3.0.1), (3:0.2), and (3:0.3)) as the inclusion condition, upper slope condition, and lower
slope condition of L.

3. We call u wrapped if (mEk) 4 (n@k) € [s]*.

Compared to Definition [I.9] Definition [3.4] not only has the gate parameter s, but also employs the ladder
and support parameters m, n, k for later computations.

Remark 3.5. Let y = (s,/,m,n, k) be fitting. We call k| the free parameter of 1, since whenever k; + A € Z>o,
= (s,l,m,n,(ky +A)4k[2:1]) is fitting. Also, u is wrapped if and only if p’ is wrapped. Still, the free
parameter gives different polynomials with positive integer coefficients later by the merged-log-concavity.

Example 3.6. Let [/ = 2. Suppose a fitting (s,,m,n,k) with a = v(k) and b = v(m,n, k). Then, we have the
following diagram, where m;, n;, and k; indicate the differences along the inequalities.

b1 < by< b3< by
IVmyp 1Vmy Vnp  Vnp

ki ko k3 kg
0< a1 < a< az< ay,

Let us state the following lemmas for our later discussion.

Lemma 3.7. Suppose a fitting (s,l,m,n, k) with a = v(k) and b = v(m,n,k). Then, we have the following
inequalities.
1. k=(ai,ar—ay,---,ay—ay_)>0.

22.b>a>k >0.

Proof. Proof of Claim[I} By the lower slope condition, k; = Y k[1 : 1] =a; > 0and k; = Y k[1 : i] — L k[1 :
i— 1] =a;—a;_1>0.
Proof of Claim[2] By the inclusion condition, a > k; by Claim[[|Jand b—a =m+n > 0. O
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Lemma 3.8. Forl € Z>y, let myn € 7! and k € 7Z* with a = v(k) and b = v(m,n,k). Then, each i € [I]
gives axj_ij+1 —a; = G(k),’ and by;_j 1 —bi=n_ip1 + O'(k),' —m;.

Proof. Wehave ay_jr1 —a; =Y k[1:21—i+1] =Y k[l :i] = o (k);. Also, by i1 —bi =Y k[1: 2l —i+ 1]+
ny_ipr — (L[ i) +my) = o (k)i +ny—ip 1 —m. O

Lemma 3.9. Suppose a fitting (s,l,m,n,k). Then, we have the following inequalities:
G(k)] > G(k)z >...> G(k)l :kl+1 > 0;
n1+6(k)1 —my > n_ +G(k)2—m2 >...>2n —I—G(k)l—ml > 0.

Proof. Since o(k); = Y k[l +1: 1+ 1] = k;1, the inequalities hold by Lemma|[3.8]and the slope conditions.
O

In particular, we have the following equivalence for the width-one fitting condition.

Lemma 3.10. For [ = 1, suppose m,n € Z! and k € 7! with a gate s > 0. Then, (s,l1,m,n,k) is fitting if and
only if m+n € [s]*, k> (0,1), and ny +ky > my.

Proof. First, m++n € [s]* is the inclusion condition. Second, for a = v(k), the lower slope condition is a; =
ki > 0and a, —a; =k > 1. Third, for b = v(m,n, k), the upper slope condition is b —b; =nj +ky —m; >0
by Lemma|3.8 U
4 Base shift functions

By gates and exponentiations, we extend the base shift function in Definition[I.7]

Definition 4.1. Let w € Z>o, A € Z, and p € Z> with a gate s > 0. Consider an indeterminate q € Q(X)
and non-zero ¢(q) € Q(q). Then, in Q(X), we define the base shift function

w
e
We have the following positivities.
Lemma 4.2. Let A € [s]. Then, we have the following.
1. Ifeitherw=0,A =0, orp =1, then b(s,w,A,0,p,¢4,X) = 1.
2. Ifw=1and A > 1, then b(s,w,A,1—q,p,q,X) =[Tnepajlplypr >4 0.

Proof. ProofofClaim When p =1or A =0, ¢(g°)*[1]!,0 and ¢(q)*[A]!, of b(s,w, A, 9, p.q,X) coincide.
Also, w =0 implies b(s,w,A,¢,p,¢,%X) =b(A,9,p,9)" =1by L € [s].

A
ProafofClaimE We have b(s,w,A,1 —q,p,q,%X) = (M))qp . O
q
Let us prove Lemma|[T.8]
Al
Proof. Statement gives Statementby Lemrna We prove the converse. If A = p =2, then [[J]?p = %
q

is not a polynomial. This implies ¢(g) # 1. Suppose A = 1. Then, %qp)) >, 0 for each p € Z>,. Hence,
#(q) is a product of W,,(q) = 1 — g™ for some m € Z, since ¢(0) = 1. Statement 2] now follows from the
irreducibility of ¢(q). O
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For [ € Z>1, x € Q(X)", and ¢ (x) € [Trep; Q(x;), we write ¢ (x); = ¢;(x;) € Q(x;). We then define the
following base shift functions over tuples.

Definition 4.3. Assume a gate s >0, [ € Z>1, w € ZZZO, m,n € 7!, and p e lel‘ For an indeterminate
x€Q(X), let ¢(x) € [Ticp) Q(xi) such that ¢;(x;) # O for each i € [I]. The base shift functions are

B(sal7wama¢ap7xax) = H b(s7wi7mia¢i7pi7xiax) € Q(:{)a
i€l
B(s,l,w,m,n,¢,p7x,.'f) :B(sJ,w,m,¢7p,x7}f)B(s,l,w,n,(P,p,x,f{).

5 Squaring orders

We introduce the notion of squaring orders on rational functions. This is to discuss not only polynomials
with positive integer coefficients, but also the positive real values of rational functions in some generality. We
adopt the following notion (see [GilJer]).

Definition 5.1. Suppose a set R.

1. A binary relation > on R is called a partial order if > satisfies the following conditions.
(a) f = f foreach f € R (reflexivity).
(b) fi = faand fr = f3imply fi = f3 (transitivity).
(¢) f1 = frand fr = f1 imply fi = f> (antisymmetricity).

Suppose a binary relation > on R. If f > f never holds (irreflexivity) and >~ has the transitivity, then
> is called a strict partial order on R. We also refer to a partial order and strict partial order as an
inequality and strict inequality if no confusion occurs.

2. Let R be a ring. Assume a partial order = on R. Then, R is called a partially ordered ring of = (or
>-poring for short) when R satisfies the following conditions.

(a) fi = f2and f3 € Rimply fi+ f3 = f2+ f3 (additivity).
(b) f1 = 0and f, = 0imply fif» = O (multiplicativity).

Similarly, if a strict partial order >~ on R satisfies the additivity and multiplicativity, then R is called a
strictly partially ordered ring of — (or strict —-poring).

Let us recall the following properties of porings.
Lemma 5.2. If R is a =-poring and strict —-poring, the following statements hold.
1. (a) f > gisequivalentto f —g > Q.
(b) fi = frand g\ = g imply fi+g1 = fo+ g

(c) fi= frand g = 0imply fig = fo8.
(d) fi = fpb=0and g, = g» = 0 imply fig1 = fog> = 0.

2. (a) f > gisequivalentto f —g > 0.
(b) fi = faand g = 0 imply fi8 >~ fog.
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(c) f1 > frand g1 > g2 imply fi+g1 = f>+g2.
(d) fi= f2=0and g = g = 0imply fig1 > f282 = 0.

Proof. Proof of Claim[ld] By the additivity and —g € R, f = g implies f — g = g — g = 0. Conversely, by
8ER f—g=0Ogives f=f—g+g=0+g=g.
Proof of Claim[IB] Claim [Tb] holds by the transitivity of >, since f1 +g1 = f>+ g1 by g1 € R, and

ft+g1=fatgby LER
Proof of Claim[Id Claim[Id]follows from Claim [Ta] because fi — f> = 0 by fi = fo, and (fi — f2)g =
f18& — f8 = 0 by the multiplicativity of >.

ProofofClaimlE By Claim f1 = fo gives fig1 = fg1. We also have fig1 = fog1 = f2g2, since
g1 >~ g implies f>g1 = f>g>. Hence, f1g1 = f>g2 by the transitivity of >, and f>g> > 0 by the multiplicativity

of f2,82 = 0.
We now obtain Claims 23] [2c] 2b} and [2d} replacing = by > in the above. O

Let us consider the following active domain of a binary relation.
Definition 5.3. Suppose a binary relation > on a set R. Then, let
A(>,R)={f€R|f>gorg> fforsomegcR}.
We now introduce the notion of squaring orders on general rings.
Definition 5.4. Let R be a ring. Let >,> and >, > be binary relations on R. Suppose the following conditions:
1. f > gimplies f > g (>-> implication);
2. f > gimplies f = g (>-> implication);
3. f = 0implies f > 0 (half =-> implication);
4. f > O0implies f > 0 (half —-> implication).

We refer to these four implications as the squaring implications of >,> and >, >.
Also, suppose the following conditions:

1. eachof f = g > hand f > g = himplies f > h (semi-strict transitivity);

2. we have the >-poring A(>,R) and strict >-poring A(>,R) such that A(>,R) = A(>,R) (>->-poring
equality);

3. we have the =-poring A(=,R) and strict =-poring A(>~,R) such that A(>,R) = A(>,R) (=->-poring
equality);

4. A(>,R) C A(>,R) (=->-poring inclusion).
Then, we call =, squaring orders on (R,>,>). Also, we call > a strict squaring order of .

We employ the terminology “squaring orders” by the following implication diagram (‘“‘square diagram +
ring” orders):
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Also, notice that >~ is not necessarily “larger than or equal to”, since f > g and f # g do not imply f > g.
Let us state the following lemma.

Lemma 5.5. Suppose binary relations >,> on a ring R with the >-> implication and >->-poring equality.
Also, suppose binary relations -, > on R with the »->-poring inclusion and ->-poring equality.

1. The half =-> implication gives the >=-> implication.
2. The half >-> implication gives the —-> implication.

Proof. Proof of Claim|[l] Let f = g. Since A(=,R) is a =-poring by the >=->--poring equality, the additivity
of = gives f —g > 0. Then, f — g > 0 by the half >-> implication. Also, the >=->-poring inclusion gives

8 €A(=,R) CA(>,R).

We deduce f > g, since A(>,R) is the >-poring by the >->-poring equality.
Proof of Claim[2} Claim 2] follows similarly, since we have

A(~,R)=A(>,R) CA(>,R) =A(>,R)
by the >=->-poring equality, >~->-poring inclusion, and >->-poring equality. O
Then, we verify the following implications by squaring orders.
Proposition 5.6. Squaring orders =, on (R, >,>) satisfy the following.
1. fi = frand g1 = g imply fi + g1 = fr+ g
2. fixf2=0and g - g = 0imply fig1 > f282 = 0.
3. fiz fa=0and g > g2 = 0imply figi > f282 = 0.
Proof. Proof of Claim By the >-> implication, g; € A(>=,R). Then,
h+ega =+

by fi = f> and the additivity of =. Also, f> € A(>,R) by the =->-poring equality. We deduce

HLt+g-fH+e

by g1 > g» and the additivity of . Claim[T]holds by the semi-strict transitivity of >, .

Proof of Claim[2] By the semi-strict transitivity, f; > f> > 0 implies f; > 0. Then, fig1 > fig> follows
from g; > g» and Claim [2b]of Lemma[5.2] Furthermore, fi > f> by the >-> implication. Then, fig> = f>g»
by g> > 0 and Claim[Ic]of Lemma[5.2] By the semi-strict transitivity, we deduce

fig1 = 8.
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Also, f2g> >~ 0 holds by f>, 8> > 0 and the multiplicativity.

Proof of Claim[3] Since g; > 0 by the semi-strict transitivity on g; > g» > 0, we have g > 0 by the >->
implication. Then, fig1 = f>g1 by fi = f> and Claim [Ic]of Lemma[5.2] Also, since g; > g and f> > 0,
Claim [2b]of Lemma[5.2] gives fog1 > f2£>. Therefore,

fig1 = 28

by the semi-strict transitivity. We also have f>g> > 0 by the multiplicativity, since f> = 0 by the >->
implication on f, > 0, O

We state the following for our later discussion.

Corollary 5.7. Suppose squaring orders =, on (R,>,>). Let f1,f>,81,82 € R such that f| = f> = 0,
g1~ 0, g1 = g2, and either g, = 0 or gop = 0. Then, we have f1g1 = f>g> = 0.

Proof. The assumption says g1 = g2 > 0 by g» > 0, or g1 > g> = 0 by g = 0 and g; > 0. Hence, Claims 2]
and [3in Proposition[5.6]imply the assertion. O

Assume that a semiring U C Q satisfies U 2 {0}, while U > 1 is not necessarily true. We call a semiring
U C Q nonnegative if U = Uso = {u € U | u > 0}. We introduce the following binary relations to obtain
squaring orders.

Definition 5.8. Let Ox = {r ERL|0O<ri < 1foreachic [L]]} Consider a nonnegative semiring U C Q.
Then, we write the following six binary relations on Q(X).

1 f>%¢iff,gcQX]and f—g € U[X]. Also, f>% gif f >% gand f # g.
2. f>3€i1glffvg€(@[%il] and f — geu[xil} Also, f>xj:1glff2xilgandf7ég'

3. f20y 8 f(r),8(r) € Rand f(r) = g(r) for each r € Ox. Also, f >0, gif f >0, g and f(r) # g(r)
foreachr € Ox.

and >xxl=> 220

For simplicity, let >x= >3€ , >x= >3€ ,>3€i1_> il

xil’

The open-unit hypercube Ox generalizes that of inequality (I.6.1). Also, O gives the >0, - and strict
>0, -poring A(>0,.,Q(X)). To prove this, we state the following lemmas.

Lemma 5.9. Let f € Q[X,]. Then, f(r) =0 for each r € Ax, if and only if f =0 € Q[X].

Proof. The if part is clear. Let us prove the only if part. Suppose X = {Xlai}ie[[Ll}]' When L, = 1, it follows
from the division and the infinite cardinality of Ax,. Let us use the induction on L;. Suppose

QXxi]af= Z Fiveni, 11 leLLl 7 0.

jezh
This gives u € ZL such that fm’_,_ml # 0. Then, for X, = {Xz; :X17i+1}ie[[L2]] of L, = L — 1, we have
j ]L
Q[xz] >28= Z f#l,j17~-~».iL2X2].ll' 2 7é 0.
jezta
The induction now gives u € Ax, such that g(u) # 0. Also, Q[Xi] 3 h= f(Xi,u;...,ur,) # 0. Hence, the
induction gives v € Ax, such that i(v) # 0. This implies w = (v1,uy,...,ur,) € Ox, such that f(w) #0. [
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Lemma 5.10. [f R is a strict --poring such that @ # A(>,R) C R, then A(>,R) =R.

Proof. We have some f = g. Then, f — g = 0 by Claim [24] of Lemma Hence, each h € R satisfies
f — g+ h > hby the additivity of >. O

Furthermore, we adopt the following notation for our convenience.

Definition 5.11. Suppose F,G € Q(X)% Then in Q(X), let

. A &)
det(F,G)—det[G Gz]’

Frac(F) = sz1 £0.

We obtain the following characterization and poring properties of A(>o,.,Q(X)) and A(>0,,Q(X)).
Proposition 5.12. We have the following.
A0y, Q(X)) = { € Q(X) | £(r) € R for each r € Oz}
A(>04,Q(X))
A(>0,,Q(X)) is a strict >, -poring.
) =

A(>0,,Q(X)).

Proof. Proof of Claim Claimholds by the reflexivity f >o, f for f in the right-hand side.

Proof of Claim E] First, if fi >0, f> >0, f3, then fi(r) — fo(r) > 0 and f>(r) — f3(r) > 0 for each
r € Ox. Also, fi(r) — f3(r) > 0 for each r € Ox. Then, we obtain the transitivity fi >0, f3.

Second, if fi >0, f>» >0, fi.then fi(r) = f2(r) € R for each r € Ox. This gives F,F> € Q[X]? such
that f; = Frac(F;) with [Ticpo) Fi.1(r) # 0 and det(Fy,F>)(r) = O for each r € Ox. By Lemma the
antisymmetricity f; = f> holds.

Third, if fi >0, f> and f3 € A(>0,,Q(X)), then the additivity f; + f3 >0, f2 + f3 holds by Claim
and f1(r) + f3(r) — (f2(r) + f3(r)) = f1(r) — f2(r) = O for each r € Ox.

Finally, if f1, f> >0, 0, then the multiplicativity f| f> >0, 0 follows from fi(r) f2(r) > 0 for each r € Ox.

Proof of Claim 3] Claim [3]holds by the argument similar to the above without the reflexivity.

Proof of ClaimH} Claim [4]follows from Lemma|5.10] since 1 >0, 0. O

IS a4 20y -poring.

4. A(Zox, (

We now introduce the notions of squaring implications and squaring orders on X.

Definition 5.13. We refer to the squaring implications of =, = and >0, ,>0, on Q(X) as the squaring
implications of =, on X. Also, we refer to squaring orders =, on (Q(%), Z0gs >0x> as squaring orders
on X.

To obtain squaring orders on X, we state the following lemma.
Lemma 5.14. We have the following.

1. (a) A(ZY,Q(X)) is the >%-poring such that A(>Y,Q(X)) = Q[X].
(b) A(>%,Q(X)) is a strict >Y-poring.
(c) A(Z%,Q(X)) =A(>%,Q(%)).
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2. (a) A(Zgi] ,Q(X)) is the Zgi] -poring such thatA(Zgjei] ,Q(X)) = Q[x*).

(b) A(Z%il ,Q(X)) is a strict >%il-p0ring.

(c) A(Z%i] a@(x)) :A(>%i| 7@(:{))

Proof. Proof of Claim First, by 0 € U, we have the reflexivity f >§ f for f € A(>Y,Q(X)). Second,
A(Z%,@(}Z)) = Q[X] by the reflexivity. Third, let f; 2% f Z% f3. The transitivity f; >% f3 follows, since
fi—f3=(fi—f2)+(f2— f3) € U[X] by the semiring U. Fourth, if f; >§ f> > fi, then the antisymmetricity
fi = f follows, since fi — f>, f> — fi € U[X] and U = Ux. Fifth, if fi >% f> and f3 € A(>Y,Q(X)), then
the additivity f] + f3 le] fr+fiholdsby (fi+/3)—(HL+f3)=fi—fr € U[X] Finally, fi, f> Z% 0 implies
the multiplicativity f] f> 2% 0 by the semiring U.

Proof of Claim Claim [1b|follows as above, since f >gJ€ g demands f # g.

Proof of Claim|l¢f Lemma gives Claim , because there is f € U such that f >g]€ Oby U 2{0}.

Similar arguments hold for Claims [2a] [2b} and O

Hence, we have the following squaring orders.

Proposition 5.15. The binary relations 2%, >%, Z%il, >(3/€i1, >04s >0y are squaring orders on X such

that >13]€, >13]€i], >0, are strict squaring orders of 2%, Zgip >0y, respectively.

Proof. First, we establish that >0,., >0, are squaring orders on X. By

Claims [2] 3| and [] of Proposition [5.12] >0y, >0, on X satisfy the >0,->0,-poring equality. Also,
>0y,>0, have the squaring implications on X by Definition|[5.8}

We prove the semi-strict transitivity of >0, >0, . Assume

f1 20y f2 >04 f3-

Then, fi(r) — f2(r) > 0 and fo(r) — f3(r) > 0 for each r € Ox. We deduce f; >0, f3 by fi(r) — fo(r) +
fo(r) = f3(r) > 0. Similarly, f| >0, f> >0, f3 implies f; >0, f3. Therefore, >¢,.,>0, are squaring orders
on X such that >, is a strict squaring order of >o,..

Second, we establish that >4, >{ are squaring orders on X. By Claim of Lemma|5.14] >4, >4 give
the >0,->0, -poring equality. The squaring implications of 2%, >Y on X follows from Definition Also,
we have the 2%—2035 -poring inclusion by Claim , of Lemma and Claims |1|and [2| of Proposition

We prove the semi-strict transitivity of Z%, >%.. Suppose

A>%A>5 A

Then, f1 — f> € U[X] with f1 — f # 0. Also, f> — f3 € U[X]. We obtain f; >§ f3 by fi — f3 € U[X], since

fi—=f=(fi—f)+(fa—f3) #0by U =Usg. Also, fi >{ o >¥ f3 implies f; >§ f3. Hence, >§, >4
are squaring orders such that >% is a strict squaring order of Z%.
Similar arguments hold for 2Iéil , >13]Eil . O

We compare squaring orders by the following terminology.

Definition 5.16. Ler X C Q(X,). Assume squaring orders O; = {=;,>;} on X; for i € [2]. Then, O, is
compatible to Oy if the =1->» and >1->7 implications hold. If O is compatible to Oy, then we write

0,3 0.

For instance, {Zoxv >09€} D O for any squaring orders O = {~, >} on X by Lemma
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5.1 Admissible variables

We discuss polynomials and their values in real numbers by squaring orders. For an indeterminate x € Q(%),
the binary relation >, on Q(X) does not have to be a squaring order on X. We define the following notion to
obtain >, as a squaring order.

Definition 5.17. Let x € Q(X) be an indeterminate. Suppose squaring orders O = {>,=} on X. We call x
O-admissible (or admissible for short) if x and O satisfy the following conditions:

1. f >, 0implies f >~ 0 (half >,-> implication);
2. 1 >0y x (upper condition of x on X).

Similarly, suppose an indeterminate x € Q(X)! of | € Z>1. Then, we call x O-admissible (or admissible for
short) if each x; is O-admissible.

Also, we extend Definition for an indeterminate x € Q(X)’, whose elements are not necessarily
algebraically independent over Q.

Definition 5.18. For | € Z>1, suppose an indeterminate x € Q(X)'. Also, suppose a nonnegative semiring
UcQ.

1. LetUlx] = {f eQX)|f= Zfezlzo Fivo j,x{‘ ...x{’for some finitely many non-zero fj, . j, € U}.

3. Let f>{ gif f,g € Qx| and [ —g € Ulx]. Also, f >Y g if f >V g and f — g #0.
4. Let f Zf{]ﬂ gif f,8 € Q'] and f — g € UIx™"]. Also, f>)lcjil giff Zgﬂ gand f—g #0.

For simplicity, if x = (q), then let >g=>§1, 23225, >;ji]:>i]i], and Z;Ji,zziji]. When U = Z>o, we

often omit the superscript Y for the binary relations above.

By admissible variables, we shall obtain porings for these binary relations. First, we state the following
general strict-to-non-strict transitivity by an indeterminate.

Lemma 5.19. Suppose squaring orders O = {=,>} on X and an indeterminate x € Q(X). Then, the half
>,-> implication yields the half >-> implication.

Proof. The assertion holds by the reflexivity of >, since f >, 0 implies f >, 0 or f =0. U
Second, we obtain the following inequality implications by admissible variables.

Lemma 5.20. For squaring orders O = {=, =} on X, consider an O-admissible x € Q(X)! of I € Z>1. Then,
we have the following.

1. The half >,-> implication holds.
2. The half >x-~ implication holds.
3. f>Y 0implies A € Z> such that A f = 0 and AL f = 0 for each p >, 0.
4. >V 0implies A € Z>1 such that Af = 0 and Apf = 0 for each p > 0.
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S5 f Zijﬂ 0 implies a monomial A > 0 of variables x; such that Lf = 0 and A f = 0 for each pu >y 0.

6. f >gi1 0 implies a monomial A >, 0 of variables x; such that A f = 0 and Al f = 0 for each y >, 0.

Proof. Proof of Claim[l] Since f >,, 0 implies f > 0 by Lemma[5.19} Claim|T]follows from the additivity
and multiplicativity of >.

Proof of Claim|2] We deduce Claim|z| similarly from the half > - implication.

Proof of Claim|3| There exists A € Z>; such that Af >, 0 by U = U C Q. It follows that A f = 0 by
Claim[T] The latter inequality holds by the multiplicativity of >, since u >= 0 by Claim[I}

Proof of Claim[], We deduce Claim[4]similarly from Claim 2}

ProofofClaim Recall that f = ZjeZ’ fjl,m’jlx{l ...x{’ for some finitely many f;, . ; € Q. Hence,
there is u € ZL | such that u+ j > 0 whenever f}, .. j, € Q0. This gives a monomial 2 = vxj'...x}" >, 0
for some v € Z> such that A f >, 0. By Claim we deduce A f = 0. The latter inequality follows from the
multiplicativity of >, since i = 0 by Claim/[T]

Proof of Claim@ We have a monomial A = vx{'...x;" >, 0 for some u € Z. | and v € Z> such that
Af > 0. Also, Af # 0, since Q[X] is an integral domain and A # 0. We obtain Af >, 0. In particular,
Af > 0by Claim The latter inequality holds by the multiplicativity of > and Claim O

By the inequality implications above, we deduce the following porings.

Proposition 5.21. Suppose squaring orders O = {=,=} on X. Let | € Z> and x € Q(X)! be O-admissible.
Then, we have the following porings.

1. (a) A(> x,(@( )) is the >Y-poring such that A(>Y ,Q(X)) = Q[x].
(b) A
(c) A

,Q(X)) is a strict >V -poring.

(=7

(>7,Q(%)) =AY, Q(X)).

2. (a) A(> 1,Q( ) is the >Ui1—p0rmgsuchthatA( il,Q( )) = Qptl].
(b) A(ZY,

(c) A(=

"1, Q(X)) is a strict >Y, Lx1-poring.

v QX)) =AG1,,Q(X)).

Proof. Proof of Claim First, the reflexivity f > f holds for f € A(>Y,Q(X)) by 0 € U. Also, A(>Y
,Q(X)) = Q[x] by the reflexivity. Second, f >Y ¢ >V h implies the transitivity f >V h, since f —g,g—h €
Ulx] gives (f —g) + (g —h) € U[x] for the semiring U. Third, we prove the antisymmetricity. Let f >V ¢ >V .
Then, Claim [3|of Lemma [5.20| gives 41,4, € Z>, such that A;(f —g) = 0 and (g — f) = 0. The former
gives LiA2(f — g) = 0 by 4> >, 0 and Claim [3]of Lemma[5.20] Similarly, the latter gives A;A2(g — f) = 0.
Then, the antisymmetricity of = yields A; 4> f = A1 A»g. In particular, A1 A, (f — g) = 0 and hence f = g, since
Q[X] is an integral domain and A; A # 0. Furthermore, the additivity and multiplicativity of >Y holds by the
semiring U.

Proof of Claim[1b] The irreflexivity of >U follows, since for each f € A(>Y,Q(X)), we do not have
f>Y fby f—f=0. Let us prove the transitivity. Consider f >V ¢ >U h. This implies f >V h by
the transitivity of >Y and >V->Y implication. Also, Claim [4] of Lemma gives A € Z> such that
A(f—g),A(g—h) = 0. Then, A(f —g)+A(g—h) =A(f —h) > 0 by the additivity of . This gives
f —h # 0 by the irreflexivity of =, and hence f >Y h. The additivity of >Y on A(>Y,Q(X)) holds by the
semiring U. To verify the multiplicativity, let f,g >Y 0. Then, fg € U[x] by f,g € U[x]. Also, fg # 0, since
Q[X] is an integral domain. Hence, fg >Y 0 follows.

Proof of Claim Lemmaimplies Claim since U # {0} gives some f,g € Ul[x] such that f >V g.

Claims [2a] 2b] and [2c|hold similarly. O
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Also, we state the following subset relations to obtain squaring orders by admissible variables.

Lemma 5.22. Suppose squaring orders O = {=,=} on X. Forl € Z>, let x € Q(X)! be O-admissible. Then,
we have the following.

1. Foreachr € Ox and i € [I], we have x;(r) € R such that 0 < x;(r) < 1.
2. We have A(Z{,Q(X)) C A(Zo0,,Q(X)) and A(2].,,Q(X)) C A(Z0,, Q(X)).

Proof. Proof of Claimm We notice that x; = 0 by x; >y, 0 and the half > -~ implication. By the half ~->0,
implication, we obtain x; >0, 0. This means x;(r) € R and x;(r) > 0 for each r € Ox. We deduce Claim
from the upper condition of x;.

Proof of Claim[2] Claim 2]holds by Claim[T} O

We now obtain the following squaring orders by admissible variables, which are not necessarily alge-
braically independent over Q.

Theorem 5.23. Consider squaring orders O = {=,=} on X. For | € Z>, let x € Q(X)! be O-admissible.
Then, >V >V, Zi]il , >;]¢1 are squaring orders on X such that >Y and >)[c]il are strict squaring orders of >V

and Zijﬂ , respectively.

Proof. We prove the assertion for >V >V The >0x->05 and >U->U implications are in Definitions
and Claim of Proposition give the >V->V_poring equality. The 2;’-203{ -poring inclusion holds
by Claim 2] of Lemma[5.22]

First, we prove the half >¥->¢. implication. Let f >Y 0. We have A f = 0 for some A € Z>; by Claim
of Lemma Also, A f >0y 0 by the half =->¢, implication. By A € Z>1, we deduce the half zy-zox
implication f >0, 0.

Second, the half >fcj->ox implication holds similarly by Claim (4| of Lemma and the half ~->q,.
implication.

Third, we prove the semi-strict transitivity of >V >V, Let f >V ¢ >V h. Then, f —g,g —h € U[x] gives
f—h € U[x], which implies f >V h. Also, the >Y->¢ and >V->¢, implications give f >0, g >0, h, and
hence f >0, h. Then, f # himplies f >{ h. Similarly, we have f >Y hby f >V ¢ >U h.

The assertion for Zgﬂ , >i}i1 holds by a parallel argument. In particular, we replace Claims andof
Lemmawith Claimsand|§|of Lemmato prove the half ch]i 120, and >§/ﬂ ->0, implications. []

We have the following admissible variables.

Proposition 5.24. Let | € Z>,. For squaring orders O = {=,>} on X, let x € Q(%)! be O-admissible.
axtx € Qxolxl.

Suppose an indeterminate f = ZjeZl . fi
>
1. fis O-admissible if f and O satisfy the following conditions:

(a) fjlv“':jl - O l:ffjla“'ajl 7é 0’-
(b) 0 < ZjeZéO f]]][ S 1

2. fis O-admissible if f = x{' . .x{’ for some j € leo such that j # 0.
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Proof. Proof of Claim[l] First, we prove

f=0. (5.1.1)

by Condition[Ia]and the multiplicativity of . We deduce inequality (5.1.1)) by the additivity of >-.

Second, we prove the half > - implication. For each u € Z>1, we have u > 0 by Claim|z|of Lemma
and the multiplicativity of . Also, for each d € Z, f¢ = 0 by inequality (5.1.1) and the multiplicativity of
. Consequently, if g > 0, then g = 0 by the additivity and multiplicativity of .

Third, the upper condition of f on X holds as follows. Since f is an indeterminate, there is j € Zl>0 such
that fjl,“.,j,x{l x{’ & Q. It follows that 1 >q, f by Condition since Claimof Lemma|5.22|implies
0 <xi(r) < 1forie€[l] and r € Ox.

Proof of Claim[2] Claim[T]and 1 > 0 imply Claim 2} O

Since ClaimLemma gives x]'...xJ! > 0 for each j € ZL . fjy....j, 7 0 implies Fiyot x>0

By admissible variables, we define the following notion to discuss explicit real values of rational functions
over Ox.

Definition 5.25. Suppose squaring orders O = {=,>=} on X. Let | € Z>.

1. We call x € Q(X) fully O-admissible by X (or fully admissible for short) if x is O-admissible and there
exist d € Z>1 and X; € X such that x = Xid.

2. We call x € Q(X)! fully O-admissible by X (or fully admissible for short) if each x; € Q(X) is fully
O-admissible by X.

5.2 Mediators

We introduce the notion of mediators, extending the g-Pochhammer symbols (1), within our purpose. Since
a strict > presumes a non-strict =, we often denote squaring orders {>, >} just by .

Definition 5.26. Consider a gate s > 0,1 € Z>1, w € ZIZO, and p € ler Suppose a —-admissible x € Q(X)’
and ¢(x) € [iepi) Q(xi). Let = (s,1,w,=,p,x,X). We call ¢ a u-mediator (or a mediator for short) if ¢
and U satisfy the following conditions.

1. Foreachié€ [I], ¢(x);" >0, 0.
2. For each m € [s]', B(s,l,w,m,¢,p,x,%X) = 0.
We refer to[l)and[2)as the base positivity and base-shift positivity of ¢ and [L.

For a >-admissible variable ¢ € Q(X), we have the squaring order >, of g-polynomials by Theorem
Then, we introduce the notion of canonical mediators by Lemma@

Definition 5.27. Let | € Z>1. If ¢ (x) = (1 —xi);cyy € [lic Q(xi) for an indeterminate x € Q(X)!, then we
call ¢ the canonical I-mediator (or the canonical mediator for short).

When [ = 1 and x = (¢) € Q(X)’, the canonical mediator ¢ (x) = (1 —g) € Q(X)" gives the g-Pochhammer
symbols ¢ (x);[n], = (n)y of n € Z>o.
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6 Merged-log-concavity
We now introduce the notions of ring shift factors, merged determinants, parcels, and merged-log-concavity.

Definition 6.1. Suppose a gate s > 0. Letl € Z>, w € ZZZO, and p € lel' Assume squaring orders
O = {=,~} on X. Consider a (s,1,w, -, p,x, X)-mediator ¢ for an O-admissible x € Q(X)'.

1. If F = (Fp € Q(X)),,cp then for m,n € Z! and k € Z¥, let

Z F (nEl)V
det(Z,m,n,k) =det| 2" (nEE) ] .
( ) |:ym[]k 9,,\/

2. Letm,n € Z! and k € Z* with a = v(k) and b = v(m,n,k). Suppose y = xP. Then, in Q(X), we define
the ring shift factor

|

(b1
> ifab >0,
L

]t

[T(e()-) .

0 otherwise.

Y(s7l7w)m7n7k7¢7p7x’x) =

Also, we define the merged determinant

A(y)(s7l’w7m’n7k’ ¢7p7'x7 x) = T(s7l’w7m7n7k7 ¢7p7x7 x) det(y7m7n7k) 6 Q(x)'
3. When f; = (fym € Q(X)),,cqn satisfies

{f&m»Oime ﬂs]]l,

Sfs,n = 0 otherwise,
we call fs (s,1,>)-positive (or =-positive for short).
4. Suppose a ~-positive f; = (fsm € Q(X)),,cu- Then, we define the parcel
F =A(s,Lw, -, f5,0,0,x,%) = (F € QX)) pen

by the following rational functions:

fs,m .
= | oG gy T I

0 otherwise.

We refer to s, I, w, >, fs, ®, p, x, and X as the gate, width, weight, strict squaring order, numerator,
mediator, base shift, base, and coordinate of .F. We call them parcel parameters of F.

5. Suppose F = A(s,L,w,~, f5,0,p,x,%) with squaring orders O' = {~',>='} 5 O.

(a) We call F (s,1,w,=',¢,p,x,X)-merged-log-concave (or ='-merged-log-concave for short) if any
fitting (s,1,m,n,k) satisfies

A(j)(‘g?l?W?m’n?k’ ¢7p7x7 x) >-/ 0'
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(b) Similarly, we call F (s,l,w,=',¢,p,x,X)-merged-log-concave (or ='-merged-log-concave for
short),if any fitting (s,1,m,n,k) satisfies

A(}\)(&lawvmvnvka ¢7p7xax) t, 0.
Suppose width-/ parcels .% and .%’. As families of rational functions, we consider .% = %' if %, =
Z) € Q(X) for each m € Z! even with different parcel parameters. We later discuss the change of parcel

parameters and the merged-log-concavity in Propositions[7.8]and [T8.1]
We simplify some notations in Definition [6.1| for the following cases.

Definition 6.2. Suppose a parcel & = A(s,l,w, >, f,¢,p,x,%).
1. When ¢ is the canonical mediator, we write
Y<s7law7m7n7k7p7x’%) ZY(S,l,w,m,n,k,¢7p,x,ff),
A(F) (s, l,w,m,n,k,p,x,X) = A(F)(s,l,w,m,n,k,¢,p,x, %),
A(S’17W7>.7fy7p’x7$) :A(S,Z’W7>.,fy’¢7p7x7x)-
2. When p =1!(1), we write

Y(S’l7w7m7n7k7¢’x7x) :Y(s7l7w’m’n’k’¢7p’x7x)7
A(F) (s, l,wym,n,k, ¢,x,X) = A(F)(s,l,wm,n,k, ¢,p,x,%X),
A(Svlvwv>7fsv¢1x7:£) = A(svlaw7>afsa¢vp7xv%)~

3. When p =1!(1) and ¢ is the canonical mediator; we write
T(S’I’W7m7n7k7'x7x) :T<s’l’w7m7n7k’¢7p7x’x)?
A(j)(s,l’ W7m7n7k’x7 x) = A(g\) (S’l7w7m7n7k7¢7p7x7 x)?
A(S,l,W,},fg,X,%) :A<S7lﬂw7>_afﬁ¢ap7-xax)'
4. Whenw =1'(0), we write
Y(s,l,mnk,X)=Y(s,l,w,m,nk,¢,p,x,%),
A(ﬂ)(s,l,m,mk,%) :A(ﬁ)(s,l,w,m,n,k,¢,p,x,1¥),
A(S7l7>_’f:y’x) :A(s7l’w’>_’fY’¢7p"x7x)'

7 Fundamental discussions on parcels and the merged-log-concavity
7.1 On the mediators

On the canonical mediators, we obtain the following g-Pochhammer symbols.
Proposition 7.1. Let F = A(s,l,w, -, f5,p,x, X).

1. Then, we have

fS,m 1
T =13 (m)Y forme sl (7.1.1)

0 otherwise.
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2. LetmneZ, keZ” pe Z>1, and y = xP with a = v(k) and b = v(m,n, k). Then, we have

(b)Y
X -det(F,m,n,k) ifa,b >0,
A(F) (s, L, wym,n k,p,x, X) = § ()] (7.1.2)

0 otherwise.

Proof. Proof of Claim [T.I.I). We have m > 0 by m € [s]'. Then, Claim (7.I.1) holds by

H¢ ymow. H (1 —x;)"" [m;)] !;”I:i =(m)¥.
i€]l]

Proof of Claim (T1.2). We obtain Claim (7.1.2)), since a,b > 0 gives

owH w- W, O i IWl—i Wi—i wi Wi—i wH
(‘P()’)u)b [b] ') 1—[[1]](1 - )b l[bi]yil ’ I[[T]]O _YIfiJrl)b’H b [bi+l]y1],i++11 = I[[Il] (bi>y,~l (bi+l)yll—i++ll = (b)yu
il ic(l ic|!

(] (]

and similarly (¢(y)”)*"" -[q] ';Vuu = (a)L. O

On the choice of mediators, we obtain the following invariance of the merged-log-concavity for the trivial
base shifts.

Proposition 7.2. Consider F = A(s,l,w, =, f5,0,x,X) and G = A(s,1,w, -, fs, ¥, x,X). For a fitting L =
(s,,m,n,k), let a=v(k) and b = v(m,n,k). Then, we have
DI KD | (V469 K 7.13)
[Te o) -TIo(x)™ > Ty ()™ - TTyx)wer
I I | (6o e _
[T (o) ER)w - T (o) (v Ty (o) (m=K)ow - Ty (o) (B o

In particular, F is ='-merged-log-concave if and only if 4 is ='-merged-log-concave. Similarly, F is
='-merged-log-concave if and only if 4 is ='-merged-log-concave.

Proof. First, we prove equation (7.1.3). By

\ (\/ )\/ V

(@) )" = (o))" ™ = ($(x)")"™",

we have [T (x)" *" =TI(¢(x)")""". This gives [T¢ (x)"*" TT§ (x)" " =TT(9 (x) 4 ¢ (x) ") mrmebrin’) —
[1(¢ (x)2) 0% By m 4+ n = b — a, we deduce equation (7-1.3).
Second, equation (7-1.4) follows from equation (7.1.3)), because

H(b(x)(m[ﬂk)ow_nd)( (nfRk)Y H ¢ ,¢(x)l(”1 ir1t+o(k H‘P mow H¢ n ow.
i€l
Third, latter statements hold by equations (7.1.3) and (7.1.4), since when y is fitting,

U

H(¢(x)u)(b—a)owu [b] V;Vu Fnfov
[T ()™ - 1@ (x) " [a] ) [m] Y [nV]ty”

Y(s,l,w,m,nk,,x,X)FnFpv =
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and when p is wrapped and fitting,

U

B T1(¢(x)-) @) B fomk Sy
10 (x)mERow [T (x) B ow (] [m B AN [(n k)]

Y(s,l,w,m,nk,@,x, ff)fmgkﬁ(nk)v

O

In Proposition A(F) (s, l,w,m,n,k, ¢,x,X) = A(G)(s,l,w,m,n,k,y,x,X). But, the choice of media-
tors matters for explicit %, (r), % (r) € R, since r € Ox does not satisfy .Z,,(r) = %,(r) € R in general.

7.2 On the coordinates
We introduce the following notion on the choice of parcel coordinates by 1*(1) in Definition
Definition 7.3. Let X1 = {X17i}i€[[Ll]].
1. If A C [Ly], then for a family K € [ljcp Z>1, we define the set
VA,K(:{I) = {Xi’q}iel s
which we call a restricted coordinate of X .

2. In particular, if k = 1*(1), then let
ra(X1) = (X1).

Suppose F = A(s,1,w, -, fs, 9,p,x,X1) and a restricted coordinate Xy = r, (X1). Let u = (F,X2).
(a) We say the following:

* W satisfies the base condition if x € Q(%,)';
* U satisfies the numerator condition if fs, € Q(Xy) for each m € 7.

(b) When the base and numerator conditions of W hold if and only if k = ll(l), we call X, optimal for 7.

By the notion above, we consider the change of coordinates X, C Q(X) such that X, has powers of some
elements of X, and .# is still a parcel on Q(X;). Then, we demonstrate the existence of optimal coordinates
for arbitrary parcels. For this, we introduce the following notion of faithful squaring orders.

Definition 7.4. Assume squaring orders Oy = {1,>1} on X|. We call O faithful if for any X, = rA,K(Xl),
the binary relations =2=>|q(x,) and =2=~|q(x,) give the =2-=>-poring equality

A(z2,Q(%2)) = A(-2,Q(X2)).
We obtain faithful squaring orders.

Lemma 7.5. Assume squaring orders Oy = {=1,=1} on X1. For X3 = r) (X1), let =2==1|q(x,) and
=2=>1|q(x,)- Then, we have the following.

1. A(72,Q(X2)) = A(=1,Q(X1)) NQ(X2).
2. Oy is faithful if there is an O1-admissible x € Q(X)).
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3. Suppose a nonnegative semiring U C Q with 1 € U. If Oy is either {Z%l , >l3él } {zglﬂ , >glﬂ } or

{Zoxl >0y, } then O is faithful.

Proof. Proof of Claim[l} If f € A(=1,Q(X1)) NQ(X,), then f € A(>2,Q(X,)) by the reflexivity f = f.
Claimﬂ]holds, since the >,-> implication yields

A(z2,Q(X2)) CA(=Z1,Q(X1)) NQ(X2).

Proof of Claim[2] Claim[2]of Lemmal5.20]gives 1 1 0 by 1 € Z[x]. This implies 1 -, 0 by {1,0} C Q(X>).
Hence, Claim 2 follows from Claim 1] since A(>>,Q(X2)) = A(>>,Q(X,)) by Lemma
Proof of Claim[3] Claim[I]gives Claim 3] since each element of X is O;-admissible by 1 € U. O

By Lemma([7.5] the squaring orders of parcels are always faithful, as parcels have admissible variables.
But in general, we have unfaithful squaring orders.

Example 7.6. Let X; = {X 1,X; 2} and X, = {X; 1 }. Also, we consider the following binary relations:
* f1gonQ(X1)if f,8 € Q[Xy], f— g € Z>0[X2], and ordy, , (f —g) > 0;
s f=1gif f=1gand f #g.

Then, O; = {>1,>} is of squaring orders on X1, but not faithful on X;.
We verify that O, is of squaring orders on X;. We first prove that A(>,Q(X;)) is a »=-poring. The
reflexivity of = is by ordy, | (0) = oo > 0. The transitivity of = holds, since f = g =1 h implies

ordy, , (f —h) = min(ordy, , (f —g),ordx, , (g —h)) >0

by f—g,8—h € Z>0[X,]. The antisymmetricity of = holds, since f > g = f implies f =gby f—g,g—f €
Z>o|%,]. We also have the additivity and multiplicativity, because we have f+h = g+h for f = g and
heA(=1,Q(X1)), and we have fg =1 0 for f,g =; 0 by

ordy, , (fg) = ordy, , (f) +ordy, , (g)-

Hence, A(>=1,Q(%X)) = Q[X,] is a >=-poring.

Second, A(>=1,Q(X)) is also a strict 1 -poring, since we similarly obtain the transitivity, additivity, and
multiplicativity of >.

Third, since we have the squaring implications of O; on X{, we obtain the semi-strict transitivity of O; as
follows. Suppose f = g =1 h. Then, f —g,g —h € Z>o[X;] and g — h # 0. Hence, f — h # 0. This gives
f =1 h, because the -~ implication implies f > g =1 h, which gives f > h. Similarly, f > g>=1 h
implies f > h. Therefore, O; consists of squaring orders on X;.

However, for X3 = {X1 2}, let =3=> \@(353) and »3=> \Q(x3). Then, O is not faithful, since

0 =A(-3,Q(X3)) #A(z3,Q(X3)) = Q = Q[X2] NQ(X3).
We have the following squaring orders as restrictions of faithful squaring orders.

Lemma 7.7. Consider faithful Oy = {=1,=1} on X1. For X3 = r «(X1), suppose =2=~1|q(x,) and
=2="1lg(x,)- Let O2 = {=2,=2}. Then, we have the following.
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1. For f,geQ(Xy), f >0y, 8 ifand only if f >0y, 8. Also, f >0y g ifand only if f >0, &.
2. We have squaring orders Oy on X, such that >, is a strict squaring order of >».
3. Ifx € Q(X2) is O1-admissible, then x is Oy-admissible.

Proof. Let L; = #(X;). For simplicity, suppose A = [L;] so that {lei}ie[[Lz]] cCX = {lei}ie[[Ll]} and X, =

{Xl’c’ii}ie[[Lz]]-

Proof of Claim[I] We first prove the only if part of the strict inequalities. Fix some u € R such that
0 <u < 1. Then, for r = (ri);cpz,] € Ox,, we putrad, 3 «(r) € O, such that

Vriifie[Ly],
tad o n(r) = VU
vi=uifie[Ly+1,L].
Then, f >0, gimplies f(r)>g(r)foreachr € Ox, by f(rad, 5 (7)) > g(rad, ; (r)) forrad, ; (r) € Ox,.
Second, we prove the if part. For r € Ox,, we put

powy (1) = (riKi)ie[[Lz]] € Ox,-

Then, f >0, g gives f(r) > g(r) for each r € Ox, by f(pow; (r)) > g(pow; i (r)) for pow, 3 ,.(r) € Ox,.
The equivalence for non-strict inequalities holds similarly.

Proof of Claim[2] First, we have the =>->,-poring equality A(>2,Q(X,)) = A(*>2,Q(X3)), since O is
faithful. Also, the semi-strict transitivity holds for O,, as it holds for O;.

Second, we prove the =3->0, -poring inclusion. Let f € A(>2,Q(%3)). Suppose f >, g by some
g € Q(X2). Then, f = g. We deduce f >0, g by the half =1->0, implication and Claimof Lemma
It follows that f 20y, & by ClaimE} Similariy, g =2 fimplies g >0, f.

Third, we prove the squaring implications of O, on X,. By Claim |1} the >0y, 'Zoxz implication follows
from the >03€1 'Zoxl implication. The >,->, implication follows from the >;-> implication. For the half
52-203{2 implication, let f > 0. Then, since f = 0, we have f Zoxz 0 by the half il—zoxl implication
and Claim|I| Similarly, we obtain the half =2->04, implication.

Proof of Claim We have the half >,->, implication, as O restricts O; to Q(X,). We have the upper
condition of x on Ox, by 1 >0, x, because x(r) for each r € Ox, is x(rad, 3 (1)) < 1. O

Then, the following proposition gives parcels on restricted coordinates.

Proposition 7.8. Consider F = A(s,l,w, =1, fs,9,p,x,X1) for squaring orders O1 = {>1,>1} on X,. Let
X2 =1y (X1). Assume § = (F,X2) with the base and numerator conditions. Let Oy = {3, =2} for
r=>1 |Q(3€2) and =)= |Q(3€2). Then, we have the following.

1. Oy has squaring orders on X, such that >, is a strict squaring order of >=».
x is Oy-admissible.
[s is >=a-positive.

¢ isa (s,l,w,=2,p,x,X2)-mediator.

N N

There is a parcel A(s,l,w, =2, f5,9,0,x,%2).
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Proof. Proof of Claim[l] Since x is O;-admissible, O; is faithful by Claim 2] of Lemma[7.5] This gives
Claim [T]by Claim 2] of Lemma[7.7}

Proof of Claim IZ| Claim holds by the base condition of { and Claim [3|of Lemmal(7.7,

Proof of Claim Claimholds by the numerator condition of {.

Proof of Claim[d| Let y; = (s,1,w,>;,p,x,X;) for i € [2]. First, we verify the base positivity of ¢ and
p2. The base condition of § gives ¢(x) € Q(X,)!. Then, ¢(x)}" >0y, 0 by Claim of Lemma since
o(x);" >0y, 0by the base positivity of ¢ and p;. Second, the base-shift positivity of ¢ and y; implies that
of ¢ and Wy, since B(s,l,w,m,$,p,x,%;) € Q(X,) by the base condition of {.

Proof of Claim[3] Claim[5]follows from Claims|[T} 2] 3] and 4] O

Remark 7.9. If >-=>, and =1=>,in Proposition then by x € Q(X,)!, f =1 g and f > g are equivalent
to f > g and f > g, respectively.

We introduce the following parcels by Proposition [7.8]

Definition 7.10. Under the assumption of Proposition[7.8] we define the restricted parcel
rl,K(g:%]) = A(S,Z,W, >_2af5a ¢7p7x7x2)'

In Definition [7.10} =2 on Q(X2) depends on = on Q(X1), as =2=~1]g(x,). However, we have the
following for some restricted squaring orders (see Remarkfor >, >y of the base x of a parcel).

Proposition 7.11. Let X and X5 = r) (X1). Then, we have the following:

Zoxl |Q(x2):20x2 and >Oxl ‘Q(%z):>0x2; (721)
>3 lo@n)=2%, and > loe) =>%, (7.2.2)
U _U U _uU

leil |Q(3€2)—23€§d and >xlil ‘Q(xz)_>x2il . (7.2.3)

Proof. Claim [1|of Lemma gives equations (7.2.I). We prove equations (7.2.2). First, let f 2%1 g for
£, €Q(X2). Then, f 2%2 g, since f—g € U[X;] implies f —g € U[X,] by Q[%,]NQ(X,) = Q[X,]. Second,
if £ >%, g for f,g € Q[X2], then f > gby f—g € U[Xs] C U[X1]. Also, if f,g € Q(X2) and f # g, then
f>%, gis the same as f >§ g, since f >5 gand f >5 gimply f>% gand f>% g, respectively.
Therefore, equations (7.2.2) follow. Similarly, equations hold. 0

Since Q[X] is a unique factorization domain, we employ the following notation.

Definition 7.12. If f € Q(X), then we write some Ir(X)(f) € Q[X]? such that Tr(X)(f)1 and Ie(X)(f)2 are
coprime and

f = Frac(Ir(X)(f))-

We use Ir(X)(f) when our argument does not depend on the choice of Ir(X)(f); and Ir(%)(f), in Q[X].
We state the following lemmas to obtain the optimal parcel coordinate of a parcel.
Lemma 7.13. Assume Q(X) of X = {Xi},c[ry Let A, A2, A3 C [L] such that A3 = Ay N Az. For i € [2], sup-

pose K; € [licp, Z>1 and i = ry, ., (X). Also, let k3 = (lem (K ;, szi))i€l3 € [lics, Z>1 and Y3 = 1y, 1, (X).
Then, we have the following.
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1. Q1) NQ(Y2) = Q(V3).
2. If f =Frac(g) € Q()3) such that g =1r(V1)(f) and degXp gl,degxp 82 < K p for some p € [L], then
FeQi\{X,}).

3. Consider F = A(s,l,w, >, f5,0,p,x,%). If (Z,91) and (F,2)2) satisfy the base and numerator
conditions, then so does (F,92)3).

Proof. By Q[21]NQ[Y2] O V3, QY1) NQ(Y2) > Q(Y3). Conversely, if f € Q(Y1) NQ(Y2), then
det(Ir(D1) (), Ir(Y2) (f)) = 0 in the unique factorization domain Q[X]. Hence, each irreducible factor of

Ir(Y1)(f)i is a factor of Ir(Y),) (f); for i € [2]. In particular, f € Q()3), and hence Claim|[I]follows. Claim 2]
then holds, since degy, g1 = degy g> =0 by Claimlﬂ Also, Claim@follows from ClaimE O

Ifu,uy € Zél for some L € Z>1, then let lem(u;,uz) = (1CH1(M1,i,M2,i)),~€[Lﬂ € Zél.
Lemma 7.14. Let % = A(s,l,w, >, f5,9,p,x,%1) of X1 = {lei}ie[[Ll]]' Then, we have the following.
1. There is the smallest non-empty X, C X such that (% ,X;) has the base and numerator conditions.

2. Let ry(Xy) = X5 in Claim[l|for some A C [Li]. Consider the partial order > onV :=[lcs Z>1. Then,
there is the largest kK € V such that (% ,X3) of X3 = rj (X1) has the base and numerator conditions.

Proof. Proof of Claim[I] Claim|I|follows from Claim [3|of Lemma([7.13|and the finite cardinality of X;.

Proof of Claim If there are u;,u; € V such that (F,ry ,,(X1)) and (F,r,,(X1)) have the base
and numerator conditions, then (%, jem(u, u,) (¥X1)) has the base and numerator conditions by Claim of
Lemma Hence, suppose the non-existence of the largest k: i.e., let y; € V fori € Z>1 and ); = rp ,(X1)
with the following three conditions:

o first, ) = l’l(l);
* second, (:#,9);) satisfies the base and numerator conditions for each i € Z>1;
* third, some p € A satisfies lim;_;o. 4 = oo.

Assume g € Q(2);) for each i € Z>,. Let g = Frac(h) for h =1r()1)(g). The third condition gives v € Z>
such that degy, /<, for i € [2]. This implies g € Q(1\ {X1,,}) by C]aimof Lemma 7.13l Hence,

the base and numerator conditions hold for (.#,2); \ {X;, }) against the smallest assumption of 9);. [

By the smallest subset and the largest power above, we derive the following optimal parcel coordinates.

Proposition 7.15. Let 7 = A(s,l,w, =1, f;, ¢, p,x,X1). Then, there is X3 = ry, (X1) such that X is optimal
forry (F,X1) = A(s,l,w, =2, f5, ¢, p,x,X2). In particular, X is uniquely determined by .7 and X.

Proof. Because Lemma gives the existence, let us prove the uniqueness. Let X, = ry/ (X;) such
that X/, is optimal for r/ o (%) = A(s,,w, =%, fs, ¢, p,x,X5). First, suppose ry (X1) = ry (X1) \ rp/(¥1) and

rup(%X1) C X5. By Claimof Lemma/7.13] the base and numerator conditions hold for (ﬁ, Y (%1))

Furthermore, each v € Z> gives the base and numerator conditions of (.F, ry.,,(X1)U (X2 \ rup(X1))). By
the optimal property of X;, we deduce A’ = A. Second, Claimof Lemma gives k = k. O

We introduce the following notion to explicitly discuss the real values of parcels.

Definition 7.16. Suppose F = A(s,l,w, =1, fs,9,p,x,%1). We call X fully optimal for F if X is optimal
and x € Q(X)" is fully admissible.
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7.3 Merged determinants by g-binomial coefficients and base shift functions

We write merged determinants by g-binomial coefficients and base shift functions. For this, we adopt the
following notation.

Definition 7.17. Consider a parcel F = A(s,l,w, =, f;,¢,p,x, %) with m,n € Z', k € Z*, a = v(k), and
b=v(m,n,k). Lety = xP. Then, in Q(X), we define

wH

b
AL(ﬁ)(&LWamanak;(Pvpaxv%) :fY7mfv,)1VB(Salvw7m7nva¢7p7x7x) |:a:| ’

yu

wH

b
B0, 3) = Fon iy B wm k() 0,5, |
w

We first write the o-plus and 6-minus by v and flips.

Lemma 7.18. Let | € Z>1, m,n € Z!, and k € 7Z* with a = v(k) and b = v(m,n,k). Then, we have

mBk = (b—a")[1:1], (7.3.1)
nmk=(b—a")[l+1:2]]. (7.3.2)
Proof. We obtain equations (7.3.1)) and (7.3.2)), since i € [I]] gives
bi—ay_is1 =Y K[1:i]+mi—Y k[1:20—i+1]=m;—Y kli+1:20—i+1] =m—o(k);,

bivi—a_ip1 = Y _k[1 z+l+n,~—Zk1.l—z—|— _ni+Zk1—z+2.z+1]_ni+o(k)l,i+1.
m

Then, we have the following general statement on merged determinants. This allows us to examine the
merged-log-concavity not only through g-binomial coefficients and base shift functions, but also through
general non-negativities and positivities on squaring orders.

Theorem 7.19. Suppose a parcel F = A(s,l,w, =, fs,0,p,x,%). Let u = (s,1,m,n,k) for m,n € Z' and
kez.

1. We have the following equations:

AL(F) (s, Lw,m,nk, ¢,p,x,X) =Y (s,[,w,m,n,k,§,p,x,X) - FFov; (7.3.3)
AR(ﬂ)(s,l,w,m,n,k,¢7p,x7i) :T(S,Z,W,m,l’hk,d),pﬁc,%) 'jmlaky(nk)v' (734)

2. We obtain the following equation:
A(F) (s, L, wym,n,k, ¢, p,x,X) =AL(F) (s, l,w,m,n,k,@,0,x,%) —Ar(F)(s,l,wym,n,k, ¢,p,x,%X).

3. We have the following inequalities:

AL(F)(s,l,w,m,n,k,¢,p,x,X) =0 (7.3.5)
AR(F) (s, L, w,m,n,k,¢,p,x,X) =0 (7.3.6)
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4. Let U be fitting. Then, we obtain
AL (F

and

AR(?)(S’ l’ W7m7n7k7 (P?p?x?x) {

Proof. Lety=xP,a=v(k),and b =v(m,n,k).

=0
=0

)(S7l7wﬁm7n’k7¢7p’x7x) >_ 07

if 1 is wrapped,
if W is unwrapped.

(7.3.7)

(7.3.8)
(7.3.9)

Proof of Claim ]| l We first prove equation (7.3:3). When m +n ¢ [s]* or a4 b # 0, it holds by
LJ

0 =0. In fact, 1fm+kn§Z[[s]}21 then 7, = fym =0o0r v = f ,v = 0. Also, if ab 2 0, then[]

Y(s,l,wym,n,k,¢.p,x,%) =

Assume m +-n € [s]* and a+b>0. Then,m= (b—a)[l : 1] >0 gives
b1:0]" i(y)™ ™ mi ]ty [bi] ¢
f?,m'B(svl7Wama¢7pax7x)'|: ] _f:Ym wl', ' Wi Wi
i), ,Qﬁ()%w i L i

Gi(ya)"™ [bi] !

= fS,m' H

i (x;)™i ’[al}'W' [mt]'Wl

iel]
_ fs—m o0 , [Pl 0]y
1o (x)"e - [m]ty a[t e
[b[1: 2]ty
= Z (P Y 1:lJow ),-
1l lal1: 1]y
Also,n= (b—a)[l+1:2[] >0 gives
AY
bll+1:20]"
-B(s,1 v .
fs,nv (S, YW, 7¢apaxax) |:a[l+1 :21]]yv
—f-T1 Qi (i)™ ]ty ) [b,H] NG
s i O i1 (i q)i=i41 [y |xl1 :1' ze[[l]] [az+l} - 1+1 [”1] y;Vll zill
= - [ 2O ey i
M e Qe ) g [nl] !LV,’,,-"L‘
fsnv [b[l+1:21]] z;'vv

1o (x) o [nV]ty

= ﬁs.nv ! H(¢(y>v)(b*a)[l+1:2[]ow

Equations (7.3:10) and (7.3-11)) imply equation (7.3.3) by

. H(¢ (y) Y ) (b—a)[l+1:2lJow"

J Dbl 120
et 120

et 120y

Vv

L)y DU+ Bl
all: 0] Jall+1: zzwv_[a]!;a”’

[To) e TT(e (")
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L

=TTy,

=
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Second, we prove equation (7.3.4). As before, when (mEk) + (nfHk) & [s]* or a+ b # 0, equa-
tion (7.3:4) holds by 0 = 0. Instead, assume a wrapped 1 with a5 > 0.

By Lemma we have (b—a")[1 : [] = mEk, which is non-negative by m =k € [s]'. Replacing a and
mby a” and mEk in equation (7.3:10), we obtain

Do LU

bl1:01" )
fs,mE]k : B(s,l,w,mlﬂk,(]),p,x,ff) : [av[[l . 1]:| = '?S,mElk : H¢(y>(b7a ) [a\/[l . lHiW (7312)
: y : 'y

Also, by Lemmal(7.18| we have (b—a")[l + 1 : 2[] = n[@k, which is non-negative by nfk € [s]’. Replacing
a and n by a” and nFHk in equation (7.3.11), we obtain

V
bll+1:20 1"
. \/ .
f:v,(nk)v B(S,I,W,(I’lk) a‘P»va»x) |:Clv[l+ 1 :21]:|}v
b1+ 120 (73.13)
=7, ) vy (b—a")[I+1:20ow" ) Y )
semv - [J00)Y) @iy
y
In the right-hand side of equation (7.3.12), we have
Bl Bl120000 Il (B 231
@ Ty eV 2y i o
since [a"]!)] "y —Hle[[l]] [az— z+1]y, ieqn lai- z+1]y, ,H =1Ilicpy [al+z]}1 z+1 ey [a,]y =la ]';vuu Also, in the
right-hand side of equation m we have
H¢ )[1:low H(¢(y)\/)(b7av)[l+l:ZI]owv _ H((p(y)LI)(bfa)owu. (7.3.15)

We deduce equation (7.3:4) from equations (7.3:12), (7.3:13), (7.3:14), and (7.3.13).
Proof of Claim Claim 2] follows from Claim T}

Proof of Claim|3 I

B(s,l,w,m,n,¢,p,x,X). We have f;,, =0 when m ¢ [s]'. Then, for each m € Z', the >=-positivity of f, and
>-> implication imply

We prove inequality (7.3.3)) by the following >-non-negativities of f; , f; n, [ ] u »and

fom = 0. (7.3.16)
Similarly, for each m,n € Z!, we have
B(s,l,w,m,n,¢,p,x,X) =0 (7.3.17)

by the base-shift positivity of ¢ and (s,l,w, >, p,x,X).
Let us prove

L

w Wi I Wi-i+1
[b] =11 [b’] [b”’] = 0. (7.3.18)
W iepp Lol Lol
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pw- . biWi by Wi—i+1
Ifb—a#0,a%0,o0rb#0,then [a]yu = 0. Suppose otherwise. Then, [ai]xfi >, 0 and [a;j:i]xﬁ;’:] >y 0
for each i € [/]. Furthermore, since each x; is >-admissible, the multiplicativity of >~ gives

L

[b] = 0. (7.3.19)

a
W

This induces inequality (7:3.18). Therefore, inequality (7.3:3) holds by inequalities (7.3.16), (7.3.17),
and (7.3.18). Similarly, inequality (7.3.6) holds.

Proof of Claim[4] We obtain inequality by the =-positivity of f;, the base-shift positivity of
¢ and (s,l,w, >, p,x,X), and inequality (7.3.19), since we have the inclusion condition of u and Claim
of Lemma Similarly, we obtain inequality (7.3.8), since b —a" > 0 by (mEk) 4 (nfHk) € [s]* and
Lemma Also, equation (7:3.9) holds, since f; = f5 (upyv = 0 by (mBEk) + (nEk) & [s]*. O

7.4 Cut and shift operators

We introduce the notions of cut and shift operators on parcels. They trim and reindex the positive terms of
parcels.

7.4.1 Cut operators

Definition 7.20. Suppose gates s1,s> > 0 such that s11 <521 <522 <812 Let Z1 = A(s1,1,w, =, fi,5,,9,0,%,%).
Then, we define the parcel

C~Y17S2(‘9\1) = A(52717W,>7f2,s2a¢,P7X,x)

such that

T

0 otherwise.

We call Cy, 5, a cut operator.
Then, we have the following merged-log-concavity on cut operators.

Proposition 7.21. Let Z; = A(si, [, w, -, fis;, 0, p,X,X) for i € [2] such that F, = Cy, ,(F1). Suppose a
ﬁﬂing u= (s2,17m7n7k).

1. A(F)(s2,L,wym,nk,0,p,x,X) = A(SF)(s1,L,w,m,n,k, ¢,p,x, %) if W is wrapped.

2. A(F) (s2,L,wym,n,k, @, p,x,X) = AL(F1) (s1,L,w,m,n k. ¢, p,x,X) if W is unwrapped.

3. Py is ='-merged-log-concave if F; is ='-merged-log-concave.
Proof. Proof of Claim[l] Claim[T]holds by Claim[2]of Theorem[7.19} In fact, we have

PrsymFrsynB(sa,lwm,n’,0,0,%,X) = fis; mfis,.0B(st,l,wm,n’,¢,p,x,X)
by 511 <s2,1 <22 <s512. Also, since (mEk) H (nEHk) € [s2]%, we have
Fr.somzw 2,5, gy B(s2, Lw,m Bk, (n k)", ¢,p,x, %)
= fLsrm2ZkS 15y, (v B(s1, L,w,m Bk, (nE k)Y, 0,0,x,X).
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Proof of Claim[2] Claim[@d]of Theorem [7.19]implies
A(g})(sZJaWamanvka(pypvxyx) = AL(EZ)(SZJavaanvka¢7pvx7x)7

which equals to Az (%) (s1,1,w,m,n,k,¢,p,x,X) by m4-n € [s1]*.
Proof of Claim[3] We want to prove

A(F) (52,1, w,m,n.k,¢,p,x,X) = 0. (7.4.1)

Because u is fitting, (s1,l,m,n,k) is fitting. Then, A(F)(s(,l,w,m,n,k,¢,p,x,X) =" 0. If u is wrapped,
this inequality gives inequality (7.4.1) by Claim[I} Since .# is -'-merged-log-concave, we have ='2>. If u
is unwrapped, this compatibility gives inequality (7.4.T) by Claim [2]and Claim 4] of Theorem [7.19] O

7.4.2 Shift operators

Definition 7.22. Suppose F = A(s1,1,w, >, fi5,,0,p,x, %) with h € Z>o and s> = s1 + h. We define the
parcel

Sh(g\l) :A(S27lawa>‘7f2,s27¢ap7xax)

such that

[m] w

fl,sl,mfh : Wform S [[Sz]]l,
X

fZ,sz,m =
0 otherwise.

We call Sy, a shift operator. Also, let fr 5, = Sp(fis,)-

Notice that S, (%)) is a parcel by h € Zx, because for each m € [s,]', the =-admissibility of x and the
]

=-positivity of fi s, imply f2 s, m = fi.5;,m—h" W > 0, which is the >-positivity of f>,.
For example, each m € [s1] + 1 satisfies

fl,sl,mfl[m])vcv fl,sl,mfl

IO fmty T [I@ (o fm— 1)1y

We first prove S, = Sy 0 Sy, to discuss the merged-log-concavity of shift operators.

Sl(gl)m

Lemma 7.23. Assume 1 = A(s1,l,w, >, fi5,,9,0,x,X) and h € Z>¢. Then, Sp11(F1) = S1(Sn(F1)).
Proof. Let sy =51+ h and 53 = s4 = 55 + 1. Consider the parcels
T2 = Sp(F1) = A(s2, L,w, =, o5, 9,0, %, X),

ﬂ'}v - Sl(yZ) =A(S3,l,w,>—,f3753,¢,p,x,X),
y4 - Sthl(yl) :A(s47law7>_7f4,3‘4a¢7p7x7%>'

Let m € [s4])’. The assertion now follows from

bl e -

— . X — . . X — PR S B S —
f3,S3,m —f2,s2,m71 [m_ 1]'}?, - fl,sl,mflfh [m_ 1 _h] ')VCV [m_ 1}’)? —fl,sl,mfhfl [m—h— 1]% - f4,54,m~

O
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We then state the following compatibility of the fitting condition and shift operators.

Lemma 7.24. Let h € Z>o and sp = s1 +h. For m,n € 7! and k € 7%, let uy = (s1,0,m —h,n—h,k) and
Uz = (s2,1,m,n,k). Then, we have the following.

1. Uy is fitting if and only if W, is fitting.
2. Uy is wrapped if and only if W, is wrapped.

Proof. Leta; =ap =v(k), by = v(m—h,n—h,k), and by = v(m,n,k).
Proof of Claim[I] Assume that y, is fitting. We have the inclusion condition of ; by (m—h) 4 (n—h) €
[s2]% —h = [s1]?. Also, we have the slope conditions of y; by a; = as and by = by — h. It follows that y; is

fitting. The converse holds similarly.
Proof of Claim IZI Claim follows, since (mEk) + (nEk) € [s2]? is equivalent to

((m—h)Ek) 4 ((n—h)Bk) = (mBk) 4 (n@k) —h € [s2]* -
O
We verify the following equations on the change of variables m — m — 1 and n — n — 1 by g-numbers
and g-binomial coefficients.

Lemma 7.25. Letl € Z>1, w € Z>0, pE lep and m,n € lel. Consider a,b € Zzzlo such that b—a = m+n.
For an indeterminate x € Q(X)!, let y = xP. Suppose ¢(x) € [Tieq Q(xi) such that T1¢(x) # 0. Then, we
have the following equations:

e L1 ARt 1 ) ) | LI [b[l Uk l}w.
oGty 7 Lallan)], 70 o@D [ — 1]ty TI0)™ [ all:f] ],
o0)" ™ - (1% [BlI 412" g O [ — 1y
Mo o " a1, =PI Mo — 1]t

0" [b[z+1 :21) — 1]
Moo | ar+1:21 |-

Proof. Since (b—a)[l : I] =m > 1, we have the former equation by

Lh.s. = HZEM 9iC)"" [m Wf' . H [mi]y - [b}';vii

Hze[l}] i (x;:)"™¥i [m }';‘j’ [glI]]] i la ]';‘jl [mi] !;’Vii
_ 00" Miegy 8:00)™ " fmi — 11157 o - — Lo 1IN
Hq)(x)w [icp i () = wi [y — 1] 1 2 fa I g — 1)1

=r.h.s.

W nv w
Since (b—a)[l+1:2l] = n > 1, the latter equation holds similarly by %v %v O
n

We derive the following merged-log-concavity on shift operators.
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Proposition 7.26. Consider 7; = A(si,l,w, -, fis,®,p,x,X) fori € [2] such that F» = S;,(F1). Lety = xP.
Also, let 1y = (s2,1,m,n,k) be fitting.

1. We have

A(F) (s2,l,wym,nk, ¢, p,x,X) = vim—i+1l,n—i+ 1,k -
(Z2)(s2 o) = T v - (e

“A(F) (s1,0,wym — hyn — hk,¢,p,x,X).

! (H¢@W>%

2. Assume a squaring order >' such that

(gggi:)z 0. (7.4.2)

Then, 7, is ='-merged-log-concave when F1 is ='-merged-log-concave.

Proof. Suppose a = v(k) and b = v(m,n, k).
Proof of Claim[I} By Lemma([7.23] it suffices to prove it for 2 = 1. Then, Claim 2] of Theorem [7.19] gives

wH

b

A(ﬁz)(sz,l,w,m,n,k,(]),p,x,ff) :fZ,SZ,mfZ,Sz,nV ~B(s2,l,w,m,nv,¢,p,x,ff) |:a:|

U

’ L
v b

_fZ,sz,mElku,A'z,(nk)v 'B(SZalaWamElkv (I’lk) 7¢apaxa x)|: :|

a\/ 0]

wd

L

b
= f17S17m—1 [m];vf173.17(n71)\/ [nV])va ’ B(sz,l,w,m,nv, ¢>p7x?x) |:a]
y

— f1s1.mz—1 [MEK]Y f1 5, ) [(REDK) VY
WU

-B(s»,1,w,m3k, (n@k)",9,p,x,X) [abv] : (7.4.3)
yu

First, since L is fitting, we have b —a =m+4-n > h=1and a,b > 0 by Claim2]in Lemma[3.7} Then, in
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the right-hand side of equation (7.4.3)), Lemma[7.23] gives

wH

b
[m]iv[ﬂv];”B(SzJ,w,m,nv,¢,P,x,3€)[ ]
a yH

b
= DBz Lo 0.p 5 X)Bs L 0.p. 1) |

y
_ TIe )™ [m]ty ] [b[l : zqw_ o)™ - [n¥]1y V1Y [b[l+1 :21]]W
[ToComew-fmlty = la[l: 0]y TI@@)mow-[nV]ty = lall+1:21]],
oy e TTOO)TU =101 TTo ()" [b[1:1] 11"
_[b[l.l]]y [1o(x)m=Dow . [m—1]1w T1o(x)" [ all 11 ]y

e TOO) 02 [ =11 T1o() [+ 1:20) 1]
-[b[l+1 .21]]yv 'I—I¢(x)(n\/7])ow [nV—l];V'H(P(x)W [ all +1:21) :|y\/
o (TI0G)"Y y b—1]"
*[b]yu <H¢(x)w> B(S],l,WJﬂ*l,(ﬂ*l) ,¢7p3x7x)[ a ]yu' (744)

Second, if uy is wrapped, b —a¥ = (mBk) 4 (nHk) > h =1 by Lemmam Then, Lemmaﬂgives

L

B (0B B s v B (1) 00,
< (7.4.5)
U w 2 b—1 wH
:[b];/u ’ (Hzgz;W> ~B(s1,l,w,m5k—l,(nk—l)v,([b,p,x,.’{)- |: aVv :|yu’

If p is unwrapped, then so is f1; by Claim 2]of Lemma[7.24] By 0 = 0, equation (7.4.3) holds.
We deduce Claim [T|from equations (7.4.3), (7.4:4), and (7.4.5), since

Wu

b—1
fl,sl,m—lf]m,(nfl)VB(Shlawam - 17(}1 - 1)v7¢apvxux)|: a :|
= AL(?})(Sl,LW,m_ 1,11— ]7k7¢7p7x7f)’

yl_l

(]
b—11"
fl,S|,H1E|k*1f1,S1,(nk*l)VB(Slalawﬂ/”Ek_ 1,(I/lk— l)vaq)aprxax) ' |: aV :|

™

= AR(?[)(S],Z,W,I’”— 17n - 17ka¢7p7x7x)'

ProofofClaim Sinceb—a=m4#n>handa>0,vim—i+1l,n—i+1,k)=b—i+1>1forie [h].
In particular, [Ticpuy[V(m—i+1,n—i+ Lk)];ﬁLI >~ 0 by Claimof Lemma We obtain Claim since
Claim and inequality (7.4.2) imply A(.%)(s2,l,w,m,n,k,¢,p,x,%X) =" 0.

We state the following corollary for some specific parcel parameters.

Corollary 7.27. Let Z; = A(si, [, w, >, fis,9,p,x,X) for i € [2] such that F, = Sy(.F1). Assume one of the
following four cases.

1. ¢ is the canonical mediator.
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2. 1€ [[Slﬂ.

3. w=10).
4. p=1/(1).
Then, we have
[To()"”
0. 7.4.6
Mot~ (740

In particular, if &\ is ='-merged-log-concave, then %, is ='-merged-log-concave.

Proof. First, suppose Case[I] Then, since p > 1, we have

9" (1= "
= = il 0
o (x)” il_[[!ﬂ (1—x;)"i i![[!]][p] S

by Claimof Lemma Second, suppose Case Let m = 1/(1) € [s1]". Then, since ¢ (x) is the mediator
of .#1, its base-shift positivity gives

Oi(y)" ™ [m] Yy T19(y)”
O_<le7l7wam7¢7pax7% = W wl': .
( = Ll cmime = otor
Third, inequality (7.4.6) holds for the other cases, since j[i(i ) : =1=0.
The latter statement holds by Claim 2] of Proposition[7.2 U

8 Explicit merged-log-concave parcels

By monomial conditions in Definition[T.T0] we construct explicit merged-log-concave parcels for arbitrary
gates, widths, base shifts, and positive weights. Also, we discuss several conjectures on merged determinants.

8.1 Base shift functions, shifted x-binomial products, and pre-merged determinants
We state the following lemmas on the base shift functions by, ,(g) in Deﬁnition

Lemma 8.1. We have

H [p]qh lfﬁ, € ZZM
by p(q) = { h€lM
1ifA =0.

Proof. The assertion follows from Lemma[4.2] O
Lemma 8.2. [f A € Z>, then deg, b, ,(q) = %.

Proof. By Lemma deg, by, p(q) = deg,qP~'g? P~V .. .gHP~D) = %' O
Lemma 8.3. Consider A >k > 0. Then, we have

Z q):he[[k]] Jn(A—k+h) ifk>1,
=< je[0,p—1]*
1 otherwise.

b)L,p (‘I)
by, —k,p (q)
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b3.p(q) .
Proof. By Lemma we have b;,fp{fq) = Ilhepr—+11.21[Plg = Thhepiy Pl pven if k> 1 and by ,(q) =
by ip(q) #0if k=0, 0

We introduce a tuple version of by ,(g), as well as shifted x-binomial products and pre-merged determi-
nants.

Definition 8.4. Let it € Z>1 and A = |5 |. Suppose an indeterminate x € Q(X)* and w,p € Z;l such that
x,w, p are palindromic. Let ¢ be the canonical [L-mediator.

1. If m € Z*, then we define the base shift function

B(p,wym,p,x) = [T bt p,(x:) € Q).
i€u]

2. We define the shifted x-binomial product U (i, w,p,x) = (U (1, w,p,x) € @(x))a pegu Such that

b w
Uf(.u7va7x): [ :| B(”7W7b7a7pax)'
We refer to 1, w, p, and x as the width, weight, base shift, and base of U(u,w, p,x).

3. Ifee Zéo’ then we define the pre-merged determinant
d(U)5(w,w,p,e,x) = Uy (1, w,p,x) — Ul (1, w,p,%) - [T x[1: A)¢ € Q(X).
We call e the degree shift of d(U)(u,w,p,e,x). In particular, if x is flat and e € Z >, then we define
dU), (1, w.p.e.x) = d(U)a(1,w.p, (e) +177"(0),x).

We adopt the following notation to discuss shifted x-binomial products and pre-merged determinants by
polynomial degrees.

Definition 8.5. Let 1 € Z>3, A = |5 |, and a,b,w,p € Z*. Then, we define

N2 (,w,p) = (wipi(bu—it1 — bi)(au—i+1 _ai))l-e[m] ez,
o (t,w,p) = Y NS (,w,p),

hS (1w, p) = {WJ

In particular; if p = 1* (1), then let N} (1, w) = N2 (1, w, p), n& (1, w) = n (1, w, p), and (1, w) = b (u, w, p).
We have the following degree differences of width-two shifted x-binomial products.

Lemma 8.6. Let a,b € 72 such that a,b—a,b—a" > 0. Consider flat w,p € ZZZI and x = 1*(q) € Q(%).

Then, we have
" »1”
degqq ] )degqq v] >—nZ(2,w,p), (8.1.1)
a xP a xP

deg, (U2(2,w,p,x)) — deg, (U2 (2,w,p,x)) = nj(2,w). (8.1.2)

a
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Proof. By flat w and p, we have deg, ([ ] ) = deg, ([Z:]Wl [bz]m ) =piwi(ai(by —ar) +ax(by — az))

qpl aj qp]
and deg, <[av]xp) = piwi(az(by —ay) +ay (b — ay)), both of which have —a% and —a%.

First, we deduce equation m by a1b1 +arby —arby —ai1by = (b2 - bl)(az — al).
Second, equation (8.1.2) holds as follows. By equation (8.1.1)), we have

deg, (U2 (2,w,p.x)) — deg, (UL (2,w,p.x)) = deg, (m ) + deg, (B2, wb — a,p.x))

— deg, [ ] >—degq(B(2,w,b—av,p,x))
w,p)

( w, +d€gq( (2,w,b —a,p,x))
_degq(B(Z Wb 7pax))'

We obtain equation (8:1.2), since Lemma|[8.2] gives

degq(B(Z, w, b— a, p,X)) - degq(B(Z, W, b— avvpax))
= deg, ()", o (@B, p, (@) —deg (B)'_  (@B}) 5, (0))

= w < Y (bi—a)(bi—ai+1)—(bi—ayriy1)(bi—ar—iy1 + 1))
i€[2]

_mler=h), ( )y <b,»—a2_,-+1)2—(b,-—a,-)2>

i€[2]
—(p1 = D)wi (b2 —by)(az —a1).
O

We adopt the following notation to discuss the shifted x-binomial products and pre-merged determinants
of general widths.

Definition 8.7. Let i € Z>3 and a € Z*. Also, suppose A = | 5] and e € Z*. Let y(1) =2 if 1 is even and
1 otherwise. Then, we define the following tuples:

O(a) =a[l : A — (k) + 1] #a[A+2: pu] € Z**W);
Cla) = ald — x(u)+2: 2 +1] € ZXW;

O(u,e) = e[l : 2 — x(u) + 1] € Z+*WH!

Clu,e) = e[ : 2] € XMW1 if y(p) =

We call O(a) and C(a) outer and center tuples of a. Also, we call O(U,e) and C(lL,e) outer and center tuples

of e.
Then, we have the following lemma for shifted x-binomial products and pre-merged determinants.

Lemma 8.8. For |1 € Z>3, suppose a,b € Z*. Let A = | § .
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1. We have the following equations:

OO

Ufay (1= 2(1),0(w),0(p), O(x) - Ugy ((1), Cw), C(p), C(x));
) (1= 2(1).009).0(p),0(x))- U

Ub(u,w,p,x) =
U:V (,u,W,p,X) =U,

90

2. In particular, if W is odd, then

AU (1,p,w,e,x) = Ul (2 (1), C(w),C(p),C(x)-d(U)gie) (=2 (1), O(v),0(p),O(, €),0(x));

also, if W is even, then

d(U) (1P, wye,%) = UG (2 (1), C(w), C(p),C(x)) - U (1t = (1), 0(w),0(p),0(x))

— TTlA = AJC9 - UG (x (1), C(w),C(p), C(x))
Tl A = 11°®9 - ug ), (= x(1),0(w),0(p),0(x)).

Proof. Proof of Claim|[l| Since O(w), O(p), O(x), and C(w), C(p), C(x) are palindromic, each factor in
equations of Claimﬂ]exists. Also,

=0(a)[1: 2 —x(u) +1]#C(a) #+O(a)[A — x(p) +2: u— x ()],
=0D)[1: 2 —x(u) +1]4#C(b) #+O()[A — x (1) +2: u—x ()]

We obtain Claim[1]by O(a") = O(a)" and C(a") = C(a)".
Proof of Claim[} Clalm R|holds by Claim|[1] since C(a) = C(a)" for odd p. O

We introduce the following notion to later discuss merged determinants by pre-merged ones.
Definition 8.9. Ler 1 € Z>» and a,b € Z*. Consider a tuple ® = ([, a,Db).
1. We call o pre-fitting if o satisfies the following conditions:

(a) a is non-negative and increasing;
(b) b is increasing;

(c) by <byand ay < ay;

(d) a<b.

We refer to Condition[Ic|as the end slope condition of ®.
2. We call @ tempered if a” < b.
3. If u > 3, then we define the outer tuple O(®) = (u — x(u),0(a),0(b)).

For example, if (u,a,b) is pre-fitting and tempered, then 0 <a; <ar < ... <ay <b; <by <... < by.
We adopt the term “pre-fitting” by the following statement.

Proposition 8.10. Suppose a gate s >0, 1 € Z>1, m,n € Z!, and k € Z*'. Let oy = (s,1,m,n,k), a = v(k),
b=v(m,n,k), and w, = (21,a,b). Then, we have the following.
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1. If @ is fitting, then @, is pre-fitting.
2. If oy is wrapped, then m, is tempered.

Proof. Proof of Claim([l} Claim[I|follows from Claim [2of Lemma[3.7] because the slope conditions of @,
give the end slope condition of a and b.
Proof of Claim[2] Claim[2]holds by s > 0, since b —a" = (m3k) 4 (nEk) € [s]* by Lemma O

The converse of Claim in Proposition does not hold, because b —a € [s]? is not necessarily true.
Likewise, the converse of Claim [2]in Proposition [8:10]does not hold.
Furthermore, we state the following for outer tuples O(®).

Lemma 8.11. Let 4 € Z>3, a,b € Z*, and ® = (U, a,b).
1. If @ is pre-fitting, then O(®) is pre-fitting.
2. If o is tempered, then O(®) is tempered.

Proof. Proof of Claim[I] Claim [T]holds, since a and O(a) (or b and O(b)) have the same end terms.
Proof of Claim[2} Claim 2]follows from O(b) > O(a") = O(a)". O

We observe that equation (8:1.2) in Lemma [8.6] is independent on base shifts p. This independence
extends to the following shifted x-binomial products of general widths.

Proposition 8.12. Suppose a tempered pre-fitting @ = (U,a,b). Let x =1"(q). Then,

degq(Uf(IJ’avaax)) - degq(UubV (:u'avaax)) = I’IZ(,IJ?W), (813)
nb(u,w) > 0. (8.1.4)

Proof. We prove equation (8.1.3) by induction on yi. Suppose u = 2. Then, w and p are flat. Lemma|3.6]
gives equation (8.1.3)), since a, b —a, and b — a" are non-negative for the tempered pre-fitting .

Suppose i > 2. Since @ is tempered, U2 (i1, w, p,x) and UZ, (1, w, p,x) are non-zero for non-negative a,
b—a,and b—a". Also, O(w) = (u — x(u),0(a),0(b)) is tempered pre-fitting by Lemma In particular,
C(a) = C(a)" for odd . Then, the induction on g and Claim of Lemma give equation (8:1.3) by

o(b) e
nooa(— x(un),0(w)) if u is odd,
b b O(a)
degq<Ut1 (u7w7p7'x)> - degq(Ua\/ (nl‘l'?W?p?'x)) = O(b) C(b) .
nO) (1 — (1).009)) + nE2) (1), C(w)) otherwise,
= nj(u,w)

Since a and b are increasing, the end slope condition of @ implies inequality (8:1.4) by

nZ(/.L,w) = Z wi(bp—iv1—bi)(ay—iv1 —a;) >wi(by —b1)(ay —ar) > 0.
i€l 511
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8.2 Positivity of pre-merged determinants

We obtain polynomials with positive integer coefficients by pre-merged determinants. For this, we recall the
following notions of g-polynomials.

Definition 8.13. Suppose f(q) = Licz., fiq' € Q[q] and c(f) = (ﬁ)ie[[ordq(f]],degq(f))' The g-polynomial
f is called palindromic if ¢(f) is palindromic, unimodal if c¢(f) is unimodal, and log-concave if c(f) is
log-concave. Also, f is said to have a step if c(f) has a step.

Hence, for example, f(g) € Q|g] is unimodal if and only if f = 0 or Jordy(f) < Sordg(p)+1 < - < fi 2
> fdegq (f)-1 = fdegq< ) for some i € Z. We now recall the well-known statement below on palindromic

and unimodal g-polynomials.

Proposition 8.14. (/Sta, Proposition 1]) For each palindromic and unimodal g-polynomials f(q),g(q) €
Q>0lg], the following is a palindromic and unimodal g-polynomial:

f(9)g(q) € Q>0[q].

The following extends Proposition for the change of variable g — ¢ of p € Z>;. This is to construct
explicit merged-log-concave parcels for non-trivial base shifts.

Proposition 8.15. Suppose p € Z>1 and A(q) = [ply. Then, we have the following.

1. For each palindromic and unimodal g-polynomial h(q) € Qx>o|g] and palindromic and unimodal
gP-polynomial f(q) € Q>0[gP], the following is a palindromic and unimodal q-polynomial:

F(@)A(q)h(q).

2. A(q) is the unique lowest-degree g-polynomial such that A(0) = 1 with the above property.

Proof. Proof of Claim(l] First, a product of palindromic g-polynomials is a palindromic g-polynomial, since
palindromic g-polynomials ¢ (¢), w(q) € Q[q] such that ¢,y # 0 imply

Y GV = Y e, (9)-rtordy(9) Vdeg, (w)—ja-tordy () = ) 91 Vi
Ji+jo=i J1ti=i J1+ja=deg,(¢)+deg, (y)—i+ordy(9)+ordg(y)

Second, we prove that 11(q) = f(g)A(q) is a unimodal g-polynomial for p > 1, since pt(g) is a palindromic
g-polynomial by the above. This gives Claimby Proposition Let A(q) = Yo<i<p—1 Aiq' and u(q) =
fl@Ar(g) = Yo<i<deg, (f)+p—1 Hiq'. Assume ord,(f) = 0 for simplicity. Then, we need

Miy1 —Mi >0 (8.2.1)
when 0 <i < w — 1. Since i1 — i = Y fi— j(Aj+1 —A;), we have
Mivt = i = fix1 = fir1-p- (8.2.2)
Suppose

deg,(f) | _,_ deg,()+p—1
2 - 2

—1.
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Since deg,(f) = pk for some k € Z, we have
pk<2i+2<p(k+1)—1.

This gives i+ 1% 0 (mod p). Since fi+1 = fi+1—p = 0 and equation (8.2.2)), we deduce inequality (§.2.T)) by
Mit+1 — pi = 0. Suppose

We then deduce inequality (8.2.1)) by equation (8:2.2)), since f(g) is a palindromic and unimodal g-polynomial.

Proof of Claim Let A'(¢) € Q[g] such that A'(0) = 1 and deg,(A'(¢)) < p — 1. Suppose that (1 +
q”)A'(q) is a palindromic and unimodal g-polynomial. Since A'(¢) has no steps and deg,A'(q) = p — 1,
Claim 2l follows. O

We introduce the following rational functions to analyze pre-merged determinants.

Definition 8.16. Let a,b € 7> and w,p € Zzzl. Then, we define

b w
Xab(W,0,q) = [ ] [P1]q € Z>0lq],
ajlgh
[iepy by 0, 5, (@)
Kap (P, g) = — L by
[P1lg

€ Q(q).

Each g-binomial coefficient is a palindromic and unimodal g-polynomial [Oha, Syl]. This gives the
following for y,4(w,p,¢) by Claim [I]of Proposition

Corollary 8.17. Ifb > a > 0, then x,,(W,p,q) >4 0 is a palindromic and unimodal q-polynomial.

a

Proof. Since b > a > 0, [h]qp] >4 0. This leads to Xu5(w,p,q) >4 0 by [pi]q >4 0. Also, Claim 1| of

Proposition [8.15|implies that x,;(w,p,q) is a palindromic and unimodal g-polynomial, since [Z:]qm and

[zi] o e palindromic and unimodal gP!-polynomials. O

Also, we have the following positivity of &, ,(w,p,q).
Lemma 8.18. Ifa,b € 7 satisfy b> > a» and by > as, then Kap(W,P,q) >4 0.

b2 ety a1 1]
Proof. The assertion holds, since Lemma gives bz*[;fl’]”] @ _ he[[bz[pl]ﬂ Vil
q q
0.

>, 0 and bvbvll_%m (q) >4

Then, the following positivity holds by width-two pre-merged determinants.

Proposition 8.19. For a tempered pre-fitting @ = (2,a,b), consider a flat w € Z2 | and e € [0,n}(2,w)]. Let
x = 1%(q). Then, we have

d(U)2(2,w,p,e,x) >, 0. (8.2.3)
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Proof. Since o is tempered pre-fitting, we have
0<a; <ay<b <bs. (8.2.4)
First, for py = 1 and e = 0, we prove inequality (8:2.3)) by inequality (8:2.4). We assume w; = 1, because

inequality (8:2.3) implies [Z]q >4 [abv]q, and hence multiplying the both sides give inequality (8.2.3) for
wi > 1. By the induction b,, we want

b
aV

J(U)Z(Z,W,p,e,x)z[z] —[ ] >, 0. (8.2.5)
q q

The smallest possible by is 2 by inequality (8:2.4). Then, a; =0, a; = 1, and b; = 1. This yields
inequality (8:2.3) by the direct computation:

dU)(2,w,p,e,x) = [(I)L mq — mq[g]q =g>,0. (8.2.6)

Let b, > 2. By the g-Pascal identity, the first and second terms of inequality (8:2.3)) give
A (R P R (i o
al, a—1 q ar |, a—1 q a |,

:[bll] [bzl] g [bll] [bzl]
al—lqag—lq aj qaz—lq
K N R PR R
a1—1 q ar q aj q ar q
i i | s e )
a\/q azflqal—lq a qal—lq
e e
a2—1 q aq q an q aj q

Comparing the powers of ¢, we prove the following inequalities:

b=11_ bv_l >,0; (8.2.7)
a=1], [a"—1],
b—1 b—1 ]
. > 0; 8.2.8
[(al,az—n]q [<a1,a2—1>vq—‘f’ (829
b—1 b—1 ]
- > 0; 2.
[(al_Laz)]q [(al_l’az)vq—qo, (8.2.9)
—1 —1]
[ba ] —[bav >, 0. (8.2.10)
q q

In particular, inequality (8:2.10) gives the strictness of inequality (§.2.3).
We deduce inequality by the induction for a; > 1 and by 0 >, 0 for a; = 0. Also, inequality (8.2.8)
follows by the induction for a; —1 > a; and by 0 >, 0 fora; — 1 = a;.

61



az

inequality (8:2.10) holds, because [bgl]q >, 0by b— 1> ain inequality (8:2.4).

Instead, assume b; — 1 > a,. Then, inequality (]@[) holds by the induction for a; > 1 and by 0 >, 0
for a; = 0. Also, inequality (8:2.10) follows from the induction. Therefore, we obtain inequality (8:2.5) for
pr=1ande=0.

Second, we prove inequality (§.2.3) for p; > 1 and e € [0,n2(2,w)]. By inequality (8.2.4), we have
d=b—a; €Z*?and k = ap — a; € Z such that

Assume b; — 1 < ap. Then, ["l’l]q = 0. This gives inequality (§:2.9) by [(all:laz)] >, 0. Also,
a2)lg

d >0, (8.2.11)
k> 0. (8.2.12)

For A € ZF and a, B € Z, let

E(A,w,0,B.k)=B+w Y A(a—k+i)€Z.
i€[k]

Then, by d —k = b —a» and Lemma[8.3] we have
d(U)5(2,w,p,e,x)

ot (@ ([P] Praa@ 0" bZ; aor (@)
by—az.p1 \1/Pby—ar p \4 NG (q) q av

gPr O —ay py qP1 bz a, p(Q)
by a p (@) by o (q)
= Kap(W,P,q) (Xab(w p; f])blalipl() q°Xav (W, P, q o N L e
by—az.py \4 bz a,py (q)
= ks(m0,9) | Xap(mpsq) Y, PNy wpg) Y AN | (82.13)

re[0,p—1]* ref0,p—1]*
For A € [0, p; — 1], we prove the following inequality:

E(Awd;,0k) E(A,w,dy,e.k)

Xa, b(w P, Q) XaV b(w p, 6]) >q 0. (8214)

By Lemma [8.18]and equation (8.2.13)), inequality (8.2.3) follows from inequality (8.2.14). By the change of
variable g — ¢P!, inequality (8:2.3) implies

bl” b1”
> .
|:a:| qpl qpl |:a\/:| qpl

Multiplying [pi], on the both sides, we induce
%a,b(va7Q) - %av,b(wap7Q) >q 0. (8215)

Furthermore, Lemma8.6] gives

yP

b]" b1”
~en ), ],
” ¥

=n2(2,w,p). (8.2.16)

degq<xa,b<w7p,q>>—degquav,b(w,p,q)):degq([ﬂ [PM)—degq([abv] [p]q>
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Also,

Ordq(Xa,b (W7 P7‘1)> - Ordq(XaV,b(vay Q)) =0. (8217)

Then, we prove the following inequality:
0<EA,wdy,ek)—E(A,w,d;,0,k) < nZ(Z,w,p). (8.2.18)

By Corollary 817 with equation (8:2.13)) and inequalities (8:2.16) and (8.2.17)), inequality (8-2.14) follows
from inequality (8:2.18). The left-hand side of inequality (8.2.18) holds by d» —d; = by —b; >0and A > 0.

The right-hand side of inequality (8:2.18)) holds as follows. Since 0 < e < n%(2,w) = w(by — b1)(az —a1),
inequalities (8.2.11)) and (8.2.12) give
E(A,w,dy,e,k) —E(A,w,d1,0,k) =e+wi(dr—d1) ) A
<e+wi(dr—dy)k(p1 —1)
<wipi(by—b1)(a2 —ar)
—(2,w,p).

O

Remark 8.20. Suppose w; = p; = 1 and e = 0. For non-negative integers a; < a» < by < by, Proposition[8.19|
restricts to the following g-polynomials with positive integer coefficients:

totempen=[2] 2] -] 2]
aq q an q ay q aq q

which are important for us to obtain almost strictly unimodal sequences.

The strict inequality above differs from the g-log-concavity of g-binomial coefficients in the pioneering
works [But, |[Kral Sag|]. Let us explain more precisely. Suppose non-negative integers b1 < bs, a; < ay, k, and
A <d(a,b,k):=k(2((az—a1)+k)+ (b2 —b1)). Then, [Kra, Corollary 3] gives

T(Cl7b7k,2,,q) = bl b2 _q)L bl b2 2‘]0
algla1], a2+kqa1—kq

However, unlike d(U)%(2,w, p,e,x) = ¢ in inequality (8:2.6), deg, T (a,b,k,A,q) > 0implies that T'(a,b,k, 4, q)

is not a monomial. Indeed, if [Z;]q[ﬁf] q[azbik]q[ulb ik]q # 0, then

deg, ([2L[Zi> — deg, ([azb—]kk]q[albi kL) =d(a,b,k) > 1.

Hence, T(a,b,k,A,q) is not a monomial, since [b‘]q[bz]

e d [ by ]q[ b2 ]q are palindromic and uni-

q ar+kl g lay—k

modal g-polynomials such that ord, ([bl]q[bz]q) = ord, ([ by ]q[ b ]q) =0. If [*] [bz]q =0, then

ap ap ax+k a;—k aylqla;

[azbik]q[af’ik]q =0. Also, if [afik]q[af’ik]q = 0, then deg, T(a,b,k,A,q) > 0 implies that T(a,b,k,A,q)

is not a monomial, as it is a palindromic and unimodal g-polynomial.

We extend Proposition [8.19] after the following lemma.
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Lemma 8.21. Consider a shifted x-binomial product Ut (w,w,p,x) with 2. = | & | and e € 72 Lo Letx € Q(X)H
be >-admissible. Then, we have the following.

1. UP(u,w,p,x) >, 0ifand only if b > a > 0.
2. UJ(,w,p,x) 25 0 and U (1, w, p,x) - TTx[1: 2] >, 0.
Proof. ProofofClaim Unless b > a >0, a]x =0. We deduce Clalml since ] >:0byb>a>0
i

and B(i,w,b—a,p,x) >, 0 by Theorem[5.23|and Lemma 8.1}
Proof of Claim[2} Claim[2]holds by [Tx[1 : A]¢ >, 0. O

Theorem 8.22. Suppose a pre-fitting © = (U,a,b). Consider a —-admissible x € Q(X)* and w,p € Zgl
such that x, w, and p are palindromic. For & = |5 |, let e € Z;O such that e < N2(u,w). Then, we have

dU)b (1, w,p,e,x) >, 0. (8.2.19)

Proof. Assume that o is not tempered. Then, the assertion follows from Claim [T]of Lemma [8:21] because
U, (1, w,p,x) =0by b % a" and d(U)}(u,w.p,e,x) = UL (1, w,p,x) >, 0by b >a > 0.

Hence, assume that @ is tempered. We prove inequality (8.2.19) by the induction on p. When u = 2,
Proposition [8.19| gives inequality (8:2.19). Suppose 1 > 3. Then, O(l,e) < NO® )([J x(1),0(w)). Also,

O(w) is tempered and pre-fitting by Lemma Hence, the induction imphesO(a)
d(U)gye) (1 = (1),0(1).0(p).O(11,€), 0(x) > 0. (8.2.20)
Now, since b > a > 0 implies C(b) > C(a) > 0, Claim|[I]of Lemma|[8.21] gives
U (2 (1), C(w), C(p), C(x)) > 0. (82.21)

If 1 is odd, then inequalities (8:2.20) and (8:2.21) give inequality (8.2.19) by Claim @ of Lemma [8.8]
Instead, assume that u is even. First, let C(a) or C(b) be flat. Then, 0 < C(u,e) < N&% (x(n),Cw)) =

Pawa(by1 —Dby)(as, 1 —ay) =0. Also, since C(x), C(w), and C(p) are flat, inequality (8:2.21)) gives

e b w "
HXM :MC(M | 'U((ij((f))v (k). COw). AP CL) = [ ((a))v] Clp) bj*“ulvp,l (xl)bbﬁll*appml (*2+1)
(b) W) Wyl
[C(a) C(x)C(P) bb’l_“l’pl( )bbbjl %meﬂ( Mt1)
(

= Ut (2(1).C9).C(p). C(x) > 0.

Hence, inequality (8:2:19) follows from inequality (8:2.20) and Claim [2] of Lemma [8.8] Second, let 0 <
Ca)1 < C(a)s < C(b)1 < C(b)a. Then, d(U)g(u) (x(1),C(w),C(p),C(1,),C(x)) >, 0 by the induction.
Hence, we have
U (e (1), C(w), C(p), C(x)) > [TxlA : A]°W - UED, (), C(w),C(p),C(x)).
Also, inequality (§.2.2T)) implies
Ugta) (1t = 2(1),0(w),0(p),0(x)) > [Tx[1 : A = 11°W)- UG (1 = (1), 0(w),0(p), O(x).

Now, inequality (8.2.19) follows from Claim [2]of Proposition[5.6] Claim 2] of Lemma|[8.8] and Claim 2] of
Lemma[821] O
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In particular, if x = 1#(g), then Theorem gives d(U)b (1, w,p,e,x) >, 0.
8.3 Merged-log-concavity by functional monomial indices

We give merged-log-concave parcels by the following o-difference functions and functional monomial
indices.

Definition 8.23. Assume a gate s > 0,1 € Z>1, and w € lel. Suppose a functiont : 7! — Q.
1. Form,n € Z! and k € Z*, we define the o-difference function
ta(m,n,k) = t(mEk) +t((n@k)") —t(m) —t(n") € Q.
2. We call v = (s,1,w,1) a functional monomial index if v satisfies
ta(m,n,k) € (8.3.1)
0 < 1p(m,n,k) <n2(2l, w) (8.3.2)

for each wrapped fitting (s,1,m,n,k) with a = v(k) and b = v(m n,k). We call s,1,w, and t the gate,
width, weight, and core function of v. We refer to (8.3.1) and as the integer monomial condition
and the sum monomial condition of V.

We also define the following shifted x-binomial products, quasi-merged determinants, and proper media-
tors.

Definition 8.24. Suppose a gate s >0, 1 € Z>1, andw,p € le1~ Let u = (s,l,w,=,p,x,X) for a —-admissible
x € Q(X)!. Consider a p-mediator ¢.

1. We define the shifted x-binomial product V (s,1,w,¢,p,x) = (Vab(s,l,w,(}ﬁ,p,x) € Q(%))abezzl such
that

wH

b
V;’(s,l,w,(b,p,x) = |: ] B(S’217wu’b_a7¢uapuaxu7x)'

@)

We refer to s, I, w, ¢, p, and x as the gate, width, weight, mediator, base shift, and base of
V(s7l7wﬂ¢)p7x)'

2. Leta,beZ* and e € leo- We define the quasi-merged determinant
d(V)Z(s,l,w,q),p,e,x) = Vab(s,l,w,(]),p,x) — Vabv (s,0,w,0,p,x) ~er € Q(X)
We call e the degree shift of d(V)"(s,1,w,¢,p, e,x).
3. We call ¢ a proper [i-mediator (or a proper mediator for short) if
d(V)o(s,1,w,¢,p,e,x) = 0
for each fitting (s,l,m,n,k), a = v(k), b=v(m,n,k), and e € leo such that e < N?(21,w").
4. Ifx is flat and e € Z >, then let

d(V)o(s,l,w,0.p,e,x) =d(V)5(s,1,w,0,p,(e) #1771 (0),x).
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Let us compare pre-merged and quasi-merged determinants.

Lemma 8.25. Let s = (0,), | € Z>y, and e € leo- Consider a ~-admissible x € Q(X)" and the canonical
I-mediator ¢. Then, d(V)2(s,1,w,¢,p,e,x) = d(U)2(21,w", p", e, x").

Proof. Since ¢(x) is canonical,
B(2,w",b—a,p” x) = B(s,Lw, (b—a)[1: 1], (b — @)l +1:21))",,p,x, %),
B(2lw",b—a’,p" ") = B(s,L,w,(b—a")[1: 1], ((b—a")[[+1:21])",¢,p,x,%).
These equations give the assertion, since

wH

b
Ub@21,wH, pt a) = [a] B(2L,w",b—a,p",x") =V (s,1,w,0,p,x),
(xP)-
b1"
va(Zl,wu,pu,xu) = [ v] BQ2l,w-,b—a",p"x") = Vabv(s,l,w,(p,p,x).
a

(=P

We demonstrate the existence of proper mediators.

Proposition 8.26. Suppose sy = (0,), | € Z>, and w,p € lel. Let wy = (s1,L,w,=,p,x,%) for a »-
admissible x € Q(X)!. Let uy = (s2,1,w,=,p,x,X) for a gate s, > 0. Consider a y,-mediator ¢. Then, we
have the following.

1. If ¢ is the canonical I-mediator, then ¢ is a proper U;-mediator.

2. If p =1'(1), then ¢ is a proper u,-mediator.

3. If ¢ is a proper U-mediator, then @ is a proper L-mediator.
Proof. Proof of Claim[I] Consider a fitting (s1,/,m,n,k), a = v(k), and b = v(m,n,k). Then, (2,a,b) is
pre-fitting by Claimof Proposition For each e € leo such that e < Nb(21,w"), Theorem@ and
Lemma[8.25] give the properness of ¢:

dWV)2(s1,L,w,0,p,e,x) =d(U)E(21,w", p",e,x") = 0.
Proof of Claim[2] Claim 2]holds by Theorem [8:22] since Claim [I] of Lemma [&.2]implies
B(s1,2l,w" b —a,¢",p” x" %) = B(s1,21,w",b—a”, 9", p" 5", X) = 1.
Proof of Claim[3] Suppose a fitting (s,/,m,n,k) with a = v(k) and b = v(m,n,k). Then, we have

d(V)b(sl,l,w,q),p,e,x) =0 if b—a" € [[SZHZIa

a
d(V)b(sz,l,w,q),p,e,x): b W
“ [ ] B(s2,2,w,b—a, 9", p” x7, X) = 0 otherwise,
@1 ()
where the latter holds by the base-shift positivity of ¢ and p;. O
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Let us write merged-determinants by quasi-merged determinants.

Lemma 8.27. Suppose a parcel % = A(s,l,w, >, f;,p,9,x,X). Assume a fitting (s,I1,m,n, k) with a = v(k)
and b= v(m,n,k). Let y = xP. Then, we have

(Fsmfone) ' ACF) (5,1, w,m,n,k, ¢, p,x,%)

wH

=B(s,l,w,(b—a)[l : 1],((b—a)[l+1:20])",0,p,x,X) [z] ’
y

b
_ (fsﬁmfs)nv)71fv7mE|ka_’(nk)vB(s,l,w, (b—av)[l ), ((b—a\/)[l—l— 1: 2l])v, 0,p,x,X) [a\/]
y\_l

Proof. Claim 2]of Theorem[7.19)and Lemma([7.18]yield the assertion, since f; and f; v are invertible by
the >-positivity. U

We now obtain the following merged-log-concave parcels by functional monomial indices.

Theorem 8.28. Let v = (s,1,w,t) be a functional monomial index. Let x =1'(q) for a =-admissible g € Q(X).
For = (s,l,w,>4,p,x,X), suppose a proper [L-mediator ¢. Consider a parcel F = A(s,l,w, >, f,¢,p,x,X)
such that

t(m) 1
q'\" forme [s|’,
fomm { [s]

0 otherwise.
Then, for each fitting (s,1,m,n, k) with a = v(k) and b = v(m,n, k), we have
g "M IACE ) (5,1, wymn, k, 0, p,x, ) = A(V)2(5,1,w, 0,0, 1a(m, 0, k), X) >, 0. (8.3.3)

In particular, F is —-merged-log-concave.

Proof. Lemma gives the equation in (8:33), since (fym/fonv) ™! Sz s, (i) = g'almnk),
Let us prove the inequality in (8:3:3). The monomial conditions of v give e(r,m,n,k) € leo such that
e < Nb(21,w") and Y e(t,m,n,k) = ta(m,n,k). Then, since ¢ is proper, the inequality in (§:3.3) holds by

d(V)2(s,1,w,0,p,ta(m,n,k),x, %) = d(V)o(s,1,w,0,p,e(t,m,n,k),x,X) >, 0.

We have the merged-log-concavity of .% by the inequality in (8:3.3) and the half >,-> implication,
because fi ufs v = q' ™) = 0 by the >-positivity of f;. O

If there is a ~-admissible x € Q(X) for some [ € Z>1, then Claimof Lemma implies 1 >~ 0 by
1 >, 0. Hence, we introduce the following notion of constant parcels.

Definition 8.29. Suppose a gate s > 0and | € Z>. Let 15 = (lx,,[?m e @(x))meZl such that

1 ifmel[s],
ls,l,m =

0 otherwise.

Then, we define a constant parcel A(s,l,w,=,rl;;,p,¢,x,X) when r € Q satisfies r > 0.
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These constant parcels yield merged-log-concave parcels for arbitrary gates, widths, positive weights, and
base shifts as follows.

Corollary 8.30. Consider a constant parcel F = A(s,l,w,=,rls;,p,0,x,X) withw € Zl>] and a proper
mediator ¢. Then, F is —-merge-log-concave.

Proof. The assertion follows from Theorem 8.28] by the functional monomial indices of zero cores. O

In particular, Claim [T] of Proposition and Corollary give the following explicit merged-log-
concave constant parcels.

Example 8.31. If Z = A(s,[,w, -, 1,;,p,x,X) withw € ZL |, then

1 1
P ko form € [s]’,

0 otherwise.
8.4 Monomial indices and functional monomial indices

We realize monomial indices (I,w, ) as functional monomial indices (s,/,w,) of infinite gates s. This gives
more explicit merged-log-concave parcels via Theorem [8.28] since 3/ rational numbers determine the core
v of a monomial index (/,w,y). Furthermore, by Proposition cut operators turn merged-log-concave
parcels of infinite gates into merged-log-concave parcels of any gates.

We state the following lemma on fitting tuples.

Lemma 8.32. Consider an infinite gate s > 0 and | € Z>1. For k € Z*! and m € 7!, let [y, i = (s,1,m,m,k).

1. Suppose k € Zzzll and a flat m € 7! with a = v(k) and b = v(m,m,k). Then, b; —b; = a; —a; > 0 for
each 1 <i< j<2l

2. Suppose k € Zzzll and a flat m € 7"
(a) If m € [s]', then U i IS fitting.
(b) If m> o (k)1 + 51, then W,k is wrapped and fitting.
3. Letre le] and A € 7. Then, we have k € Zzzll with the following properties.
(a) Foreachi€ [l], 0 < o(k);=A; (mod ry).
(b) Wy is wrapped and fitting for each flat m € Z! such that m > o (k) + s1.
4. Let A € [l] and R € Z>,. Then, we have k € Zzzll with the following properties.
(a) o(k);=2(l—i)+1forie[A+1,]].
(b) o(k)i=R+2(1—i) forie [A].
(¢) Wy is wrapped and fitting for each flat m € Z! such that m > o (k)1 + 1.

Proof. Proof of Claim |l l Clalml holds since bj — b; = (aj +my) — (a;+mi1) = a; — a; by the flat m and
aj—a;=Ykli+1:j]>0bykez,

Proof of Claim[2} Clalm!glves Cla1m Ralby a; =k > 0. Clalm.holds as follows. First, L, x is fitting
by Clalm | because m € [s]' by o(k); >0 and s, = 0. Second, L« is wrapped, because mHk € [s]' and
(mBk); =m; —o(k); > m; — o (k); 2 51 by Lemma3.9]
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ProofofClaim Let us obtain k € Z%| with Property [3al Let k[1: /] =1/(1) and ki1 = pirj+ A € Zx
for some p| € Z>. Furthermore, we inductively put some p; € Z> fori € [2,[] so that

kipi = piri—iv1 +Moiv1 — Y k[l —i+2:1+i—1] € Z>. (8.4.1)

This is possible, since i € [2,/] implies 2 <] —i+2<I+i—1<[+4i<2l. It follows that i =/ gives
o(k);=ki1 =4 (mod r). Now, let i € [l —1]. Then,

2<I—-i+1<1. (8.4.2)

This gives 2 <!/ —(I—i+1)+2<l+(—i+1)—1<2/—1land (i+1)+1<2]—(i+1)+1. Hence, we
have

YKl—(—i+1)+2: 041 —i+1)—1] =Y K[i+1:21—1]
=Y K[+ 1) +1:20— i+ 1)+ 1)) +kiyy
=0o(k)ir1+kiv1.
Therefore, since / — (I —i+ 1) + 1 = i, the equation in (8:4.1) and inequality (8.4.2) imply
o(k)i=Y kli+1:21—i+1]
=0(k)ir1 +kiv1 +kigiv

=0 (k)it1 +kivt +pi—ipiri+Ai — o (k)ip1 — ki1
=A (mod r;).

Then, Propertyholds, since k € ZZZII implies 6 (k) > 0. Also, Claim gives a flat m € Z! in Property
ProofofClaim Let k € Z2, such that k; = 1 for 2 <i# A +1 <2l and kj | = R. Then, Property
holds, since i € [A + 1,1] gives

o(k)i=Y kli+1:21—i+1]=2(1—i)+1
by A+1<i+1<2]—i+1. Wehave Property@ because
G(k),-sz[i—&-l 2l—i+1]=2l—i+1)—i—1+R=R+2(I-1)
byi+1<A+1<2[—i+1forie[A]. Also, Claimgives aflat m € Z! in Property O
Let us rewrite n2(21,w).

Lemma 8.33. Let | € Z~. Consider m,n € 7! and k € 7' with a = v(k) and b = v(m,n,k). Then,
nh(2L,w) = Licpgwio (k)i(n i1 + o (k)i —m;).

Proof. The statement holds by Lemma since n2(21,w) = Y.N2(21,w) for N2 (21,w); = wi(ba_i11 —
bi)(ax—iv1 — ai). O

This gives the o-differences 7,4 below by quadratic polynomials ¢, in Definition|[T.TT]

Lemma 8.34. Let | € Z>; and y € [[icy Q3. Suppose m,n € 7! and k € Z*. Then, we have the following.

1 tya(m,n.k) =2Ycqq Y10 (k)i(ni—ip1 + o (k)i —m;).
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2. Ifeach 2y € Z, then tya(m,n,k) € Z.
Proof. Proof of Claim[I] We have

tya(m,n,k) = ty(mBk) + t,((n@k)") — ty(m) — 1,(n")
=Y tyi(mi — o (k)i) + tyi(ni—is1 + 0(k)i) — tyi(mi) — tyi(m_is1)

ic[i]
= Y il = o) 4y i + 000 = ym =y
ie[,j<[3]
= Y %a(2mio(k)i + o (k)F) + %1 (2m-ir10(k); + o (k)7)
ie[i]
Proof of Claim[2] Claim2]follows from Claim [I] O

We discuss the sum monomial condition of monomial indices by the following.

Lemma 8.35. Let | € Z>1 and u,w € Q!. Then, each h € [I] satisfies

0< Y wi< ) w (8.4.3)

ie[[h] i€[h]
if and only if each decreasing K € leo satisfies
0< Z Kin; < Z Kiw;.
i€l] €[]

Proof. The if part holds by x = 1"(1) 4 1/~(0). We prove the only if part. When / = 1, it holds by
0<u; <wjpandk; >0. Assume [ > 2.

First, we prove 0 < ;e[ Kiti. The left-hand side of inequality (8.4.3) implies —u; < Ycp;—1jui, and
hence Kju; > —Yic1—17 Kiui by ki € Q0. The induction on / gives

Y owwi= Y, Kwitwuw > Y wwi— Y, kui= Y (k—K)u>0,

ic[i] ie[i—-1] iei—-1] ie[i—-1] iei—-1]

since k[1:1— 1] — Kk € QL is decreasing.
Second, we obtain 0 < }.;c[; ki(wi — u;) as above, since

0< Y wi—u) < Y, (wi—u)

ie[h] i€[h]
for each h € [I] by the right-hand side of inequality (8.4.3). O

We now obtain the following equivalence on monomial indices and functional monomial indices by
polynomials.

Theorem 8.36. Suppose an infinite gate s >0, 1 € Z>1, and w € lel' Consider t;(z) € Q[z] for each i € [I].
Also, let t(m) = Y ti(mi) € Q for each m € 7!. Then, the following statements are equivalent.

1. There is a functional monomial index ¢ = (s,1,w,t).

2. There is a monomial index ¥ = (I,w,y) such that t = t,.
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Proof. Let us prove Statement [T| by Statement 2] First, the integer monomial condition of ¢ follows from that
of y by Claim 2 of Lemma[8.34] Second, the sum monomial condition of ¢ holds as follows. Suppose a
fitting (s,1,m,n, k). Then, Lemmagives the decreasing (6 (k)i(n—i+1+ 0 (k)i —mi));c € leo~ Then,
by Lemma 8.35] the sum monomial condition of y gives

0<2 Y yaok)i(n—is1+o(k)i—m) < Y wio(k)i(n_is1 +o (k)i —m).
i€{] ici]

We obtain the sum monomial condition of ¢ by Lemma8.33]and Claim T]of Lemma [8:34]

Let us prove Statement [2| by Statement |I| First, we prove that each deg_#;(z) < 2 by contradiction.
Assume d = max(deg,(z),...,deg,/(z)) > 2. Suppose all integers ji < -+ < j, such that t;,(z) = aj, 4z¢ +
ajhd,lzd’l +...and @, 4 # 0. Also, for a flat m € 7!, let

tja(m,m,k) =1;,(mEk) j,) +1;,((mEBK) ) — 1 (mj;) — 1, (m3)
= tj;(m1 — o(k) j;) +1j,(m1 + 0 (k) j;) — 1, (m1) — 1, (m1).
We deduce deg,, tj,A(m,m,k) < d—2, since for each A € [0,d — 1], both m?~* and m¢=*~" vanish in
& (1= 004+ (my 4+ 0 (K) ) = =),
Furthermore, we have
1a(m,m, k) = 2md =2 d Y ajq0(k); + (8.4.4)
AL, TTT, 1 d—2 7 jind GiT e 4.

If A €[I] and R € Z>, then Claimof Lemma gives h(R,A) € Z%, and a wrapped fitting 1t(R, 1) =
(s,,g(R,1),g(R,A),h(R,A)) for each flat g(R,A) > o (h(R,1)) + s such that

R+2(I—i)forie[A],

o(h(R,A4))i = {2(l—i)+ 1forie [A+1,1].

For a large enough R € Z>, we deduce

Y aj.q0(h(R,1))5 #0. (8.4.5)
icu]

Furthermore, for a(R,A) = v(h(R,1)) and b(g(R,1),R) = v(g(R,A),g(R,A),h(R, 7)), Lemma|[8.33| gives

b A),
™ 2t w) = T wioi(k 1)} (8.4.6)

which is independent of g(R, ).
Therefore, since d > 2, equations (8:4.4) and (8:4.6) and inequality (8:4.3) imply that large R € Z>; and
g(R, 1) € Z! violate the sum monomial condition

0 <1a(8(R,1), (R, 1), A(R, 1)) < n(&isV*) (21, w)

of ¢. This gives ¥ € [1ic[y Q3 such that t = ty.
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Second, we prove the integer monomial condition of ¥ by contradiction. Suppose some j € [I] such

that 2y; | & Z. For each i € [I], lety; > 1 and 27, = % with coprime x; and y;. By Claimof Lemma ,

y= (yi)ieqy gives a flat g(y) € 7! and wrapped fitting (s,7,g(y),g(y),h(y)) such that 6(h(y)); =1 (mod y;)
and o(h(y)); =0 (mod y;) if i # j. Then, we have

2y10(h(y)); € Z,
2910 (h(y)); € Zifi # j.

2

i

However, this contradicts the integer monomial condition of ¢, since 7A(g(y),g(y),A(y)) = L:2%.10(h(y))
by Claim [T]of Lemma[8:34]

Third, we prove the sum monomial condition of y. For u(R,1), a(R,A), and b(g(R,A),1) above,
Lemma8.33]and Claim [I] of Lemma [8.34] yield

Manay @) —1a(8(R.A). g(RA).w) = X (i = 2%0)(R+2(1 = )
ic[A]
+ Y w2l -+ 1)
ic[A+1,0]

Since w > 0, Yica] wio(h(R,1))? = Yiepagwi(R+2(1— i))2 > 0. It follows that

b(g(R,A),A)
lim na(iﬁm (217W) —IA(g(R,A),g(R,)u%W) —1_ ZiG[[M] 2%,1 .
Ryos Yiepp Wi (h(R,A))? Yiepapwi

This limit has to be non-negative by nzgfe(.l;’)m’M(ZI W) —ta(g(R,A),g(R,A),w) > 0 in the sum monomial

condition of ¢. We derive

Y 2pi< ) wa (8.4.7)
i€[A] i€[A]

Similarly, lim...., AEELLELL _ Sel

Ticpapwic(WRA)F — Yiepapwi
condition of ¢. We derive

> 0 by ta(g(R,A),g(R,A),w) > 0 in the sum monomial

0< Y 2y (8.4.8)
i€[A]

Therefore, the sum monomial condition of y follows, since we have inequalities (8:4.7) and (8:4.8) for each
A e [1]. O

Remark 8.37. The proof above holds, since the flips n* and (nFHk)" in A(F)(s,l,w,m,n,k,¢,p,x,X) kill
Yi2 inty a(m,n, k) by Claimof Lemmam

Remark 8.38. Suppose the notation in Theorem 836 with / = 1. If ¢ is a functional monomial index, then
Theorem [8.36]implies ¢ = 1, and hence 1,1 > 0 by the sum monomial condition of y. Proposition|T3.17]also
gives this inequality in some general setting, not necessarily of monomial indices.
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8.5 Monomial parcels

By monomial indices, we introduce the notion of monomial parcels to explicitly obtain more merged-log-
concave parcels.

Definition 8.39. Suppose an infinite gate s > 0 and monomial index (I, w,7y). Let g € Q(X).
1. We define the t-monomials Wy y 4 = (Ws.yqm € Q(X)),, cp such that

ty(m) - l
g™ ifme [s],
Wy qm= {

0 otherwise.

2. Let q be —-admissible. For each m € [[s]', assume
Ysygm = qty(m) = 0.
Suppose a proper (s,1,w,>4,p,x,X)-mediator ¢ for x = /(). Then, we define the monomial parcel

y = A(S’l7w7>_a\PS7’J/,q7¢?pa-xax)'

, (i (1)
In particular, we call F -

Lo linear (or linear for simplicity) if (Yi1)iep = 1/(0). Also, we call F
q

(1)
q::(il(())) -quadratic (or quadratic for simplicity) if (Yi1)icp) # 1/(0).
q

Explicitly, each m € [s]' gives

lPs,)/,q,m - qty(m)
oG-y ~ 160 [nlly

T =

.. giv(m) . . . . . . TR
which is q(;)w for the canonical mediator ¢. We now obtain the following g-polynomials with positive integer
q

coefficients.

Theorem 8.40. Consider a monomial parcel F = A(s,1,w, =, ¥ y4,9,p,x,X). For each fitting (s,l,m,n, k)
with a = v(k) and b = v(m,n,k), we have

q_’y(’")_’y(”v>A(ﬁ) (s,L,w,m,n,k,¢,p,%,%) =d(V)(s,1,w, 0,p,tya(m,n,k),x) >4 0.

In particular, % is —-merged-log-concave.

Proof. Statements follow from Theorem [8.28|and Theorem U
If /=1 and w = (1), then the monomial conditions of (I,w,y) imply 71 =0or 711 = % Hence,

suppose ¥ = ((0,0,0)) and % = ((3,—3,0)) with s = (0,0) so that we have the linear and quadratic

Fi=N(s,1,w, =, ¥ y.4,P,%,X) of i € [2]. Then, for an indeterminate ¢, (£t:q)F" are P lﬁ_mtml of
: L7

i € [2] by the Euler binomial identities.
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Example 8.41. For s = (0,00),/=1,w=(1),and y= ((0,0,0)), consider .# = A(s,l,w, =, ¥ y,4,X,X). Let
m=n=(2)and k= (1,1). Then, we have a = v(k) = (1,2), b = v(m,n,k) = (3,4), mBk = (1), nEHk = (3).
Hence, we obtain the following g-polynomial with positive integer coefficients:

A(F) (s, l,w,m,n,k,x,X) = (3)¢(4)q (1 1)(11)

(1)q(2)g \ (2 Dg (3)q
3] |4 4
“BLEL-ELE,

=¢"+¢ +2¢"+4’ +4*

Example 8.42. Let s = (0,00), / =2, w=1/(1), and y=1/((0,0,0)). Suppose .F = A(s,l,w, =, ¥y y.4,x, X).
Also, letm=n=1'(3) and k= 1% (1) so thata = v(k) = (1,2,3,4), b= v(m,n,k) = (4,5,6,7), m=k = (0,2),
nHk = (4,6). Then, we have the following g-polynomial with positive integer coefficients:

P = O (k) P GRS NN S B
AP s bwmn b 2) = 1750 <<3>q<3>q @0, 0,02) <4>q<6>q>

=L ELEL ~ELELBLEL

= ¢ + 447 + 136" + 34¢°7 + 764 + 15147 +273¢™*
+452¢% + 695¢% + 999¢°! + 13464%° 4 17104"° + 20524'® + 23304
+25064'° 4 25574"° 4 2470¢'* + 22624¢"% + 19584¢'% 4 16004"'! + 12294'°
+ 886¢° + 593¢° + 368¢" +2084¢° + 106¢° + 474" + 184> + 54° + q.

8.6 On the gap-free property of merged determinants

We adopt the following notation to discuss merged determinants of some monomial parcels.
Definition 8.43. Ler f € Qlg].

1. We call f q-gap-free if f; # 0 for each i € Z such that ordy(f) < i < deg,(f).

2. We write f >, g for g € Q[q] if f — g is q-gap-free and f — g >, 0.

We consider the change of variable g — ¢P by the gap-free property. Hence, we state the following
transitivity of the gap-free property by the base shift function b, , (q).

Lemma 8.44. Let p,A € Z>1. If f >4 a O, then fby ,(q) >4.4 0.

Proof. 1f p = 1, then the statement follows from b; ,(q) = 1in Lemma[8.1} Let p > 2. We assume ordy(f) =

0 for simplicity, replacing f by g—°"%(/) £ If A = 1, then the statement holds by b, (@) =[plgin Lemma.
Let A > 2. Then, fb31,(q) >¢.4 0 by the induction on A. Therefore, fb; (q) = fba—1,(q)[Pl,2 >4.a 0

by ord,(fbs—1,(q)) =0, since deg, (by_1 p(q)) = MZ(A—U >A—1by Lemma O
By the following poring, we discuss the binary relation > 4.

Lemma 8.45. Q[q| is a strict >, 4-poring.
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Proof. First, the irreflexivity holds, as 0 >, 4 0 is false. Second, suppose fi >4 f2 >4.4 f3. Then, for j € [2]
and i € [ord,(f;),deg,(f;)], we have ord,(f;) < ordy(fj+1), deg,(f;) > deg,(fj+1), and fj; > fji1. The

transitivity fi >4.4 f3 follows, since for i € [ord,(f1),deg,(f1)], we have
ordy(f1) < ordy(f3),
deg,(f1) > deg,(f3),
f1i> fi

Third, if fi >,4 f> and f3 € Q[g], then the additivity follows from (f1 + f3) — (2 + f3) = fi — f» >4, 0. Fi-

nally, let f1, f> >4 0. Wheni € [ord,(f1) +ordy(f2),deg,(f1)+deg,(f2)], we have ji € [ordy(fi),deg, (fi)]
for k € [2] such that j; + jo = i. The multiplicativity fi f> >4 0 follows from (fi f2); > fi,j, f2,j, >0. O

Hence, we have the following gap-free shifted x-binomial products.

Proposition 8.46. Let i1 € Z>| and x = 1*(q). Consider a,b € Z* such that b > a > 0. Then, we have
UL (uw,w,p,x) >4.4 0.

: . by ,
Proof. Since [Z;]qpi >0 4 0, we have U((ai))(l,(l),(p,-),(q)) = [zj]qpibbﬁai,m (q) >4, 0 by Lemma [8.44
Hence, Lemma 8.45|gives the assertion, since U2 (t,w, p,x) = [Tic[u] U((:_i)) (1,(1),(pi),(q))". O

To discuss pre-merged determinants, we introduce the following notion on the tempered pre-fitting tuples.
Definition 8.47. Suppose v = (U,a,b) for U € Z>, and a,b € Z*.

1. We call v strictly pre-fitting if | <a; <---<ay <b; <---<by.

2. We call v almost strictly pre-fitting if 0 < a; <--- <ay <b; <--- <by.

Then, we conjecture the following g-gap-free property of pre-merged determinants. This implies the
g-gap-free property of merged determinants of some width-two monomial parcels by Lemma [8.25] and
Theorem [8.40)

Conjecture 8.48. Let p =2, w=1*(1), and x = 1*(q). Suppose a flat p € Zgl and strictly pre-fitting
v = (1,a,b). Let e € [0,n5 (11, w)]. Then,

J<U)Z(H7W7pa e,x) >q.,d 0.

Example 8.49. Conjecture does not extend to almost strictly pre-fitting tuples. For example, if
w=p=1%*1),a=(0,2),b=(2,3),and e = 1, then

dwiemp.en=|o| |3 ~a3| o] =+ 170

We obtain the following gap-free pre-merged determinants, assuming Conjecture 8.48|for the width-two
cases.

Theorem 8.50. Assume Conjecture Let U € Z>» and x = 1*(q). Consider a pre-fitting K = (U, a,b)
such that a > 0. Let e € [0,n2(u,w)]. Then, we have

J(U)z(:uv w,pP, E,X) >q,d 0.
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Proof. 1f x is not tempered, then U v(/.L w, p,x) = 0 implies the assertion by Proposition Hence, assume
that x is tempered.

If u =2, then the assertion becomes Conjecture Suppose an odd pt > 3. Then, Claim[2]of Lemma
gives

d(U)(w,w,p,e.x) = UG (1,C(w),C(p), C(x)) -d(U)g) (11— 1,0(p),0(w), e, 0(x)).

Also, 0 < e <nb(u, w)—ngg;

on U, since UC((a)>(1,C(W),C(p),C(x)) > 4.4 0 by Proposition (8.46

Suppose an even u > 2. Let u = 21. Consider E € leo such that E < N?(u,w) and Y E = e. Then,
Claim 2] of Lemma 8.8 implies

(1 —1,0(w)). Therefore, the assertion holds by Lemma(8.45|and the induction

d(U)2(u,w,p.e,x)
= Ug(2,C(w),C(p),C(x)) U&%(u 2,0(w >o<p>,o<x>>f
[Tl 0905 UGG 2.C (). C(p).CLx)) - T x{1 + L= 11OHFIUG(E0 (1 =2,0(w),0(p). O))- (8.6.1)

Also, since O(a)" < O(b) for the tempered & and [[x[1 : I — 1]°*£) is a g-monomial, the induction on p
and Proposition give

0(e) (1 =2,000),0(p).0(x)) > [Txl1 : 1= 11°WHUGEL (11 ~2.0(w).0(p).0(x) >4 0. (8.62)

First, assume that C(a) or C(b) is flat. Then, N2 (1, w); = w;(by11 —b;) (a4 1 —a;) = 0 gives C(u,E) =
(0). Since C(b) > C(a)" = C(a) for the tempered k and flat C(a), Proposition 8.46|implies

[Tl : 1905 UED (2,C(w), C(p), C(x)) = UG (2,C(w),C(p),C(x)) 4.4 0.

Then, equation (8.6.1)) and inequality (8.6.2) give the assertion by Claim 2b]of Lemma[5.2]and Lemma 8.45]
Second, assume C(a); < C(a) and C(b); < C(b)>. We have C(b) > C(a)" for the tempered k and

C(u,E) < Ng((:)) (2,C(w)). The induction on y and Proposition|8.46|give

U 2,C(w),€(p),C(x)) > [Tl : 1CHEUGY), (2,C(w),C(p), Cx)) >4 0.

Again, equation (8.6.1) and inequality (8.6.2) give the assertion by Claim [2d|of Lemma[5.2]and Lemma 8.45]
O

8.7 On the almost log-concavity, unimodality, and palindromicity of pre-merged
determinants
We discuss the log-concavity, unimodality, and palindromicity by shifted x-binomial products and pre-merged

determinants, which allow odd widths unlike quasi-merged determinants. We adopt the following terminology
to avoid conjecturing upon Conjecture [3.48

Definition 8.51. Let f € Qq]. Let u(f) = (f3,)ic[a) Such that f = Yic[q] f;LI.q’l" and each u(f); # 0. We call
the g-polynomial f almost palindromic if u(f) is palindromic, almost unimodal if u(f) is unimodal, and
almost log-concave if u(f) is log-concave.
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8.7.1 On the almost log-concavity

We state the following almost log-concavity on shifted x-binomial products. It is well-known that ¢g-binomial
coefficients are unimodal, but not necessarily log-concave.

Conjecture 8.52. Let 4,0 € Z> and x = (q). Then, there exists hs j € Z> such that
hs
b by ™
Uéall))(lv (h&l) ) (t) ,X) = |:Cll] ) bbl—al,t(Q)h(s'A
q
is a log-concave g-polynomial for any t € [A] and 1 <a; < by < 6.

Example 8.53. The g-polynomial

3
4 4
U<<z>)(1,(3),(1)7(61))[ } =q'"> +3¢" +9¢"° + 16" +27¢° +33¢
+38¢° +33¢° + 274" + 16¢° + 94> + 3¢ + 1

is log-concave, unlike

4
q

One can check that setting /30,20 = 3 supports Conjecture [8.52}
We then state the following analog on pre-merged determinants.

Conjecture 8.54. Let u =2, x =1"(q), and 8,A € Z>\. Then, there exists Hs ) € Z>\ such that the
pre-merged determinant

d(U)a(p, 1*(Hs 1), 14 (1), €.%)

is an almost log-concave g-polynomial whenever we have a strictly pre-fitting (U,a,b) with b < 3, e €
[0,nf (1, 1* (Hs 2))], and 1 € [A].

Example 8.55. The g-polynomial

J(U)g:‘z‘g(z,12(3),12(1),0,12(61)) = m‘[ir - BT[TT

q q q q
=g"® + 647 +244"° + 674" + 150¢"* + 273¢"3 + 422¢"% + 5554"!
+633¢'°+622¢° +531¢8+387q" +241¢°+123¢° +51¢* + 154> +34*

is log-concave, unlike
- 3] |4 3] [4
awigecm.cnoca =[] 3| -[i] [} ¢+cratie e
' q q q q

One can check that setting Hyg 19 = 3 supports Conjecture

We also conjecture the following on higher-width pre-merged determinants.
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Conjecture 8.56. For |1 € Z>4 and A € Z>, let (U,a,b) be almost strictly pre-fitting. Then,
d(U)G(ps 1 (1), 14 (A1), i (. 1 (1)),1% ()
is an almost log-concave q-polynomial.

Example 8.57. We have /(537 (3,1(1)) = h{3 33 (4,1%(1)) = 6. The following g-polynomial

J(U)Egv‘;gg;@, 4(1),14(1),6,1%(q)) = ¢*' +3¢%° + 89" + 174" + 31¢"7 + 504" + 74¢"° + 984"
+ 121¢" 4 138¢'% + 147" + 146¢'° + 137¢° + 1194
+97¢" +73¢° 4+ 50¢° 4+ 31¢* + 174> + 84 + 3q + 1

is log-concave, unlike
J(U)gg;ggg@, 1(1),1%(1),6,1°(q)) = ¢'* + 24" +5¢"° + 9¢"° + 15¢'* + 214" + 284'% + 334" + 374"°
+38¢° +37¢% +33¢" + 28¢° +21¢° + 15¢* +9¢° + 5¢> + 29 + 1.

8.7.2 On the almost unimodality

Example 8.58. A pre-merged determinant does not have to be almost unimodal, because

) 2] [5 2] [5
d(U)Eéjg(l12(1)712(1),3712(61))=[0] [2] —q3[2] [0] =1+q¢+2¢"+¢*+24* +¢° +4".
q q q q

Even with the trivial degree shift,

qwgyecn.cmorca =g [¢] -[§][o]

is not unimodal either, as it is

G+ ¢ 2% 1 3¢% 1 56" +7¢% + 11¢* + 146" +20¢% +25¢% + 3368 + 4047
+51¢°° 4+59¢% +714** 4 814> +94¢°% +1034%" + 115¢°° +122¢%° 4+ 1324 + 1364%7 8.7.1)
+ 141¢%° 4 14047 + 141¢** + 135¢% + 130¢% + 120¢*' + 111¢%° + 984"° + 874'®
+73q"7+624'0 +49" + 399" +29¢" +22¢' +15¢" + 104"+ 64° + 44 + 24" + ¢°.

However, we conjecture the following for strictly pre-fitting tuples.
Conjecture 8.59. Let L = 2. When (U, a,b) is strictly pre-fitting,
d(U)a(w.1*(1),14(1),0,%(q))
is an almost unimodal q-polynomial.

Example 8.60. By (3.7.1)), the g-polynomial J(U)E(l)léw (2,1%(1),1%(1),0,1%(g)) is not unimodal. However,

AU (2,12(1),12(1),0,1%(q))
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is unimodal, as it is
T +207 +4g7° + 747 +12¢°* + 1947 + 3047 + 447" + 644 + 894" + 1224™ + 1614"
+2114¢* +2684" +3364* + 411¢™ +4974"* + 5874 + 6864 + 7844>° + 8864 + 9824°7
+1076¢%° + 11564 + 1229¢°* + 12824 +1322¢°% + 1338¢%" +1339¢°° + 1315¢%° + 12774
+12164%7 +1144¢°° +1055¢% +961¢°* +856¢% +753¢°* +647¢*" +5484*° +452¢4"° +3674'3
+289g'7 +2249'° +167¢" +122¢'* + 859" +58¢"* + 374" +23¢"° + 13¢° +7¢° +3¢" + ¢°.

We also conjecture the following on higher-width pre-merged determinants.

Conjecture 8.61. Let (L € Z>3 and A € Z>1. When (U, a,b) is almost strictly pre-fitting,
d(U)g(u,1*(1),14(2),0,1%(q))

is an almost unimodal g-polynomial.
Example 8.62. By (8.7.1), J(U)E(l)lé;4) (2,1%(1),1%(1),0,1%(g)) is not unimodal. However,

)52 (3,0(1).0°(1),0,0(g))

is unimodal, as it is
+322¢°77 +443¢°° + 5884 +775¢°* + 9934 + 1262¢°% + 1565¢°" + 19244°° 4 23154*
+2761¢™* + 3230¢"7 + 37444 + 4263¢™ + 48094** + 5335¢* + 58624** + 63384*!
+ 67864 + 7153¢% + 7465¢™ + 7671¢°7 + 78024°° + 78134 + 77424>* + 75524
+ 7286¢°% + 6917¢°" + 64924 + 599247 + 5465¢%% + 4897477 + 43334°° + 3762¢%
+3223¢%* + 2705 + 22384% + 1810¢%' + 1441¢%° + 11184" + 853¢'% + 63147
+458¢"% + 3204" +219¢'* + 143¢"% +91¢'? + 544" + 314" + 16¢° + 84% + 3¢ + ¢°.

8.7.3 On the almost palindromicity
Conjecture 8.63. Ler 1 € Z>3. If (U,a,b) is almost strictly pre-fitting, then

d(U)a(u,1#(1),14(1),0,1%(q))

is not an almost palindromic g-polynomial.

In particular, J(U)EZZ; (2,12(1),1%(1),0,1%(g)) would not be palindromic when a; —a; > 2 and by —
by > 2, since these ay,ay, by, by give u = 3 cases in Conjecture[8.63] Hence, if = 2, then we conjecture the

following, which provides infinitely many almost palindromic unimodal g-polynomials.
Conjecture 8.64. For A € Z>, let
M) = {u e Z* [0 < p(1) < p(2) < p(3) < (@) = A},

N(A) = {‘u eEM(A)| J(U)ﬁg;; (2,1%(1),1%(1),0,1%(q)) is not almostpalindromic.} .

Then, O(A) = :éﬁ%i)))) satisfies 0 =0(3) < 0(4) < 0(5) < ....
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On base shifts, we have the following width-two pre-merged determinants.

Example 8.65. The pre-merged determinant
7 1,4
A @21, 2(1),1,1%() = ¢ + ¢ + 1
is palindromic, unlike
7oy (1,4
dU) 12,2 (1),12(2),1,1%(9)) = 4" + 29" + 24" + 49" + 5¢° + 5¢° + 647
+6¢° +5¢° +44" +44° +24° +q+ 1.
However, we conjecture the following palindromicity transitivity on base shifts.
Conjecture 8.66. For | € Z>3, let (,a,b) be almost strictly pre-fitting. Suppose A € Z>, and e €
[0, (k14 (1))]. Then, )
d(U)q(u,t#(1),14(1),e,1%(q))
is an almost palindromic g-polynomial if and only if
d(U)a(1* (1), 14 (A + 1),e,1(q))
is an almost palindromic q-polynomial.

9 Separable products

We introduce separable products on parcels to obtain more merged-log-concave parcels with increased widths.
For this, we first define the following truncations of fitting tuples.

Definition 9.1. Assume a fitting L = (s,l;,my,ny,ky). Let A € T<(2,1)) and l, = 2, — 4, + 1.

1. We define the truncation t(A, ) = (s,lp,ma,ny, ko) such that

my =my[A Ay, (9.0.1)
m=mlli—A+1:5, -4 +1], (9.0.2)

ko =Y kil : ], (9.0.3)

ka[2:h] =k [A +1: A, (9.0.4)
ko1 =Y ki[Aa+1:20 — A +1], (9.0.5)

ko[ly +2: 2] = ki[2) — Ay +2: 21 — A +1]. (9.0.6)

2. We define the outer truncation ot(lp, ) =t(A, 1) if Ay = 1.
3. We define the center truncation ct(ly, 1) = t(A, 1) if Ay =1;.
These truncations have the following properties.
Proposition 9.2. For a fitting |, = (s,11,my,ny,ky), suppose
Up = (8,0p,mp,np,ky) =1 (A, ).
Let a; = v(k;) and b; = v(mj,n;, k;) for i € [2]. Then, we have the following.
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1. There exist the following equations:

az[l 12]—(11[7(,1 l]
[12—|-1 212]—a1[211—;\,2+1 20— A +1 ],
bz[l:lz]— 1[11 ﬁ,]

bz[lz+1:2[2] [211—}1,2-1-1 211—&1-&-1].

2. Wy is fitting.

3. There exist the following equations:

o(ky) = o(k)[A : A;
myBky = (miBki)[A1 1 A2);
(na@ka)" = (n1@k1)" A1 2 Aa).

4. If Wy is wrapped, then U is wrapped.

9.0.7)
(9.0.8)
(9.0.9)
(9.0.10)

(9.0.11)
(9.0.12)
(9.0.13)

Proof. Proof of Clazml Since az 1 = Y ki[1 : A1] = a; 5, by equation (9.0.3), equation (9.0.4) gives equa-
tion (9.0.7). Since az 4,41 = ay2;,—2,+1 by equation (9.0.5), equation (9.0.6) gives equation (9.0.8). By
by = ap +my - ny, equations (9.0.9) and (9.0.10) follow from equations (9.0.1)), (9.0.2), (0.0.7)), and (9.0.8).

Proof of Claim[2] First, the inclusion condition of ; imply that of u, by equations (9.0.1) and (9.0.2).
Second, the slope conditions of t; imply those those of u; by equations (9.0.7), (9.0.8), (9.0.9), and (9.0.10).

Proof of Claim 3} First, we obtain equation (9.0.1T), since by equations (9.0.4), (9.0.3), and (9.0.6), each

i € [1p] satisfies

o(k)i=Y koli+1:2h—i+1]
=Y koli+1:b+(L—i+1)]

=Y kili+A 2l =M+ (b —i+1)]

=Y kfi+AM—1)+1:20 = (i+4 —1)+1]
)

- G(kl i+A—1-
Second, equations (9.0.12) and (9.0.13) hold, because for each i € [1;], equation (9.0.1T) gives

(myBky); = my ;i — o (k)i
=myjpp,—1—0(ki)ita -1
= (mi5k1)is2, -1

(n2EBky); = naj+ o (k2)1,—it1
=m0 pp+i T O k) p—iv142,-1
=110 —gp+i T O K1) 1 — (1= Ay i) +1
= (m Bk, -ap+i-
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Third, for each i € [[0,1; — 1], we now obtain

(l’l]kl)lerl‘:(nlkl)ll (A +i)+
= (nl kl)ll —A+lh—i
= (nyBk2)1,—i
= (mEk)}\-
Proof of Claim[d] Claim[d]follows from Claim 3] O

We now have the following for center and outer truncations.
Corollary 9.3. Let k € 73 21 such that k3 = K1 + K. For a fitting [z = (s, K3,m3,n3,k3), consider
1 = ot(ky, u3) = (s, K1,mi,n1,ki)
M = ct(Ka, 13) = (5, K2,m2,n2,k2).

Let a; = v(k;) and b; = v(m;, n;, k;) for each i € [3]. Also, suppose u; € Zfo and an indeterminate x; € Q(X)%
for each i € [3]. Then, we have the following. N

1. wy is fitting.

2. There exist the following equations:

my =m3[l: K1]; (9.0.14)

n = n3[K‘3 —K1+1: K‘3]; (9.0.15)

ai —a3[1 Ki|Ha3[2k3 — k1 + 1 : 2K3]; (9.0.16)

b3[1: k1] 4 b3[206 — ki + 11 2K3]; (9.0.17)

(kl) =o(ks)[l:Kkal; (9.0.18)

m Hki = (m3Bks)[1: & l; (9.0.19)
(m @k1)" = (n3@Bks3)"[1: 1] (9.0.20)

3. Furthermore, we have
b 1"
|:al:|)c]U
bi 1"
[a\l/:|xlu

[bB[l : Kl]]ul [b3[21<3 — Kk +1 :21@]}”1v

a3[1:1<1] X a3[2K‘37K‘1+1:2K3} XV

b3[l: k] ]uz [b3[2K3K1+1 :2K3]:|u'v
] W

[a3[21(3—1(1+1 1213V a3[1 : K']]v 1

4. W is fitting.
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5. There exist the following equations:

my =ms[K) +1: K3];
ny :n3[l L K3 — Kl];
a=a3lki+1:2K3 —K1];
by =bs[ki+1: 23 — K1];
(k) =o(ks3)[Kk1+1: K3];
myBky = (msBks) [k + 1 : x3];
(n2 kz)v = (n3 k3)v[1('1 +1: Kg].

6. We have

by 5 ba[ir +1: 3] 1" [ba[r +1: 213 — K] iy
el ~leminl ] ]

a3[1<1—|—1:1<3] PR a3[1<3+1:21<3_1<1} x¥7

K3+1:2K3 — K1 az[k;+1: K3V

7. Furthermore, we have

[53] (1) Hruz)- [bl]’ﬁu [bz]uz
as (o1 Hx2)H aj xlu az x%v

[m]("'ﬂz)u [
ag/ (21 ) a\l/

8. If u3 is wrapped, then | and U, are wrapped.

Proof. Proof of Claim|[I] Let 2; = 1 and A, = Kk in Proposition Claim [1] follows from Claim [2] of

Proposition[9.2]

Proof of Claim[2] First, Item [2) of Definition[9.T] gives equations (9.0.14) and (9.0.15). Second, Claim/[I]

[bz]"5 [ [b3[1<1+1:1<3] ]]“2[b3[;<3+1:2x3x1]
as v

|

vV
Uy

vV
2

of Proposition [9.2]implies equations (9.0.16) and (9.0.17). Third, Claim [3] of Proposition[9.2]imply equa-
tions (9.0.18), (0.0.19), and (9.0.20).

Proof of Claim[3] Claim [3]follows from equations (9.0.16) and (9.0.17).

We obtain Claims [} [5} and [] analogously, taking A; = k3 — k> + 1 and A, = k3 in Proposition[9.2]instead.

Proof of Claim[7] Claim[7]follows from Claims [3]and[6]
Proof of Claim[8] Claim[8holds by Claim @]of Proposition[9.2]

We state the following compatibility of squaring orders on finite sets X1, X, X3 of free indeterminates.

Lemma 9.4. Suppose X3 =X UX,. Then, squaring orders {20363 »>0x, } on X3 are compatible to squaring

orders {20x1’>0x1 } on X.

Proof. If f >0x1 0, then f >A3€3 0by X3 = X UX,. A similar argument holds for 20%1 and 2A3€3.

By the following proposition, we define the separable products of parcels as parcels.
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Proposition 9.5. Suppose parcels F; = A(s,li, =i, Wi, fis, 9i, Pi, Xi, Xi) for i € [2]. For X3 =X, UX;, and
I3 =11 + 15, consider

f3.,S = (f3,s,m = fl,s,m[l:ll]fZ,s,m[Il+1:[3] € Q(x3))mezl3 :

Let x3 = x1 4+ x2, w3 = w1 Hwy, p3 = p1 4 P2, and §3(x3) = ¢1(x1) H ¢2(x2). For the squaring orders
O; ={=,=i} on X; of i € [2], assume squaring orders O3 = {=3,=3} on X3 such that O3 3 Oy, 0,.

1. Then, there exists a parcel F3 = A(s,13,=3,w3, 35,03, P3,X3, X3).

2. For a fitting Uz = (s,l3,m3,n3,k3), let

M= (salhmlanl,kl) = Ot(ll,u3),
Mo = (s,l2,m2,n2,ka) = ct(lp, u3).

Then, we have

A(F3)(s,13,w3,m3,n3, k3, 03,03, %3, X3) = [ ] AL(F) (s, L wi,miy i, ki, §i, pis xi, %)
i€2]
=TT A=(F0) (s, iy wimiy i ki, 94, iy i, %)
i€[2]

Proof. Proof of Claim First, we prove that x3 is =3-admissible. If g >, , 0 for some i € [/3], then g =1 0
or g > 0 by x3 = x; 4 x and the half >, - ; implications of j € [2]. We deduce f >3 0 by O3 D 01, 05.
In particular, the half >, .->3 implication holds for each i € [I3]. Also, each i € [I3] satisfies the upper
condition of x3 ; on X3 by X3 = X1 UX; and Lemma Therefore, x3 is =3-admissible.

Second, f3 s is =3-positive, because f3 s.m = fi s m[1:1,)f2.5mlty +1:1) =3 0if m € [s]5.

Third, we prove that ¢3 is a A3-mediator for A3 = (s,l3, w3, =3, p3,X3,X3). Since #| and .%, are parcels,
¢3 and A3 have the base positivity by ¢3(x3) = @1 (x1) 4 ¢2(x2) and Lemma[9.4] Furthermore, ¢3 and A3 have
the base-shift positivity, since m € [s3]? gives

B(S,l3,W3,m, ¢3;P3,x3,33) = H B(Svliawhuia¢iapivxiaxi) =30
i€2]

for u; = m[1 : ] € [s]" and uy = m[l; +1: 1] € [s]". Hence, @5 is a A3-mediator. Claim 1|follows now.
Proof of Claim[2} Let az = v(k3) and b3 = v(m3,n3,k3). Then, Claim 2] of Theorem gives

A(F3)(s,13,w3,m3,n3,k3, 93, p3,%3,%3)

b3
Y
= f3.s,m3f3,s,n§/B(s7137W31m3an3 3 ¢3,P37x37:£3) |:a3:|

L
w3

L
3

L
w3

b
— [3.smsThs S35, (3 )V B (8, 13, w3, ma B ks, (3 k3)", ¢3,p3,%3,X3) [ai]
3 xg

Hence, Claims[2]and [5]of Corollary 9.3 give Claim[2]by Claim 7] of Corollary 0.3 O

Definition 9.6. Under the assumption of Proposition[9.3] we define the separable product 7\ o %, of F;
and %, such that

ﬁl Dﬁz == 553 :A(S7l37>_37W37f3757¢37p3ax3ax3)'
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In particular, each m € 75 satisfies
F3m = P m1:0] F 2 mlly +1:03) -
In particular, separable products have the following merged-log-concavity.

Theorem 9.7. Let %; = A(s,1i, =i, Wi, fis, §i, Pi, Xi, X;) for i € [3] such that 3 = F 0.%,. Consider squaring
orders O, = {=}, >} on X; for i € 3] such that 0% D O}, 05. Let %, be =',-merged-log-concave. Then, we
have the following.

1. Z3 is =-merged-log-concave if F| is > -merged-log-concave.
2. F3 is =-merged-log-concave if F| is = -merged-log-concave.

Proof. Proof of Claim Suppose a fitting tz = (s,l3,ms3,n3,k3). Then, Claims andlé-_l|0f Corollary give
fitting (s,1y,my,ny, k1) = ot(ly,us) and (s,lp,my,nz,ky) = ct(lp, p3). Also, for i € [2], let

Li = AL(%)(SJiawiamianhkh¢iapi7xi7xi)7
Ri - AR(’%)(salivwiamhnhkia¢i7pi7xi;xi)~

Then, the merged-log-concavity of .%| and .%; gives L, >/1 R, and L, 5’2 R;. Now, Claimof Theo-
rem[7.19on .7 implies R; > 0. Also, Claim [ of Theorem [7.19on .%, implies L, > 0, and either R, > 0
or R, = 0. Hence, Corollary [5.7| gives Claim|I|by the compatibilities O} 3 0,0} and O} 3 O; of i € [2].

Proof of Claim@ Claim [2holds by Claim |1d|of Lemma since L; =5 R; =% 0 for i € [2]. O

For separable products of parcels .7; of i € [d], we write o;c[q)Zi for Fjo...0.F,. We state the
following remark.

Remark 9.8. Assume the notation in Theoremlﬂ Furthermore, for simplicity, let [} =, = 1, X = X,
X1 =xy =14 (g), 01 = O, = 03, and ¢; and ¢, be canonical mediators. Then, we obtain width-two merged-
log-concave parcels from width-one merged-log-concave parcels by /3 = 2 and Theorem[9.7]

However, a width-two monomial parcel does not have to be the separable product of width-one monomial
parcels. For instance, assume monomial indices (I;,w;, ) for i € [3] such that y311 >0 > 732 ;. Then,
x3 = 13(q) gives

A(S,l3,W3,>—7lPS)y37q,X37%3) 7é DiE[[Z]]A(s;livwia>'7lPS,)/,uqaxi7xi);
because ¥1,1.1,7,1,1 > 0 by the sum monomial conditions of (/1,w1,7%) and (I2,w2, ).

We introduce the following multifold separable products for our later discussion.

Definition 9.9. Let . = A(s,1,=,w, f5,0,p,x,X) and d € Z>. Then, we define the d-fold separable product

yﬂd = Die[[d}]j:A(s7dla>_7W-H_dag57¢+dap+~_dax%d7x)

such that gsm = Taefa] fm{(r—1)y+1:0 Jor each m € Z4.
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10 Hadamard products

We introduce Hadamard products on parcels. This yields merged-log-concave parcels of higher weights from
those of lower weights. To define the products, we state the following by segment additions in Definition [2.4]

Proposition 10.1. Consider ly,l; € Z>y and A € T<(2,11) such that I, = 2p — A1 + 1. Let F; = A(s,l;,wi, =i
 fis: 0i, Pisxi, Xi) for i € [2] such that

X2 = X1 Ml : 12},
$2(x2) = @1 (x1)[A1 : Az,
p2=pilAi: Ao

Let O; = {=;,=;} on X; for i € [2]. Suppose squaring orders Oz = {=3,=3} on X3 = X, U X, such that
03 3 04, 0. Also, let

w3 =Ww]+3 w2 € lelo,
f3,s = <f3,s,m = fl,s,mfz,s,m[ll:lz] € @(}:3));7,62’1 .

Then, there is a parcel
y:; = A(S7ll7w3?>_37f3,37¢17p1ax1ax3)-

Proof. First, we prove that x is >3-admissible. Since .%] is a parcel, x| is >-admissible. This gives the half
>y, ;-3 implication for each x; ; by O3 3 O;. Therefore, x; is ~3-admissible by Lemma@ because we
have the upper condition of each x; ; on Xj.

Second, f3 5 is >3-positive, because the compatibility O3 3 O1, 0y implies f35m = f1,5mf2,5m[r,:2,) =3 0
form € [[s]]ll by fi.sm =10 and f2,s,m[)Ll:)LZ] =2 0.

Third, we prove that ¢; is a g-mediator for u = (s,1;,ws, >3, p1,x1,%X3). Now, ¢;(x;) is a mediator of
F; for i € [2]. Hence, we have ¢, (xl);vl"i >0y, 0 for each i € [l1], and ¢, (x])zvz’i%ﬁl >0y, 0 for each
i € [A1,22]. Hence, ¢ and p have the base positivity, since Lemma[9.4]implies

o (xl);vl’iq)l ()cl)v.vz’i*ll+l > Az, 0 for each i € [A1,42],

1

o1 (xr); > =

1 (x1); >4y, 0 otherwise.

Also, ¢; and u have the base-shift positivity, because each m € [s]" satisfies

01 () ] Uy
B(s,h,W3,m,¢1,p1,x1,%3): . i,'
ielgl 1O () ] L
= B(s,l1,w1,m, ¢1,p1,x1,%1) - B(s, Lo, w2,m[A1 : A2],¢2,2,%2,%2)
>3 0.
Hence, ¢; is a g-mediator. The assertion now follows. O

We then define the following product as a parcel.
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Definition 10.2. Under the assumption in Proposition we define the Hadamard product
Froy Fr=Froy F1=F3=A(s,11,w3,-3, 35,01, P1,%1, X3).

When F1 and %, have the same widths, we simply write 5| o 5, = 5, o F| for F| o) F».

We have the following merged-log-concavity of Hadamard products.
Theorem 10.3. Let F; = A(s,l;,wi, =1, fis, i, Pi, Xi, X;) for i € [3] such that

F3 = Fo) F.

Consider squaring orders O; = {>=!, -1} on X; for i € [3] such that Oy > O, 0. Let 7, be =',-merged-log-
concave. Then, we have the followmg.

1. F3is =-merged-log-concave if F) is > -merged-log-concave.

2. Pz is ¥i-merged-log-concave if F| is | -merged-log-concave.

Proof. Proof of Claim[I] Assume a fitting {1y = (s,ly,my,ny,ky). Then, Claim [2] of Proposition[9.2] gives
the fitting U = (s,lo,mp,na,ky) = t(A,11). Also, let u3 = (s,l3,m3,n3,k3) = W;. Suppose a; = v(k;),
b; = v(m;i,n;,k;), and y; = x" for i € [3]. Furthermore, consider L;,R; € Q(X;) for i € [3] such that

Li = Ap(F) (s, L wiymiyni ki, @, piy xi, Xi)

i

b.

vV 1
= fi,s,mifi_,x’nyB(sa li7wiami7ni ’(pi)piaxiaxi) |:a )
iU
Vi

Ri - AR(’%)(S; liawiami7niakia ¢i7piaxi; xl)
b 1Vi
= fismiZl S5, (k) v B(s, iy wismi Bki, (ni Bk:)” , 07, i, xi, Xi) [aé] .

i LI
1 Vi

Let us prove

LiL; = L3, (10.0.1)
RiR; =R;. (10.0.2)
First, we establish
B(s,13,w3,m3,n3, 03,p3,x3,X3) = [ [ B(s,li,wi,mi,ni’, 94, pi,xi, Xi). (10.0.3)
ie2]

Observe that each i € [A] gives

b(s,w3,i,m3,03,,03,i,%3:,%X3) = b(s,w3i,m1 4, 01,01,0,%1,i,%X3)
O ()" my iy
o) my )

O1(y1,i)™4"i [m J;Vll,' G2 (V2o 1)"H PR A [mz,i7/11+1];vzz;i7£1:11

‘Pl(xlt)m“w“[ml Tn; O (x2i- 2,41 my /11+1]:22,[ ,1&11:11

= b(s,wii,my i, P14, P1,i,X1,i, X1)

“b(S, W i 1M Ay 41> D2 Ay 15 P2, Ay 15 X2, 2 +15 X2).-

Mo iy +1W2,i-2y +1
) [
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Similarly, since ny = ny[A; : A2], eachi € [A] yields

b(s7w3,ia (ng)l'a ¢3,i7p3,i7~x3,i7x3) = b(s7w3,ia (n\l/)ia ¢l,i7pl,i7xl,i7x3)
= b(s,w1,i, ()i, d1,, P1,isx1,1, X1)
) b(saw2,ifll+17 (”g)mllﬂ ) ¢2,i711+1 1P2,i— 2 +1:%X2,i—A+1> X2).

Hence, equation (T0.0.3) follows.
Second, by Claim [3| of Proposition[0.2] we analogously obtain

B(S,l],W3,I713 Ek3>(n3 k3)v;¢37p37x37%3) = H B(s,livwiamiE'kh(ni ki)v7¢iapiaxi7xi)~ (1004)
ief2]

Third, since w3 = wi 4+ w, Claim[T]of Proposition[9.2]implies

L) L L
b W] b W2 b M/3
[ 1] [ 2] :[ 3} , (10.0.5)
aq y%J an ),g as y?

W\I_‘ W% W\EI
L], =[] 1009
ay W ay ¥ a; ¥ B

Therefore, equation (10.0.1)) holds by equations (10.0.3) and (10.0.5). Also, equation (T0.0.2) holds by
equations (10.0.4) and (10.0.6).

We obtain the >}-merged-log-concavity of .%3 as follows. We have L; > R; and L, =), R, by the
merged-log-concavities of .7 and .%,. Then, by 0 3 0}, 0}, Claim[#of Theorem[7.19]gives L; =5 Ry =5 0,
Ly =% 0, Ly = R, and either R, >4 0 or R, = 0. Hence, equations (I0.0.1)) and (10.0.2) imply the >-
merged-log-concavity L3 >4 R3 of .#3 by Corollary

Proof of ClaimIZl Because L; =} Ry and L, >} R, Claimfollows from Claimof Lemma O

Hence, we obtain the following higher-weight strictly merged-log-concave parcels from weight-zero
non-strictly merged-log-concave parcels.

Corollary 10.4. Let d € Z>,. For each i € [d], let F; = A(s,l;, =i, fis,Xi) be =i-merged-log-concave.
Assume squaring orders O = {=, =} on X = U;c[q) X; such that O D {=;,;} for each i € [d]. Furthermore,
consider

G =A(s,1,~,85,X)=F 0 Fho.. .0F,.
Then, we have the following.

1. Foreachw € le(y if A(s, 1w, = ks, ¢,p,x,X) is a =-merged-log-concave parcel, then we obtain the
>-merged-log-concave parcel

A(S’l7w7>—7ksgsﬁ¢7p’x7x)'

2. For each w € lel, if ¢ is a proper (s,l,w,>,p,x,X)-mediator, then we obtain the ~-merged-log-
concave parcel

A(S,Z,W7>,g5,¢,p7x,x)-
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Proof. Proof of Claim[I] Claim I]follows from Claim | of Theorem[I0.3] because
g = A(Sﬂ l? (0) ) >3g.ﬁ'7 ¢ap>xax)

is =-merged-log-concave by Claim [2] of Theorem[9.7}
Proof of Claim[2] We have the constant parcel

A(S,Z,W, >_7 ls,l) ¢7pax7%)7
which is >-merged-log-concave by Corollary [8.30] Hence, Claim|[I] gives Claim 2} O

Remark 10.5. Assume an infinite gate s > 0 with / =1 and w € lel. In Claim [2| of Corollary ,
A(s,l,w, =, f5,x, %) is »=-merged-log-concave, if the weight-zero A(s,/, >, f;,X) is »=-merged-log-concave.
However, the converse does not hold (see Section[I.9). For example, the positive-weight parcel

A(S, l,W, >q, lPs,((%,O,O)),q’x’ :{)
is >4-merged-log-concave, but the weight-zero parcel
A(S,l, >‘1’1Ps,((%,0.0)),q7%)
is not >,-merged-log-concave by equation (I.0.T).

If there is >=-admissible x € Q(X) for some [ € Z>, then 1 = 0 by Claimof Lemma In particular,
we have the constant parcel A(s,/, >, 1,;,X). Hence, we introduce the following multifold Hadamard products
for our later discussion.

Definition 10.6. Suppose .7 = A(s,l,w, >, f5,0,p,x,%) and d € Z>o. We define the d-fold Hadamard
product F°? such that

szodi A(s,l,dw,>—,fsd,(]),p,x,f£) ldel,
N A(s,1,=,15;,X) otherwise.

11 Weight-zero merged-log-concavity

First, we compare the weight-zero merged-log-concavity with the strong g-log-concavity and g-log-concavity
in Deﬁnition In particular, strong g-log-concave polynomials are weight-zero >,-merged-log-concave
parcels in a suitable setting. Hence, strongly g-log-concave polynomials give higher-weight merged-log-
concave parcels by Corollary [I0.4] Second, we discuss some analogs of conjectures in Section [§] by
g-numbers. Third, we give log-concavity conjectures on weight-zero parcels of g-Starling polynomials,
Ramanujan polynomials, and Bessel polynomials.

11.1 Strong g-log-concavity

To compare the weight-zero merged-log-concavity with the strong g-log-concavity, we introduce an interme-
diate notion by the following fitting tuples.

Lemma 11.1. Let | € Z>y. Suppose n,m € [s]' such that n¥ > m and m 4 (n+ 1) € Z?! is increasing. Then,
w = (s,1,m,n,k) is fitting for k = 1'(0) 4 (1) #1/=1(0).
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Proof. Leta=v(k) and b = v(m,n,k). Then, a =1'(0) 4 1/(1) and b = m (n+1). This deduces the slope
conditions of u, since n > m implies b; = m; < ny +1=by,. O

Taking fitting (s,/,m,n, k) that have the smallest 6(k), we introduce the following intermediate notion
by parcels and squaring orders.

Definition 11.2. Let ! € Z>y and F = A(s,1, >, s, X). Suppose squaring orders O' = {=',>'} 3 {=,>}.
1. F is strongly ='-multi-log-concave if

ymfnv - fm_1f<n+1)v =0
whenever n,m € [s]', n¥ > m, and m+ (n+1) € Z* is increasing.
2. F is strongly ='-multi-log-concave if

ymynv _fg.m—ly(rﬂrl)v t/ 0

whenever n,m € [s]', n¥ > m, and m 4 (n+1) € Z* is increasing.

We state the following telescoping lemma to compare the strong multi-log-concavity and the merged-log-
concavity.

Lemma 11.3. Letl € Z>y and F = A(s,1, =, f,X). Then, F is strongly ='-multi-log-concave if and only if
g\mﬁnv — jm,kg‘\(n_;,_k)v ~"0 (11.1.1)

whenever m,n € [s]', ¥ > m, k € Z, and m 4 (n+k) is increasing.

Proof. The if part holds by k = 1. We prove the only if part, assuming inequality (TT.1.1) for k = 1. Let
m,n € [s]' such that n¥ > m and m 4 (n+ 1) is increasing.

First, suppose i € Z>q such that m —i > sy and n+i < s,. Then, m —i,n+i € [s]'. Also, n" >m
implies (n+i)" =n" 4i > m —i. Furthermore, since (m — i) 4 (n+ i+ 1) is increasing, Fn—i-F (14w —
%n—i—ly(nJrH»l)v ~0.

Second, suppose i € Z>p such that m —i < sy or n4i>sy. Then, m—i—1<sjorn+i+1>s.
Consequently, F—iF (nyi)v — Fm—i—1F (nyit1)v = 0. In particular, each k € Z> yields

FinF v — cgszk<g\(n+k)\/ = Z (ﬁm,iﬁ(,,H)V - cgsziflcg\(nﬂdrl)v)

i€[[0,k—1]
= FinT —ym,1ﬁ<n+l>v
=" 0.

We have the following comparison by Lemma[TT.T]and the telescoping lemma.
Proposition 11.4. Ler ! € Z> and F = A(s,l, =, f5,X). Then, we have the following.
1. . is strongly ='-multi-log-concave if F is ='-merged-log-concave.

2. F is strongly ='-multi-log-concave if F is ='-merged-log-concave.
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Furthermore, assume | = 1. Then, we have the following.
(a) F is ='-merged-log-concave if and only if F is strongly ='-multi-log-concave.
(b) F is ='-merged-log-concave if and only if F is strongly ='-multi-log-concave.

Proof. Proof of Claim |l Consider m,n € [s]' such that n” > m and m 4 (n+1) € Z? is increasing.
Let w = (s,/,m,n,k) for k = 1'(0) 4 (1) 4 1/~1(0). By Lemma[11.1} we deduce A(F)(s,l,m,n,k,X) =
SsmSsnv = Fomzifs,miwy > 0. Claim follows, sincemEk=m— 1 and nHk =n+ 1.

Proof of Claim 2| We obtain Claim [2|analogously, replacing =’ with ='.

Proof of Claim First, we prove the only if part. By Lernma Z is ~'-merged-log-concave if and
only if

A(g\) (Sa l,m,n,k, x) = f:s‘,mfs‘,n - fS,m—szY,IH—kz >-/ 0 (1112)
whenever
m,n € [s]', k= (ki,k2) > (0,1), and ny +ky > m;. (11.1.3)

Therefore, we obtain the strong >'-multi-log-concavity of .7, since conditions (T1.1.3) for k, = 1 imply
m,n € [s]' such that n* > m and m 4 (n+ 1) is increasing.

Second, we prove the if part. Consider m,n,k that satisfy conditions (IT.1.3). If n > m, then inequal-
ity (TT.1.2) holds by Lemma If n<m,thenletm' =n,n' =m, and ks =ny +ky —my € Z>;. We
derive

n'>m,
m —ky=n—(n+ky—m)=m—k,
n+ky=m+(n+ky—m)=n+k.

Lemma [IT.3]implies inequality (TT.1.2), since
fv,mfs,n - f:v7m—k2fs,11+k2 = f:v,m’fs,n’ - fsﬁm’—kéfs,n’-&-k’z .

Proof of Claim Claimfollows from an analogous argument, where we replace =’ with =, U

For our convenience, we adopt the following notation.

Definition 11.5. If f = (fin € Q(X)),,cz1, then let Unt(f) = (f(i))iez:' Conversely, if f = (fi € QX))icz,
then let Tup(f) = (f2) iyez1-

We obtain the following comparison between the strong g-log-concavity and the width-one and weight-
zero merged-log-concavity.

Corollary 11.6. Assume a gate s > 0 and >4-admissible g € Q(X). Let fs = (fsi € Z>0q]);cy, Such that
fsi >4 0 forie€ [s]. Also, let gg="Tup(fs), | =1, and F = A(s,1,>,,85,X). Then, f is strongly g-log-
concave if and only if F is >4-merged-log-concave.

Proof. The assertion follows from Claim (b)] of Proposition[TT.4} since the strong >,-multi-log-concavity of
% is equivalent to the strong g-log-concavity of f; by [ = 1. O
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11.2 g-log-concavity

We state the following lemma to compare the g-log-concavity with the merged-log-concavity.
Lemma 11.7. Letl € Z>1 and m € Z!. Then, m is flat if m" > m and m - (m+1)¢€ 7% is increasing.
Proof. Since m+ (m+ 1) is increasing, we have my < ... <m; <mj+1. Also,m; >m bym" >m. O
By these flat tuples, we give the following intermediate notation as before for the strong g-log-concavity.
Definition 11.8. Let [ € Z>y and .F = A(s,1, -, f5, X). Suppose squaring orders {=',>'} 2 {>=,>}.
1. Z is = -multi-log-concave if
FnFm — Fm1Fme1 = 0
for any flat m € [s]'.
2. F is ='-multi-log-concave if
FmFm — Fm1 Fms1 = 0
for any flat m € [s]'.
We have the following comparison between the multi-log-concavity and the merged-log-concavity.
Proposition 11.9. Let ] € Z>y and F = A(s,1, >, [y, X). Then, we have the following.
1. F is ='-multi-log-concave if & is ='-merged-log-concave.
2. Fis ='-multi-log-concave if F is ='-merged-log-concave.

Proof. By Lemmal(l1.7} the strong ~'-multi-log-concavity and the strong =’-multi-log-concavity imply the
~'-multi-log-concavity and the =’-multi-log-concavity, respectively. Claims [1|and [2| follow from Claims
and 2] of Proposition [IT.4] O

Furthermore, we have the following comparison between the g-log-concavity the merged-log-concavity.

Corollary 11.10. Let [ = 1. Suppose a >,-merged-log-concave F = A(s,l,>,, fs,X) such that f; =
(fsm € Z>01q]) ey~ Then, g =Unt(fy) is g-log-concave.

Proof. Since [ = 1, the assertion holds by Claim 2] of Proposition O

In particular, if .% is >,-merged-log-concave, then gfj — 85,i—18s,i+1 >4 0 for i € [s], which give almost
strictly unimodal sequences. '

It is possible to modify the notion of merged-log-concavity to completely extend the g-log-concavity and
strong g-log-concavity. However, in this manuscript, a parcel demands the ~-positivity of its numerators to
give unimodal sequences and almost unimodal sequences in Definitions [I.T]and [I.T7] Also, we compute
merged determinants by fitting tuples to obtain polynomials with positive integer coefficients.
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11.3 On some analogs of conjectures in Section

We introduce the following weight-zero parcels.

Definition 11.11. Assume a gate s > 1,1 € Z>1, and q € Q(X). Let X514 = (Xs,l,q,m € ZZO[q])mezl such that

Xslqm = {[m}q lfm © [[S]y’

0 otherwise.

If q is —-admissible, then we call A(s,1, =, X4, %) a g-number parcel.

We confirm some analogs of Conjectures[8.48/and [8.59 by the g-number parcels. For this, we adopt the

following integer notation.
Definition 11.12. Suppose my,ni,A € Z. Then, let
I(A,my,n;) =min(A+1,my,n;,m+n —1—1) € Z.
We examine these integers /(A ,m;,n;) for the products of g-numbers.
Lemma 11.13. Let m|,n; € Z>, and A € Z.
1. If my <ny, then

A+1if2 € [0,m —1],
I(?L,m],nl) = q m lf)t S [[m] —1,m —1]],
mi+n—1-24 lfﬁ,E [[nl—l,m1+n1—2]].

2. We have [mily[mly = Lacgom+n—21 [(A,mi,n1)q.
3. Assume ny +ky > my for some ky € Z>1.

(a) We have I(A,my,n1) > I(A,my —kp,n1 +kp).
(b) If mi —ky > 1, then there is A € Z such that

mi+n—2>n—1>A>m —ky, >0,
I(?L,ml,nl) >I(l,m1 —kp,ny +k2).

Proof. Proof of Claim First, if A € [0,m; — 1], then equation (I1.3.1) follows from
A+1<m <m §n1+m1—(7t+1):m1—|—n1—1—7t.
Second, if A € [m; —1,n; — 1], then equation (I1.3.2)) follows from

my <A+1<ny,
my+n;—(1+1) >m;.

Third, if A € [n; — 1,m; +n; — 2], then equation (T1.3.3) holds by

A+1>nm>m >m+n—1—A7.
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Proof of Claim[2] We have

[lglmily = )y g, (113.6)
tle[[O,ml 71]],[26[0,’117]]]

Assume n; > m; without loss of generality. For A € Z, suppose (t1,;) in equation (TT.3.6) such that
A =1 +1,. Claim[T]implies Claim 2] since the right-hand sides of equations (TT.3.1), (TT.3.2), and (TT.3.3)
coincide with the following numbers of choices of (f;,1,).

First, if A € [0,m; — 1], then A < n; — 1 gives the A + I choices (1,0),(A —1,1),...,(0,A). Second, if
A € [m; —1,n; — 1], then m; > 1 gives the m; choices (m; — 1,A — (m; —1)),...,(0,A). Third, if A € [[n1
1,m; +nj — 2], then we have the m; +n; — 1 — 4 choices (ml—l,l—(ml—l)) (A =(m—1),n; = 1),
since

0<nm-m<A+1)—-m=A—(m —-1)<n —1,
A—(n—1)<m—1.

Proof of Claim[3d} If m; < ny, then m; —ky <my <ny. If m; > ny, then m; > n; > mj — ky. In either
case, we have

I(?L,ml,nl) >min(A+ 1,m —kp,ny +ky,my+n—1—A) =I(A,m —kp,n1 + k).

Proof of Claim[3b} First, we have A € Z in inequality (TT.3:4), since m; >k, +1 > 1 gives mj +n; —2 >
ny—1landny >my—ky givesny — 1 > my —ks.

Second, we prove that inequality (T1.3.4) implies inequality (TT.3:5). In inequality (T1.3.4), we have
n; — 1 > A. This gives

nlzl+1a
mi+n—1—A>m >m —ky.

Also, in inequality (TT.3:4)), we have A > m; — k,. This gives
A+1>m—kp.
By my > my — ko and ny + ko > ny, we deduce
I(A,my,n) >my —ky =1(A,m; —ky,n; +k).
O

Suppose .Z = A(s,l,>, Xs14,X). Then, .Z is >,-merged-log-concave by Claim 2] of Theorem
Corollary[T1.6] and the strong g-log-concavity of g-numbers [Sag, Lemma 2.1]. Furthermore, we prove the
following >,-merged-log-concavity of .% by palindromic unimodal merged determinants. In particular, these
merged determinants we confirm an analog of Conjecture [8:59

Proposition 11.14. For | € Z>y, let F = A(s,1, =, X514, X). Suppose a fitting pL = (s,1,m,n,k). Then, we
have the following.

1. A(ZF)(s,l,m,nk,X) >, 0.

2. A(F)(s,l,m,n,k,X) is a palindromic unimodal g-polynomial.
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Proof. Assume that p is unwrapped. This implies A(F)(s,{,m,n,k, X) = X1.9mXs,1,gn- Then, Claimholds
by m,n > 1. Also, Claim 2] holds by Claim [T]of Proposition[8.T3] Let us assume that u is wrapped.
Proof of Claiml[l] First, assume [ = 1. Since u is wrapped, Lemma 3.10implies

ni+ky>m >m—ky>s; > 1. (11.3.7)
Claim[T] holds by equation (T1.3.8)), since Claims [2]and [3]of Lemma [TT.13| give

[milq[n1]g = Z I(l,ml,nl)ql
A€[0,m+ny—2]

>4 Z I(A,m — kp,n; + kz)q}'
AGIIO,WL]Jr}’l]*z]]
= [m1 — kz]q[nl + kz]q.

Second, Claim|[T|for [ € Z>, follows from Claim Tjof Theorem[9.7]

Proof of Claim@ By Claimmof Proposition § |§|, Xs.qmXs,l.qn A0 Xs 1. g mmkXs,1,q,nmk are palindromic
unimodal g-polynomials. Also,

Ordq (Xs,l,q,m%s,l,q,n) =0= Ordq(%&,l,q.mEsz,l,q,nk)a
degq (%s,l,q,m%s,l,q,n) = Zm + Zn —2l= degq (XS,l,q,rnEIkXS,l,q,nk)~

We deduce Claim 2} since A(F)(s,1,m,n,k,X) is a difference of the palindromic unimodal g-polynomials
with the same orders and degrees. O

As in the following, A(F)(s,l,m,n,k, X) is not necessarily a log-concave g-polynomial.

Example 11.15. Let/ =2, m = (5,2),n=(2,5), and k = (0,0,1,0). Then, by mEk = (4,1) and nHk =
(3,6), F = A(s,1,>, Xs,1,4- %) gives the following unimodal and non-log-concave g-polynomial:

A(F)(s,1,m,n,k, X) = [5]4[2]4[5]4[2]¢ — [4]4[1]4[6]4[3]4
=4’ +24° +3q" +5¢° +64° +5¢" + 3¢’ +2¢° + .

But, when / = 1, we state the following log-concave g-polynomials for .# = A(s,l, =, X4, X). Further-
more, the gap-free property of these g-polynomials confirms an analog of Conjecture [8.48]

Proposition 11.16. For [ =1, let 7 = A(s,1, =, X514, X). Suppose a fitting u = (s,1,m,n,k). Then, we have
the following.

1. A(F)(s,l,m,n,k,X) is a log-concave g-polynomial.
2. A(F)(s,l,m,n,k, %) >440.
Proof. We have

A(ﬁ) (S, la m,n, ka %) = Xs,L.qmXs,Lgn — Xs,l.qm—ky Xs,l,qn+ky - (11.3.8)

If u is unwrapped, then A(F)(s,l,m,n,k, X) = Xs1.qmXs.1,qn- This gives Claims [I] and 2] by Claims
and[2 of Lemma[TT.13] Let us assume that pt is wrapped.

95



Proof of Claim|l} For each A € Z, we define

P(A,my,ny,ky) =I(A,my,m) —I(A,m —kp,n +kp),
S(P)(A‘?mhnl?kz) :P(a"mhnl’kZ)z_P()L - lvmhnlakZ)P(l_'_laml7n17k2)'

For A € [0,m; +n; — 2], we prove
§(P)(A,my,n1,ks) > 0. (11.3.9)

First, assume m; < nj. Claimof Lemma [11.13|and inequality (I1.3.7) give I(A,my,ny), I(A,m; —
kp,n1 +ky), and P(A,my,n;,ky) in Figure

I(A,my,n)
mj

[0/0]
I(?L,ml —ko,ny +k2)

my —kp

1 m—ky—1 n+hk—1
[0;0]

P(lvmlanlka)

ko

[0,0]

Figure 4: P(A,my,ny,ky) when m; < n;
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By Figure ] we derive the following equation:

0
A+1—m+k

P(A,my,ny,ky) =< ko
n+k—1-21
0

ifA €[0,m —k, —1],
ifA e [[ml —ky—1,m; — 1]],
ifA e [[ml —1,n — 1]],
ifA€n —Ln +k —1],

ifA e [[m +ky—1,my +ny —2]].

By equation (IT.3.10), m; < n; implies the following equation:

0
1

5(P)(l,m1,n1,k2) = 0

If m; = ny, then we have the following equation:

0

1
O(P)(A,my,ny,ky) = 2kp — 1

1

0

if A e [[O,ml —ky — ]]],
if A e ﬂml —kg,ml —2]],

A =m —1,
if A e [[ml,nl —2]],
ifA=n —1,

if A € [ni,n +kp—2],
if A e [[nl +ky—1,m +ny 72]].

if A € [0,m —ky —1],
ifA e [[ml—kz,m1—2]],
if A :ml—lznl—l,
if A € [n1,nm +k, —2],

if A e [[nl—l—kg—l,ml—l—nl —ZH.

Therefore, inequality (TT.3:9) follows from k, > 1 for the fitting .
Second, assume m; > n;. Then, Claim [I| of Lemma [11.13]| and inequality (IT.3.7) give I(A,my,n;),
I(A,my —kp,n1 +kp), and P(A,my,n1,kp) in Figure

97

(11.3.10)



I(A,my,n)
n

A
[030]
I()u,ml —kp,ny +k2)

my —ky

1 m;—ky—1 ny+ky—1

P(A,my,ny,ky)

ny—mj +kp

Figure 5: P(A,my,ny,ky) when m; > nj

By Figure 5] we have the following equation:

0 if A €[0,m —k, —1],
A+l—mi+ky ifA€E[m —ka—1,n—1],
P(A,my,ny,ky) =< np—my+ky ifle[[nl—l,ml—l]], (11.3.11)
nm+k—1—-21 ifAe[m—1,n+k—1],
0 ifA€n+k—1,m +n —2].
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Furthermore, equation (TT.3.T1)) gives the following equation:

0 ifA €0,m —ky—1],

1 if)vE[[ml—kz,nl—Z]],

n+ky—m ifA=n-1,
O(P)(A,my,n1,k) =40 if A € [ny,m; —2],

n+k—-—m ifA=m—1,

1 if A € [m1,n +ky—2],

0 if A €n+ky—1,m +n —2].

This gives inequality (IT.3.9) by n; + k2 > m; for the fitting .
Proof of Claim[2] Claim[2]follows from Claim I]of Proposition[TT.14and Claim I} O

11.4 Log-concavity conjectures on some weight-zero parcels

We state log-concavity conjectures on some weight-zero parcels, motivated by Propositions [IT.14]and [TT.16}
In Z>¢|g], we recall the g-Starling polynomials of the first kind ¢(x, A, ¢) and the second kind S(x,1,q).
For each k € Z>¢ and A € Z, the delta function §, ; defines

(x.2.4) c(xk—1L,A—-1,9)+[x—1]gc(k—1,4,q) if €« > 1,
K =
AOBD T 55 if k=0,
S(k— 1,2 —1,9)+[Al,S(k—1,4,q) if & > 1,
S(k,A,q) =
(Ka ?q) {5}(,1 if K:().

The sequences (c(k,A,q)); <z and (S(x,A,q)); <y, are strongly g-log-concave [Sag, Theorems 2.4 and 2.5].
Since c(x,A,q) >, 0 and S(k,A,q) >, 0 for k > A > 1, we define the following parcels.

Definition 11.17. Letl € Z>1, k € Z>1, and s = (1,x). Then, let

Cslg = (Cs,l,q,m = H C(KvmiuCI) € Z[Q]> ’
i€[l] me7l

Ss,l,q = (Ss,l,q.,m = H S( K7miaCI) € Z[Q]) .
i€l me7l

Suppose that q is >4-admissible on X. Then, we call A(s,1,>4,¢s14,%) and A(s,1,>4,Ss14,%) g-Stirling
parcels of the first and second kinds.

We conjecture the following log-concavity on the merged determinants of g-Stirling parcels.

Conjecture 11.18. Suppose g-Stirling parcels F = A(s,1,>4,¢514,X) and 4 = A(s,1,> 4,551 4, X). Then,
Jor each fitting (s,1,m,n,k), A(F)(s,l,m,n,k,X) and A(9)(s,l,m,n,k,X) are log-concave g-polynomials.

Example 11.19. For/ = 1and s = (1,3),let . % = A(s,],>4,¢51,4,X) and & = A(s,1,>4, S 4, X). Suppose
m=(2), n= (1), and k = (0,2), which give m=k = (0) and nHk = (3). Then, we have the following
non-palindromic and log-concave g-polynomials:
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For A € Z>, we recall the Ramanujan and Bessel polynomials R) ,(q) and B) (q) in Z>o[q] such that

Al +q)Rz(q)+q2ng(q) if A €Zs,

Ri1(q) =
Lif A =0,
A+x) g*
By(q) = (jt = Lz
Kke[0.A] LK
The sequences (Ry(¢)) ez, and (B (q))ez. , are strongly g-log-convex [CWY| Corollaries 3.2 and 3.3].
We define the following parcels by (R;, (q)f),lez>l and (B3.(q)) ez,

Definition 11.20. Suppose | € Z>1 and gates sy > 1 and sy > 0. Then, let Ry, ; , = (RslAl)q,m € Z[q])
and By, ; 4 = (Bs, 1.9m € Z[q])mezl such that

meZl

[ 1 Rui(q) form e 1]
Rs.,l,q,m = i€[l]

0 otherwise,

[ 1 Bn(q) form e [s2],
By, 1.4m = 4 €11

0 otherwise.

If q is >4-admissible on X, then we call A(s,1,>4,Ry, 1 4.m,X) and A(s,l,>,By, | g.m,X) Ramanujan and
Bessel parcels.

We conjecture the following log-concavity on the merged determinants of Ramanujan and Bessel parcels.

Conjecture 11.21. For s = (1,00), suppose F = A(s,1,>4,R; 1 4,%X) and G = A(s,1,>4,By 4, X). Then,
A(F)(s,l,m,n,k,X) and A(9)(s,l,m,n,k,X) are log-concave g-polynomials for each fitting (s,1,m,n,k).

Example 11.22. For / =1 and s = (1,), let .# = A(s,1,>4,R; 4, X) and & = A(s,1,>4,B,; 4, %). If
m=(3),n=(2), and k = (0,2), then m=k = (1) and nfHk = (4). Furthermore, we have the following
log-concave g-polynomials:
—A(F)(s,1,m,n,k, X) = —(R(3,9)R(2,9) = R(1,q)R(4,q)) = 12¢° + 18¢° + 12q + 4;
—A()(s,1,m,n,k,X) = —(B(3,q)B(2,9) — B(1,9)B(4,9)) = 604 +120¢" +72¢° + 19 +24.

12 Almost strictly unimodal sequences and Young diagrams

We introduce the notion of fitting paths to connect fitting tuples. Also, we introduce the notion of flip-invariant
parcels. Then, we obtain almost strictly unimodal sequences along fitting paths by the merged-log-concavity
of flip-invariant parcels. In particular, Young diagrams give infinite-length almost strictly unimodal sequences.

12.1 Strict log-concavity and merged-log-concavity

The strict log-concavity of positive real numbers implies the almost strict unimodality. But, this implication
does not always extend to the merged-log-concavity of parcels. A reason is that [ and = do not cancel as +
and —. Let us explain the distinction of the log-concave notions on positive real numbers and parcels with
more detail.
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Suppose a strictly log-concave sequence r = (r; € R>0);cq,j- Then, j—1,j+2 € [s] give

2
ri—rj-1rjy1 >0,
71— rjrjsa > 0. (12.1.1)

Furthermore, r is almost strictly unimodal by rr—’l > s :’—ﬁ However, inequality (I2Z.I.1) does not
J= J J

always extend to merged-log-concave parcels.
For instance, consider a ='-merged-log-concave .F = A(s,l,w, -, f5,®,p,x,X). Then, fitting (s,{,m,m,k)
and (s,/,mAk,mEAk,k) yield

Y(s,l,w,m,m,k, 0,0,%,X)(FnTF v — Fugk? (mek)” ) =0,
Y(s,1,w,mEk,mEk,k,¢,0,% %) (P Z (wimp)” — F (e (momr)v) = 0.

However, in general, we do not have 9(,,1,()5,( = %, which corresponds to
r(j+1),1=rj (1212)

in inequality (T2.1.1).

Example 12.1. Suppose s = (0,), ] =2, m = (0,1), and k = (0,0,2,1). Then, (s,I,m,m,k) and (s,l,mH
k,mMk, k) are fitting by v(k) = (0,0,2,3) and v(m,m,k) = (0,1,2,4). But, o (k) = (3,2) implies

(mEk) Bk = (m+o(k)")—o(k) = (0,1) # m.
12.2 Fitting paths
Suppose a fitting (s,,m,m, k). We achieve (mFk) Sk = m if and only if
o(k)=o(k)". (12.2.1)
But, equation (12:21) forces
k[2:20) =171 (0) 4 (1) 17 1(0) (12.2.2)

for some A € Z>1, since k; > 0 of i # 1+ 1,1 makes o(k); < o(k); +k; < o(k);. To establish an analog of
equation (12:1.2) for more general k, we define the following notion of fitting paths.

Definition 12.2. Suppose a width-two gate 0. Consider a sequence P = (P, = (s,1,m;,n;, k;)) icfo] Such that
Py, and Py, are fitting tuples, kg, and kg, are G-equivalent, and mg, = (n@1 Hke, V.

1. For mg, and ng,, assume the equation mg, = ng,.

(a) We call P a fitting path of type e-e if mg, = ng,.
(b) We call P a fitting path of type e-f if mg, = ngz.

2. For mg, and ng,, assume the flipped equation mgl = ng,.
(a) We call P a fitting path of type f-e if mg, = ng,.
(b) We call P a fitting path of type f-f if mg, = n\ofz.
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3. We call P a fitting path P of type free if m; = n; = m) for each i € [6].
We define the notion of fitting paths of general lengths.

Definition 12.3. Let 6 be a gate. Consider a sequence P = (P, = (s,l,mi,ni,k;));co7 such that Qj =
(B)iGHLHI]} is a fitting path for each j € [6,0, — 1].

1. We call P a fitting path.
2. We call P a fitting path of type A if Q; has the same type A for all j € [6;,60, — 1].

We refer to s, 1, 0, and (ki 1) o] of P as the gate, width, length, free-path parameters of P.
If O is of infinite-width, then we say that P is of infinite-length. If 0 is of width-n and n > 2, then we say
that P is of length-n. If 0 is of width-one and Py, is fitting, then we call P a fitting path of length-one.

On the terminology of the free-path parameters of P, see Remark [3.5]

Example 12.4. Let s = (0,), 1 =1, m; = (1), and k; = (0,1). Then, y; = (s,1,m;,my, k1) is fitting by

v(ki)=(0,1),
V(mhml,kl):V( )—l—ml—H—m1 (172).

Also, let my = (m1Hk;)Y = (2) and k; = ky. Then, u, = (s,1,ma,my,ky) is fitting by
V(mz,mz,kz) = V(kz) +my Hmy = (2,3) .
By [ = 1, we deduce that (L;);c[; o] is a fitting path of type free.

Example 12.5. We have the following fitting path with different but equivalent supports. Let s = (0,),
1=2,m; =(0,3), and k; = (0,4,4,4). Then, u; = (s,/,m;,m\ k) is fitting, since

v(ki) =(0,4,8,12),
v(my,ny, ki) = v(ky) +mym) = (0,7,11,12).

If we were to continue with ki, either (s,l, (m] Bk)",m{ Bk, ki) or (s,1,(m{ Bki)",(m] Bki)" k1)
has to be fitting. However, neither of them is fitting, since m| Fk; = (3,0) + (4,12) = (7,12) implies

v((mY @Bky)Y,m{ Bk, ky) = v(ky) + (12,7) 4 (7,12) = (12,11,15,24)
v((m{ Bk, (m{ k)", k1) = v(k) + (12,7) 4 (12,7) = (12,11,20,19).
)

Instead, let k, = (0,7,4,1) # k;. Not only are k; and k, equivalent, but also up = (s,l,my,n2,ky) =
(5,1, (mY Bk1)",mi Eki, k) is fitting, since

v(k) = (0,7,11,12),
V(ma,mo.) = v(ka) + (12,7) 4 (7,12) = (12,14, 18,24)..

In particular, (y;) ic[2] i a fitting path of type f-f with different but equivalent k; and k;.

Since we do not demand equation (12.2.1)) on the fitting tuples of fitting paths, we introduce the following
notion of parcels to obtain an analog of equation (12.1.2).
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Definition 12.6. Let 7 = A(s,l,w, >, f;,¢,p,x,X). We call F flip-invariant at r € Oy if each m € 7!
satisfies

Fm(r) = Fv(r).
We simply call F flip-invariant if F is flip-invariant at every r € Ox.
We have the following flip-invariant parcels.

Lemma 12.7. Suppose % = A(s,l,w,>, f5,0,p,x,%) and r € Ox such that x, ¢ (x), and w are palindromic
tuples, and fy(r) = fymv (r) for each m € Z!. Then, F is flip-invariant at r.

Proof. Since %, = W for each m € [s]', the statement follows. O

In particular, the following monomial parcels are flip-invariant.

Proposition 12.8. Suppose a monomial index (1, w,y) with palindromic w, (1) ieqr and (}/,-72)1.6[[”]. Then, a
monomial parcel A(s,1,w, =, ¥y y4,p,x,X) is flip-invariant.

Proof. The statement follows from Lemma[12.7} O
For further discussion, we state the following equations on the o-plus and ¢-minus.

Lemma 12.9. Letl € Z>1, m € 7!, and k,k' € Z?'. Then, we have the following equations.

(mEk)Y =m"3(—k), (12.2.3)
(mEk)Y =m" @ (—k), (12.2.4)
mEkEk =mE(k+K), (12.2.5)
mEkEkK =mE(k+K), (12.2.6)
(mEk)’ Gk =m", (12.2.7)
(mBk) Bk=m", (12.2.8)
mBkEK =m@BK k. (12.2.9)

Proof. First, we obtain equation (12.2.3) by
(mEk) =m'+(0(k)")" =m" —o(=k) =m" S (~k).

Replacing m and k with m" and —k, we deduce equation (12.2.4) from equation (12.2.3).
Second, we obtain equation (12.2.3) by

mmkmk =m+ok) +ok) =m+ok+k) =mm(k+K).

Similarly, equation (12.2.6) follows from ¢ (k) + o(k') = o(k+ k).
Third, we have equation (12.2.7), since equations (12.2.3)) and (12.2.6) give

(mmk) Bk=m"B(-k)Bk=m".

Similarly, equation (12:2:8) holds by equations (12.2.4) and (12:2.3).
Finally, we have equation (12.2.9)), since

mEkmk =m—o(k)+o(k) =m+o(k)" —o(k) =mmK Dk.
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We derive the following analog of equation (12.1.2) by fitting paths and flip-invariant parcels.

Proposition 12.10. Consider a fitting path P = (P, = (s,1,m;,n;, l))ze[[el] and flip-invariant parcel F =
A(s,l,w, =, f5,0,p,x,X) at r € Ox. Then, each j € [6; + 1, 0,] satisfies

T (r) = Fn;_ (r) = T (1). (12.2.10)

Proof. First, we have mj = (nj—1Bkj_1)" ormj = (n >/ ( Bk l)v since P is a fitting path. Then, equa-

tions 12 2.3|and|12.2. 6 of Lemma l 9 1mp1y miBk; =n;_; or n _1- This equation gives the left-hand side
of equatlon | by the flip-i mvarlance of Z.

Second, we have m;_ = n;_ or n}_, for the fitting path P. The right-hand side of equation (12:2.10)
holds again by the flip-invariance of .# O

12.3 Positivity of ring shift factors

We generalize inequality (1.6.2) by the ring shift factors in Definition[6.1] We state the following lemma to
obtain the generalization by mediators and g-numbers, which factorize the ring shift factors.

Lemma 12.11. The set C = {f € Q(X) | f >0, 0} is a group under multiplications.

Proof. Clearly, 1 € C. If g € C?, then Frac(g)(r) = Frac(g(r)) > 0 for each r € Ox. O
We state the following >0, -positivities of mediators and g-numbers.

Proposition 12.12. Suppose a u = (s,l,w, >, p,x,X)-mediator ¢.
1. ImeZ Oandl EZ>1, then

[Tox)"" >0, 0, (12.3.1)
[m]!", >0, 0. (12.3.2)
2. Ifme [s]', then
H¢(xp)inow >

3. Suppose a fitting (s,1,m,n, k) with a = v(k) and b = v(m,n,k). Then, it follows that
[T(6()) =97 >0, 0.
Proof. Proof of Claim[I] First, the base positivity of ¢ and u implies inequality (I2.3.1) by Lemma@
Second, we prove inequality (12.3.2). By A > 1, each i € [!] implies [m,}' . >x 0. This gives [m]!"} -0
by the half >,->~ implication in Claim 2] of Lemma [5.20] By the half - >o36 implication, we deduce

inequality (12.322).

Proof of Clailel By the compatibility >0, 3, the base-shift positivity of ¢ and y implies

B(s,l,w,m,¢,p,x,X) >0, 0.
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Then, we have

OO ML [0y
B 717 IR G ] 7x = V)VCI - .x'p ) O
(S w,m,9,p,x ) ,g}] (x)w,m,- [ml} !x,-l H¢(X)’”OW . [m] !}” >0

Therefore, Claim 2] follows from Lemma[I2.11]and Claim I}
Proof of Claim Claim gives Claim 3] since m,n" € [s]' satisfy

H((P(xp)U)(hfa)owu _ H((p(xp)U)(m#n)owu _ H(P(xp)mow . H(P(xp)nvow.

We obtain the generalization of inequality (1.6.2) by the ring shift factors.
Corollary 12.13. Suppose a fitting i = (s,l,m,n,k). Then,

Y(S’l7w7m7n7k7¢7p7x’x) >O_x 0'

Proof. Let a = v(k) and b = v(m,n,k). By the slope conditions of y, we have a,b > 0. We deduce the
assertion by Item 2] of Definition[6.1} Lemma|[I2.11} and Claims [T]and 3] of Proposition [12.12 O
12.4 Almost strictly unimodal sequences by the merged-log-concavity

We discuss almost strictly unimodal sequences by fitting paths and the merged-log-concavity. We introduce
the following notation along fitting paths.

Definition 12.14. Let 0 be a gate. Consider the pair { = (P, F) of a fitting path P = ((s,l,mi,ni,ki))ieﬂe]]
and parcel F = A(s,l,w, >, fs,¢,p,x,X). Let r € Ox.

1. We define the extended gate e(0) = (6; — 1,0, + 1) € Z2.

2. We define the path-parcel sequence u(C,r) = (u(§,r)i € R);cp,(q)) such that

icfe

ymellﬂkel(r) ifi=0;—1,
u(8,r)i= < Fn(r) ifie[6,6],
7 (r)  ifi=6,+1<oo.

”621{62

By the ends of parcel-path sequences, we define the notion of wrapped fitting paths.

Definition 12.15. Suppose a fitting path P = ((s,l,mi,n,-,ki))ie[[e]]. We call P wrapped if P satisfies the
following conditions:

me, Elkg, € [s]'; (12.4.1)
ne, Mke, € [s]' when 6, < oo. (12.4.2)

We refer to (12.4.1) and (12.4.2) as the lower inclusion condition and the upper inclusion condition of P.

We state the following lemma for a later reference.
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Lemma 12.16. If r = (r; € R>g) ic[s] is strictly log-concave, then r is almost strictly unimodal.

Proof Let j—1,j+1¢€ [[s]] The strict log-concavity of r reads rf —rj_1rj+1 > 0. Then, by rj_1,r; >0, we
have D> Lt . Since - < 1 implies rj_1 > r; > rj11 > ..., the assertion follows. O
J

Since each >-merged-log-concavity gives the >0, -merged-log-concavity by the half ~->¢, implication,
we state the following short almost strictly unimodal sequences by the >q .. -merged-log-concavity.

Lemma 12.17. Consider a length-one fitting path P = ((s,1,m;, n;, t)):e[[el] andr € Ox. Let F = A(s,1,w, =
52 9,0,%,X) be >0, -merged-log-concave and flip-invariant at r. Let { = (P,.7). Then, we have the
following.

1. u(&,r) is strictly log-concave.
2. u(&,r) > 0is almost strictly unimodal if P is wrapped.

Proof. Proof of Claim[I} Suppose 6 = (1,1) without loss of generality. By e(8) = (0,2), we want to prove
the strict log-concavity of the following sequence:

u(8,r)o = gk, (1); (12.4.3)
u(G,r)1 = Fu, (r); (12.4.4)
u(8,r)2 = Fypey (r)- (12.4.5)

By the >, -merged-log-concavity of .7, we have
A(F)(s,l,w,my,ny,ky, ¢,p,x,%) =X(s,l,w,my,ny, ki, ¢,p,x, %) -det(F,my,n, k) >0, 0
By Lemma[I2.1T]and Corollary [[2.13] we deduce
det(F,my,n1,k) = fmlfn /anEkr/(nlkl)V >0, 0.
Also, m; = n\{ or my = ny for the fitting path P. Since .% is flip-invariant at r, we obtain
Ty (1) Fn, (1) = Fopimy (1) P, (1) >0 0.

Clalmlfollows since u(&,r)? —u(¢,r)ou(¢,r)2 > 0 by equations (12.4.3), (12.4.4), and (12.4.3).
Proof of Claim[2] Claim[2) holds by Lemma|12.16|and Claim [1} because mi Sk € [s]' and nj Bk € [s]!
O

imply u(&,r)o,u(&,r), > 0 by equations (12.4.3) and (1Z2:473).

Moreover, we obtain the following almost strictly unimodal sequences by general fitting paths.

Theorem 12.18. Consider a fitting path P = (P; = (s,l,m;,n;,k;));c1o)- Assume that F = A(s,l,w,
S 0,p,x,X) is >0, -merged-log-concave and flip-invariant at r € Ox. Let { = (P,.%). Then, we have the
following.

1. u(&,r) is strictly log-concave.

2. u(&,r) > 0is almost strictly unimodal if P is wrapped.
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Proof. Proof of Claim I} For each A € [6], consider the length-one fitting path Q; = (P);cpp 27- Let

k), = (Qy,%). Then, we prove the following equations:

M(K/Ur)lfl = M(Carhq;
u(ky,r)p =u(§,r)a;
u(ky, 1) a1 =u(C,r) a1

These equations imply Claim [T]by Claim|T]of Lemma[12.17)on u(x; , 7).
First, we prove equation (12.4.6). If A — 1 & [60], then

M(Klvr)lfl = yml\ﬂkl (V) = M(Car)lfb
If A — 1 € [6], then Proposition[12.10| gives
M(Klvr)lfl = ymlEVkl (V) = gnl,l (r) = M(Cﬂ’)lfl'
Second, equation (12.4.7) holds, since A € [8] implies
u(ky,r)p = Fny (r) = u(G,r)2
Third, we prove equation (12.4.8). If  + 1 ¢ [6], then equation (12.4.8) follows from

M(Khvr)lJrl = ynlk), (7‘) = u(gar)l+l~

(12.4.6)
(12.4.7)
(12.4.8)

If A +1 € [6], then my | = (n, Bky)", which is ny oy or ny_,. By the flip-invariance of .7, we deduce

M(KA,I")A+] = ynlkl (}") = ynl+1 (I") = ”(C»”)Mrl .
Proof of Claim[2} Since P is wrapped, we have
u(8,r)e,—1 = Fmg, ko, (1) >0,
M(CJ’)(.)Z_H = 32"92]{92 (I") > 0if 92 < oo,
Claim 2l follows from Lemma [12.16]

12.5 Infinite-length fitting paths

We introduce the following sequences to obtain infinite-length fitting paths, which in turn give infinite-length

almost strictly unimodal sequences in Theorem[T12.18]

Definition 12.19. Letl € Z>|. Let A € Z;O such that 1 > Ay > 1 and Ay > 1. Suppose infinite gates s > 0

and 0 = (1,00) € 72. Lett = (1; € Z>0)c[o]- Then, we define the sequence
Ps,l,/l,t = (RY,ZJL,I,[ = (svlamianhki))ie[[g]]

or mj,n; € 7L and k; € 72 as follows.
>0 >0
1. If Ay =1, then

mi=ni=1U(A+A+s)+(i—1)'(h),
ki = 1'(0) 4 (2) 4 /71 (0) + () 4 71 (0).
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2. If Ay <1, then

mi=n; = 1" (A) 4177 (0) + (i — D' 24) + ! (A3 +51),
ki =111(0) 4 () 4171 7H0) + (A2) 4 14171(0) 4 (A2) 4+ 1M 710) + (1) + 1 71(0).

When t = 1191(0) = (1, = 0);cqop- let Pyy g = Pyga, for simplicity.

We prove that P, ; ; ; is an infinite-length fitting path. In particular, for each P, ; 5 , ;, we verify the slope
conditions, which allow non-strict inequalities on v (k;) and v (m;,n;,k;).
For Item T] of Definition[T2.19] we have the following.

Proposition 12.20. Assume [ € 7>y and A € 7> such that
M=12>1,2>0. (12.5.1)

Then, Py ;= (PSJ&,_’,- = (s,l,m;, n,;k,-)) is an infinite-length fitting path of type free such that

i€[6]
v(ki) =1 (0) 41" (A2) +1:. (12.5.2)

Proof. For simplicity, let t = 1161 (0). First, we prove that each P, 3 ; is fitting. We have m,n; > s1 by
condition (T2:5.1). This gives m;,n; € [s]', since s is an infinite gate. Also, we obtain equation (12.5.2), since

ki =1'(0) + (A2) 4-1'71(0).
This gives
v(mini k) =1 (Ao + A3 4s1) 1/ 2 + 43 +51) + (i — D)1* (Ay). (12.5.3)

Each P, 3 ; is fitting by equations (I2:5.2)) and (12.5.3)), since condition (IZ.3.T) implies the slope conditions
on V(ki) and v(m,-,nl-,ki).
Second, we prove that Q; = (QLK = PSJ:,LHK) xe[0,1] is a fitting path of type free for each i € [0]. Since

o(k;) = 1/(A2), we have

(nik,')v = ll(lz +A3 +S1) + ill(lg) = Mj41-
We deduce that each Q; is a fitting path of type free, since m;;x = nj1x = mlﬁk for k € [0,1]. O

Example 12.21. Lets = (0,00),/ € Z>1, and A = (I, 1,0). Then, 6 = (1, ) gives the infinite-length fitting
path Py = (P = (s,l,mi,ni,ki))ie[[e]] of type free such that each i € [0] satisfies

mi =n; =1'(i),
ki =1'(0) 4 (1) #1'71(0).

—~

In particular, this appears in equation (12.2.2).
For Item 2] of Definition[T2.19] we have the following.
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Proposition 12.22. Suppose | € Z>y and A € 73 such that
1< <, 2>1,A3>0.

Consider Py 5, = (Pyj i = (s,1,mj,ni,k;)) Also, let

ie[6]
L(l,l]) = min(?L] - 1,[—11 - 1),
H(l,/ll) = max(?tl — l,l—ﬁ,l — 1)
Then, the following statements hold.

1. We have

;LZ lf] € [[O,L(l,ll)]],
O'(k,‘)[,j = 22’2 lfJ € HL(la;Ll)+ laH(lva'l)]]a
30 iij[[H(l,)Ll)—l-l,l—lﬂ.

2. Pyy 2 is an infinite-length fitting path of type e-e such that

vk) = 1M(0) #1774 () 4 1M 24) #1M (Bh) +1;

foreachic [0].

Proof. For simplicity, let r = 1[¢] (0).

(12.5.4)

(12.5.5)

Proof of Claim If A} —1>0and [ —A; — 1 > 0, then the statement is clear. Let us suppose otherwise.

First,let A —1=0.If [ —A; — 1 =0, then
ki = 1M(0) 4 (A2) 4 (A2) 4 (Aa).

Claim ] follows, since L(I,A1) = H(l,4;) =0. If [ — ; — 1 > 0, then

ki = 11(0) 4 (A) 4 ' 7M71(0) 4 (A2) 4 (A2) 41 "H171(0).

Claim[T[holds by L(I,A1) =0 < H(l,A1) =1— 2 — 1.
Second, let A —1>0and[—A; — 1 =0. Then,

ki = 1M(0) 4 (L) + (L) 1M~ 1(0) 4+ ().

This gives Claim[T]by L(I, A1) =0 < H([,A4;) = A; — 1.

Proof of Claim 2| We prove that each P, ; = (s,1,m;,n;,k;) is fitting. Since s is an infinite gate,
m;,n; € [s]'. Then, we obtain equation (T2.5.3), ignoring +1*~1(0) or 41/~*~1(0) in k; when 4, —1 =0

or/—A; —1=0. Also, we have

v(mi,ni ki) =1 Ao+ A3 +51) # 1/ B+ A +51) + (i — 1)1* (242).

(12.5.6)

By equations (12.5.3)) and (12.5.6)), condition (12.5.4) gives the slope conditions on v(k;) and v (m;,n;, k;). It

follows that each Py ;  ; is fitting.
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For each i € [0], we prove that Q; = (QiyK = Rx,l,/l,i+:c) Ke[0,1] is a fitting path of type e-e. First, assume
L(l,AM)=1—A; —1. Since 4y — 1 — (I = A; — 1) = 2A4; — > 0, Claim[T] gives

o(k) =177 (32) 4 1M (20) 4 1M (Ay).
Then, [ — A; +2A4; — [ = A, implies
ik =17M(2%) 4 1M (322) +1' (As +51) + (i— 1)1 (222).

By (n;EHk;)Y = m;11, we deduce that each Q; is a fitting path of type e-e.
Second, assume L(I,A;) =A; — 1. Since [ —A; —1— (A4, — 1) =1-2A; >0, ClaimE]yields

o (ki) = 1M (3) #1741 (20) 1M (Aa).
Furthermore, A; +1—2A; =1 — A; gives
ni @k = UM (2) 4 M (BA) + (A5 + 1) + (i — 1)1' (24).
Since (n;FHk;)Y = m;y1, each Q; is a fitting path of type e-e. O

Example 12.23. Let s = (0,00),/ =3, and A = (1,1,0). Then, 68 = (1,00) gives the infinite-length fitting

path Py = (P, = (s,l,mi,ni,k[))ie[[e]] of type e-e such that each i € [0] satisfies

m; =n; = (1,0,0) +2i—2,
ki=1(0,1,0,1,1,0).
12.6 Triplet scalings and sums of fitting paths
To construct more fitting paths, we introduce the following triplet scalings and sums.
Definition 12.24. Suppose a gate s and [ € Z>.

1. Assume a tuple T = (s,1,a,,7) such that o, € Z! and y € Z*. Let A € Z. Then, we define the
triplet scaling

AGT = (s,1,Aa,AB,A7).

2. Foreach i € [2], assume a tuple P; = (s,1,m;,n;, k;) such that m;,n; € 7! and k; € Z*. Then, we define
the triplet sum

P +P= (s,l,m] +my,ny +ny, ki —|—k2) .
In particular, we obtain the following fitting tuples.
Lemma 12.25. Consider fitting tuples P; = (s,l,mj,n;,k;) for j € [2]. Suppose A € Z* such that
M, A >0and A + A, > 0. (12.6.1)

Let Py = A ® P, + A ® Py = (s5,1,m3,n3,k3). Then, Ps is fitting, provided m3,n3 € [s].
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Proof. Leta; = v(k;) and b; = v(m;,n;,k;) for i € [3]. Then, we have

a3 =Mv(k)+2v(k)
= hai + ha,
bz = az +m3+n3
=az+ (Aimy + Aomy) # (M + Aana)
= May +Aay + Aymy H Ang + amo H Ao
=Mbi +Abs.

Thus, the slope conditions of P; and P, imply those of Ps by inequalities (I2.6.1)). This gives the statement by
m3,n3 € [s]'. O

We now introduce the following triplet scalings and sums on tuple sequences.
Definition 12.26. Suppose gates s and 0. Let | € Z>.

1. Consider a sequence T = (T; = (s,1, ai7ﬁi’%))i6|19ﬂ with o, B; € Z! and y; € Z*. Let A € Z. Then, we
define the triplet scaling

AOT =(AOT)cqep-
2. For each j € [2], consider a sequence P; = (Pj; = (s,l,mj7,~,nj7i,kj‘,,-))ie[[e]] with mj;,n;; € Z! and
kj;€ 72, Then, we define the triplet sum

P+P = (P]J' ‘i‘PZ.,i)iGﬂB]] .

For example, suppose an infinite gate s > 0 and A = (11,4,0) € Z3 such that s; = 0 and A;,4; € Z>.
This gives Py ;5 = A © Py (2,.1,0)-
We now prove the following strict inequality on the ladders of fitting paths.

Lemma 12.27. Assume a fitting path P = ((s,1,mi,ni,k;));c1 o) Then, we have
np=m <m¥ ornp zmlv <m¥.
In particular, we have
Y =Ynm<Ym=Ym.
Proof. Since P is a fitting path, n; = mj or ny = my. If ny = my, then o(k) > 0 gives
my < m Bk =n Bk :mg.

If ny = my, then

m{ <mi+ao(k)" =n+0c(k)" =n Bk =mj.

The latter statement follows from m, = ny or mg =ny. O
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Then, we obtain fitting paths by triplet scalings and sums.

Proposition 12.28. Assume A € 72, such that
M, A >0and A+ A, > 0. (12.6.2)

Let 6 = (1,2). Consider fitting paths P; = (Pj; = (s,l,mji,n;i,kji));cro7 for J € [2]) such that Py and P,
have the same type A. Also, suppose m3»,n3, € [s]' and

Py =2 0OP + 0P = (Ps;i=(s,1,m3,n3,k3))ic[o] -
Then, P is a fitting path of the type A.

Proof. Lemma implies that P 5 is fitting. Hence, let us prove that P; ; is fitting. Thus, we confirm
m3 1,13, € [s]'. By inequalities (12.6.2), we have

m31 > My Or my 1, (12.6.3)
N3 >mnpporngg. (12.6.4)

Also, since Py and P, are fitting paths, Lemma [I2.27]yields

2 ) Mmoo+ Amyr =ms o if As type f-e or f-f,
msz | = Am my 1 < , , ,
ST AL AT Aimy 5+ Aym3 , = my3, if Ais type e-e or e-f.

Thus, m3 1 € [s]* by m3 > € [s] and inequality (I2.6.3). Also, n3 1 € [s]' by m3 € [s]' and inequality (T12.6.4)),
because Lemma [12.27] gives

\ \ \
n3 1 =Mny+Angy < Aimy o+ Aamg , =mj3 ;.

Hence, P; ; is fitting by Lemma[12.25]
Let us prove that P; is a fitting path of the type A. We have

msp = (n31Hks )Y, (12.6.5)
since
ny 1 @k3 1 = (Ainiy + Agnay) B (Akr g + Agko 1)
= Ai(n1,1 Bkit) + Ao (no 1 BHkap)
= llm}/,z + lzm{z
= m?{z.
For instance, assume that P; and P> have the type e-e. Then, we have m3; = n3; by m; | = n;,; and
my =ny1, and m3p = n3p by myp =ni» and myp = npp. Thus, Pj is of type e-e by equation (12.6.3).
Similar discussions hold for the other types. O
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12.7 Infinite-length fitting paths of Young diagrams

By box counting, we prove that Young diagrams give explicit infinite-length fitting paths. We adopt the
following notation.

Definition 12.29. Suppose p,A € Z>.

1. & € 2%, is called a Young diagram (or a partition of ¥.§) if & is decreasing.

2. Wewrite Y (p,A) for the set of Young diagrams & € 7 such that & < A.

By Definition2.1] we use the following notation for the box counting of ¥ (p, ).
Definition 12.30. Let £ € Y(p,l), A €Z, and X' € Z>1.

1. Let Loy (&) = Lica Li(§) € Zxo.

2. LetL(A,8) =2L<31(§) +La(E) € Zxo.

3. Let z(A', A, &) = A+ (L<o(€),L<1(&),...,.Layr_1(€)) € Z¥.

Moreover, we define the following sequence of fitting tuples.

Definition 12.31. Let h € Z>g and & € Y(p,l). Consider A; € Z;O for i € [p] such that Ay = (&,1,h)
and X; = (&,1,0) for i € [2,p]. Also, suppose an infinite gate s > 0. Let | € Z>1, 8 = (1,), and t =
(ti € Z>0)c[o)- Then, we define the sequence

Poreon="PuangTPirn+ - +Fia,
We call h the base height of Py ¢ ; . If each t; =0, then we also write Py ¢ ), for Py ¢ ; .
Then, we realize the following infinite-length fitting paths P ¢ ; ;..

Theorem 12.32. Consider a Young diagram & € Y (p,1). Then, Py ¢ ;= ((s,1,mi,ni, ki));c (o] is an infinite-
length fitting path of type e-e. Moreover, each i € [0] satisfies

m;=n; = p+s; +h—2z(,0,E)+ (i— ' (L(L,E)), (12.7.1)
v(ki) =z(1,0,&) #z(l,L(1,&),E) +1;. (12.7.2)
Proof. The former statement holds by Propositions [12.20} [12.22} and [12.28]
We prove equations (12.7.1) and (12.7.2). Suppose s; = h = 0 and each ; = 0 for simplicity. Thus, let
Aj=(&;,1,0) for j € [p]. Also, consider the fitting path Py ; ;, = ((S7l’mlj,i7”lj7i’klj7i>)ie[[e]] for j € [p].
Then, Propositions[12.20]and [T2.22] give the following equations:

YO+ ifg =1,
m“_“f_me%ﬁé@+w4Wmﬁg<u (1273
O+ ()if g =1,
Y= {léf'(o) WS () 8 (2) 1Y (3) i g <L (1274
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Thus, equation (I2.7.1) holds by equation (T12.7.3), since each k € [I] satisfies

my e =Ny, = Z M1 = Z Ly(&).

Jjelp] uelr,]

Also, equation (12.7.2) holds, since equation (12.7.4) gives

v(ki) = 1'(0) 41" (Li(&)) + %ﬂfwhﬂkﬂuﬁﬁﬂﬂﬂﬂdﬁﬂﬂkﬂﬂd&)
Ke[l-1

O

Theorem [T2.32] gives not only infinitely many polynomials with positive integer coefficients by Young
diagrams and the merged-log-concavity, but also infinite-length almost strictly unimodal sequences by

Theorem[12.18] Also, z(1,0,&) and p —z(1,0, &) in Theorem[12.32count boxes of Young diagrams in p X [
rectangles as in the following examples.

Example 12.33. Let! =4, p=2,£ = (3,1), s = (0,), and h = 0. Then, there exists the infinite-length
fitting path P ¢ ;, = ((s,1,mi, ni, ki) ;c[oy such that each i € [6] satisfies

mi=n; = (2,1,1,0) + (i — 1)1 (4), (12.7.5)

v(k) = (0,1,1,2,4,5,5,6). (12.7.6)

To explain these equations by p —z(1,0,&) and z(,0, &), consider the following Young diagram of &:

[ ]

Then, p —z(1,0,&) corresponds to the following box counting:

2 1“\0’

where 2,1, 1,0 indicate the numbers of boxes in the vertical direction. Furthermore, equation (12.7.3)) follows
from Theorem|[12.32] since L<;_(§) =2 and L;(§) = 0 gives L(/,§) = 4.
Moreover, in the p x [ rectangle, & gives the following complementary Young diagram:

L]

Then, z(1,0,&) corresponds to the following box counting:

M1|12

where 0, 1, 1,2 are the numbers of boxes in the vertical direction. Thus, equation follows.

When & = [, we have the following example.
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Example 12.34. Let/=3,p=2,& = (3,1), s = (0,0), and 2 = 0. Then, there is the infinite-length fitting
path P ¢ = ((s,0,mj, ni,ki));c g such that each i € [6] satisfies

mi=n; = (2,1,1)+ (i— 1)1’ (3), (12.7.7)
v(ki) =(0,1,1,3,4,4). (12.7.8)

To explain these equations, we have the following Young diagram of &:

[ ]

Thus, p —z(1,0,&) corresponds to the following box counting:

2 1|1\’

where 2, 1, 1 are the numbers of boxes in the vertical direction. This gives equation (I2.7.7) by Theorem[12.32]
since L;_j (&) =1and L;(§) = 1.
Furthermore, in the p x [ rectangle, & has the following complementary Young diagram:

1]

Then, z(1,0,&) corresponds to the following box counting:
:

where 0, 1,1 are the numbers of boxes in the vertical direction. Hence, we obtain equation (12.7.8).

Remark 12.35. Let/ € Z>;, p=1,& = (I), s = (0,), and & = 0. Then, there is the infinite-length fitting
path Py ¢ = ((s,0,mj, ni,ki));c g such that each i € [6] satisfies

m; =n; = ill(l),
v(k;) =1'(0)#1'(1).

Furthermore, suppose a parcel # = A(s,[, =, f;,X) and i € [6]. Then, since (k) = t/(1), the ='-multi-
log-concavity

ymiﬁm,- _gmi—lfg.m,--&-l >_/ 0
coincides with the >'-merged-log-concavity

ymi‘gn}/ - ymiEki‘g("iki)v >'/ 0

We now obtain infinite-length almost strictly unimodal sequences by the following lemma.
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Lemma 12.36. Suppose P=1Py; ¢, = ((s,l,mi,ni,k,-))ie[[e]]. Then, P is wrapped when
h>3Le (&) (12.7.9)

Proof. Since s is infinite, P has the upper inclusion condition. Let us confirm that inequality gives the
lower inclusion condition m; 5k > s of P. Leta; = v(k;) and p=L<;_1(§)+L;(&). Then, Theorem|12.32
gives

o(ki =aru—t =L(1,8) +Lg1(§) =3Lg1(8) +Li(8) =2L<—1(E) + p.
Thus, since my > 51 +h+p—L<;_1(&) by Theorem we obtain
m Bk >s1+h+p—Lg_1(&)—0o(ki)1 =s1+h—3L<—1(&).
In particular, inequality gives the lower inclusion condition of P. O

Proposition 12.37. Let P =P, ;¢ , = ((5717mi,ni7ki))ie[[e]~ Suppose that F = N(s, 1w, >, fs,0,p,x,X) is
—-merged-log-concave and flip-invariant at some r € Ox. Let § = (P,.%). Then, we have the following.

1. u(&,r) is infinite-length and strictly log-concave.

2. u(8,r) or —u(&,r) is infinite-length and almost strictly unimodal if h > 3L<;_1(€).

Proof. Proof of Claim[l] Claim[T]is of Theorems[I2.18]and[12.32]
Proof of Claim[2] Lemma and Claim[I]imply Claim O
13 Almost strictly unimodal sequences and critical points

We have the notions of increasing, decreasing, and hill sequences of real numbers. Also, we adopt the
following notion of infinite-length sequences, extending the notion of hill sequences to asymptotic cases.

Definition 13.1. Consider a strictly increasing sequence r = (r; € R) ic[6] for an infinite gate 0. Then, r is
an asymptotic hill if

lim 2L = 1.

1= Iy

Using the notions of almost strictly unimodal sequences, we have the following boundary sequences,
which satisfy two of the notions simultaneously:

* hill and increasing sequences;
* hill and decreasing sequences;
» asymptotically hill and increasing sequences.

By these boundary sequences, we consider critical points on the variation of almost strictly unimodal
sequences. We also obtain real algebraic sets of the critical points in a suitable setting.
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13.1 Increasing, hill, and decreasing sequences

Since hill sequences have at least three terms in Definition [I.T] we state the following classification of almost
strictly unimodal sequences.

Lemma 13.2. Letr = (r; € R) ] be almost strictly unimodal with s, —s1 > 2. Let 8 be the mode of r.

i€[s
1. If 6 = so, then r is strictly increasing.

2. If 8 = sy and rs > rs, 1, then r is strictly decreasing.
3. In other cases, r is a hill.

Proof. Proof of Claim If 57 < oo, then r = (r;), 4 is strictly increasing. If sp = oo, then r5 and rg | are
non-existent.

Proof of Claim Claim 2] holds, since (r;); 5 is strictly decreasing.

Proof of Claim|3] If 51 < 8 < 57, then § < oo gives hill sequences. If 6 = s and r§ =rg. |, then sp —s1 > 2
gives hill sequences. O

We establish the following criteria for some boundary sequences.

Proposition 13.3. Consider an almost strictly unimodal r = (r; € R)ie[[s]] such that sy —s; > 2. Then, we
have the following.

1. ris a hill and decreasing sequence if and only if r, = rg 1.

2. ris a hill and increasing sequence if and only if r satisfies the following conditions:

55 < oo} (13.1.1)
Fy—1 =T, . (13.1.2)

Proof. Assume the mode § of r.

Proof of ClaimE} First, the if part follows, because s — 51 > 2 gives ry, = 75,41 > Fg 42 > ..., which
is a hill and decreasing sequence. Second, the only if part holds as follows. If s; < § < s7, then r is not
decreasing by ry, < ry 41. If s = 8, then r5 = r5,; by Claim 2] of Lemma[13.2}

Proof of Claim E} First, the if part holds, since s, —s1 > 2 gives --- < ry,_» < 75,_| = Iy,, which is
increasing and hill. Second, let us prove the only if part. If s, = oo, then r is not increasing when 8 < oo, or
strictly increasing when 8 = o by Claim|[I] Hence, inequality [13.1.1]holds. Also, the strictly decreasing part
(ri);~5 has to be trivial. It follows that § = s, — 1 by Claim|[T]of Lemma|[I3.2} We obtain equation (T3.1.2)
for the increasing r. U

13.2 Ciritical points on almost strictly unimodal sequences

We first introduce the notion of merged pairs.

Definition 13.4. Assume a wrapped fitting path P = ((s,l,m,-,ni,ki))ie[[eﬂ and a parcel F = A(s,1,w, =
f5: 9, 0,x,X) that is flip-invariant and >o,.-merged-log-concave. Then, we call the tuple (P,.7) a (6,X)-
merged pair.

Suppose a (0, X)-merged pair & = (P,.%#) and r € Ox. Then, we define the following critical points on
u(&,r), which is an almost strictly unimodal sequence by Theorem[12.18
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Definition 13.5. Suppose a (0,X)-merged pair § = (P, ). Let r € Ox.
1. We call r a front critical point of § if u(§,r) is a hill and decreasing sequence.
2. We call r a rear critical point of § if u(&,r) is a hill and increasing sequence.

We employ the term “front critical point”, since u(&,r) is a hill and decreasing sequence when its front
terms satisfy u(&,r)o,—1 = u(&,r)q, by Proposition Similarly, we employ the term “rear critical point”,
since u(§,r) of 6, < eois a hill and increasing sequence when its rear terms satisfy u({,r)o, = u({,r)g,+1.

Rear critical points are only for finite-length fitting paths, since we do not have hill and increasing
infinite-length sequences among almost strictly unimodal sequences. But, suppose an infinite gate 6. Then,
there is a (0, X)-merged pair A = (P,%) with by, by,b3 € Ox such that

e u(A,r)isahillif by <r < by, and
* u(A,r) is a strictly increasing sequence if by < r < bs3.

We compute such a merged pair in some detail in Section
For infinite-length merged pairs, let us introduce the following notion of asymptotic critical points, which
is analogous to the notion of rear critical points.

Definition 13.6. Suppose a (0,X)-merged pair { = (P, 7 ) of an infinite gate 0. We call r € Ox an asymptotic
critical point of € if

lim M(C, r)]+1

=1.
j=e u(E,r);
By the asymptotic critical points, we obtain asymptotic hills.

Proposition 13.7. For a (0,X)-merged pair § = (P,.%), assume an asymptotic critical point r € Ox. Then,
u(&,r) is an asymptotic hill.

Proof. We prove that u({,r) is strictly increasing. Assume that u({,r) is a hill or decreasing sequence.

This gives A € [0] such that u({,r), > u({,r)p41 > ... Since u(g,r) > 0 is strictly log-concave by
Theorem|12.18] we have 1 > “’(A%gg;l > Zgggif > ... against r being an asymptotic critical point. O
s s +

13.3 Parcel ratios and vanishing constraints of parcel numerators
Suppose a merged pair (P,.%) with an infinite-length P = ((sJ,ml-,n,-,k,-))ie[[e]]. Then, we discuss parcel

ratios —£= by almost strictly unimodal sequences and polynomials. This gives certain vanishing constraints
<N
on parcel numerators.

We state the lemma below on infinite-length fitting paths.

T
Jnik-
n:

Lemma 13.8. Assume an infinite-length fitting path P = ((s,l,mi,ni,ki))ieﬂe]]. Then, lim;_eon; j = oo for
each j € [l]. In particular, s is an infinite gate.

Proof. Leti € [[0] such thati > 6; + 1. Then, n; is n;_EHk;_1 or (n,_1EHk;_1)". Thus, n; >i—0; € Z>; by
o(k) > 1 and ng, > 0. So, we have the former assertion. This also gives the latter assertion by the inclusion
condition of each fitting tuple of P. O

We also have the following lemma on parcel ratios.
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Lemma 13.9. Consider a merged pair (P,.7) such that P = ((s,l7m,',ni,ki))i€ﬂ9ﬂ and F = A(s,l,w, -
fs,0,p,x,X). Let y be the I-canonical mediator and k = kg,. For each j € [0], let

G(jx) = (1=,
i€[l],.r€lo(x)]
Then, we have the following.

1. If j € [0], then

ﬁnjkj _ fg’njk- . H‘I/(X)G(K)VOW . 1
Fay hy O™ G(jv)

2. If P is infinite-length, then 1im . G(j,X)|x—(x, (r),...x,())= 1 for each r € Ox.
Proof. Proof of Claim For equivalent supports k; and k, o(k;) = o (k) and n;jHk; = njH k. Then, since

nj@k;—n; = o(x)", we obtain

‘gznjkj _ H¢(x)njow'[nj} Iy ) fs.,njkj
Fn; Jsnj T19 () K" - [ ]y
_ Jenmx 1 [
fs,nj H(P(X)G(K)VOW [nj K‘] 1w
o TTp()700 ity

Fmy T iy (1—x) 00 [y B ]ty

Thus, Claim[T]holds, since

Vow; [I’ZK] ';/ Viow; Wi Wi
[10 =0 W = [T (0 —x)® [+ 130 [+ o ()T
i€l] J1tx ic[[1]
_x;‘j,t*l)wi . (1 _x:‘j,i+6(x)>/)vvi.

= H (1
i€[l]

Proof of Claim[2} Claim[2]holds by Lemma|[13.8] since 0 < x;(r) < 1 by Claim|[I]of Lemma

We introduce the following notion of tame parcels and tame factors to discuss asymptotic critical points

O

by polynomials.
Definition 13.10. Assume F = A(s,l,w, -, fs, @, p,x,X) and an infinite-length fitting path P = ((s,1,m;,n;, ki))ie[[e]]'

1. We call F tame along P byt € Q(X) ift >0, 0 and

1(r) = lim 2285 )
=0 f?,n,-

for each r € Ox. We call this t the tame factor of F along P.
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2. Let F be tame along P by t € Q(X). Then, let Alr(X)($), Alr(X)(¢,¢) € Q[X]? such that

\

AIr(2)(8) = 15(%) ([T o (x)°00" "),
AIr(2)(1, ) = () (r- [Tw () "),

Let us state the following polynomials of rational functions by squaring orders.
Lemma 13.11. For f € Q(X), consider Ir(X)(f) € Q[X]*.

1. f >0, 0if and only if there exists f(r) = Frac(Ir(X)(f)(r)) € R for each r € Ox.

2. f>o0y Oifand only if there exists f(r) = Frac(Ir(X)(f)(r)) € Rsq for each r € Ox.
3. Suppose a squaring order = on X. If f> = 0, then ([TIr(%X)(f))(r) # 0 for each r € Ox.

Proof. Proof of Claim Assume f >0, 0. Then, Ir(X)(f)1(r) # 0 for each r € O, since f(r) € R must
exist. Thus, the only if part holds. The if part is clear.
Proof of Claim We obtain Claim 2] similarly, replacing > with >.

2
Proof of Claim Claimfollows from Claim since f2 = Eg;g;z >05 0by >0, D 0
1

On merged pairs and almost strictly unimodal sequences, we then prove the following limit properties,
which are independent to mediators.

Proposition 13.12. Consider a merged pair § = (P, F) with % = A(s,1,w, =, f5,0,p,x,X) and an infinite-
length P = ((s,1,m;, ”ivki>)ie[[9]]~ Let y be the [-canonical mediator and K = kg,

. -f:YJ'l H i
1. Suppose lim;_,. 'f" B (r) = 0 for some r € Ox. Then, we have
s

Jim (r)—O (13.3.1)
fim =, ) 3.
In particular, u(&,r) is a hill or decreasing sequence such that

limu(¢,r); = 0. (13.3.2)

i—yoo

fs,njkj (r)

7 = oo does not hold.
S.VIJ

2. Foreachr € Ox, lim;_,.

3. Let Z be tame along P byt € Q(X) and r € Ox. Then, we have

. Fn [k a (k)Y ow
(a) llmj—)oo fénj d (r) = (r) . % S RZO,’

16 (x(r)
(b) det(Alr(X)(8), Alr(X)(¢,$))(r) = 0 if and only if lim Q"J (r) = 1.

Proof. Proof of Claim[I] First, we obtain equation (I3:31) from Claim [I] of Proposition [I2.12] and
Lemma Second, we obtain equation (13.3.2) as follows. The path-parcel sequence u({,r) is al-
most strictly unimodal by Theorem [T2.T8] and of positive real numbers by Definition [[3.4] Therefore,
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equation (T3.31) gives A € [6] such that (u({,r); = Z,,(r)) i, Is strictly decreasing. This gives v € R>o

such that lim e u(&,r); = v. If v > 0, then lim_,., ui%g)r’)“ = 1 against equation (13.3.1).
) j
Proof of Claim[2] Let us assume otherwise. Then, Lemma[I3.9)and Claim|T] of Proposition[T2.12]imply
lim;_e (%Cr)rj)“ = oo, However, because u({,r) is strictly log-concave by Theorem [12.18] each j € [6]
T j

satisfies oo > ”l(jg )r/fl S Men)jsr

) u(8.r)jr1
Proof of Clazm Since 7 >Ox 0, Claim 1 holds by Lemma @and Claim|T] of Proposition [T2.12}

Proof of Claim|3b| Clalmlof Proposition 2| gives [T (x ) ¥ >0, 0. Thus, Cla1m.1mp11es
. Fnjk _
Jim =, (=1

if and only if

r) - TTw(r)e®@ e =TT o (x(r)°®"

Since ¢ -] lll(x)"(")vow >0, 0 by Claim 1| of Proposition we obtain Claim [3b|by Claims|1|and [2|of
Lemmal[I3.11] O

We introduce the following notation.

Definition 13.13. Assume A € Z>|, h€ Z, 1 =1, and s = (0,0). Then, let

(A k) =P a1y h
Let m(A) = (A,0) for simplicity.
We then have the following explicit description of w(A,h).
Lemma 13.14. Let A € 7oy, he Z, [ =1, s = (0,00), and 8 = (1, o).

1. We have m(A,h) = ((s,l,mi,ni,ki))ieﬂe]] with a; = v(k;) and b; = v(mj,n;,k;) such that each i € [0]
satisfies

ai=k=(0,A) € Z*,
bi= (Ai4+hA(i+1)+h) e Z*,
m; =n; = (Al-‘rh) S /3
2. We have myHk, = (h) € Z.
3. (A, h) is wrapped if and only if h € Z>¢. In particular, (L) is wrapped.
Proof. Proof of Claim|l] We have 1*(1) € Y(A,1) and a; = v(k;) = k; by a;,; = 0. Thus, Claim|1] holds by
Theorem[12.32] since
2(1,0,14(1)) = (Lo(*(1))) = (0),

L(1,1* (1)) = (A).

Proof of Claim[2} Claim [2]follows from o (k;) = (A).
Proof of Claim|3| We obtain Clalml because (A, h) is wrapped if and only if (k) € [0, 0] by Claim
and T(A) = m(A, O O
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We introduce the notation below for w(A) and parcels.
Definition 13.15. Suppose a parcel F = A(s,l,w, >, f5,9,p,x,X) and A € Z>. Then, we define the tuple
Q(F) = (7(1),F).
In particular, let Q(F ) = Q1 (.F).
Then, we obtain the following vanishing constraint on parcel numerators.

Proposition 13.16. Let p € Z. For each h € Z>q, suppose uy € L>2, vy, € Z<_1, Anoo € Z, and finitely many
non-zero Ay j € Z of i € Z>1 and j € Ziyo with the following conditions:

1. i<upand j> vy ifi € L>y and j € Z<_y satisfy Ap; ; # 0;
2. upyy 2wy and v Sy

3. limy_e lhq,uh,vh =D

4‘ hmh*)w Zi6221,.i€Z¢0,(i,.]-)7£(uh,V]l) 2//171‘]‘ yh = l]mhﬁoo lh,o,oyh = 0 l‘fo < y < 1'

Let s =(0,00), I =1, and q be =-admissible. Consider a ='-merged-log-concave F = A(s,l,w, =, f;, ¢,p,x,X)
such that each (h) € [s]' satisfies

foy =Moo+ Y. )Lh,i,jqjhi € Q(x).

I€2>1,j€ZL 40
Then, we obtain

Ay, =0
Sfor infinitely many h € Z>o.
Proof. Suppose r € Ox and h € Z>,. First, we prove

Jim Ano0g(r) ™™ =0. (13.3.3)
—»00

Claim[I]of Lemma [5.22] gives
0<gq(r)<1. (13.3.4)
Also, since —vy, € Z>1, each i € Z> satisfies
—vph' > h. (13.3.5)

Thus, inequalities (13.3.4) and (13.3.3)) and Assumption[d] give equation (I3.3.3).
Second, let p(i, j,h) = jh' — vyh" for i € Z>y and j € Zzo. When Ay, ; # 0 and (i, j) # (up,vy), we
prove

p(i,j,h) > h. (13.3.6)

Assumption|[T] gives the following three cases:
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e if j € Z>1, then inequality (I3.3.3)) implies p(i, j,h) > —vuh* > h;

o if j € [vy,—1] and i € [u;, — 1], then A~ — 1 > 1 and inequality (13.3.3) imply p(i, j,h) > vyh' —

yphth = —yuhi (R — 1) > —y,hi > h;

o if j € [vy+1,—1] and i = uy, then j—v, > 1 yields p(i, j,h) = k" (j—v,) > h

Third, let 71(1) = ((s,1,mi,ni,k:) ) o With U (h,q) = g f; ., and V (h,q) = U (h,q) — Ano0q

Ahuyv,- Then, Assumption Ié—_l| yields
lim V(h,q(r)) =0,
h—oo

because Claim [T]of Lemma[T3.14]and inequalities (I3.3.4) and (I3.3.6) give

V(hq(r)] < )) T a(r)y" )| < )3 A a(r)"

€2:>1,J€Z 40, (i) 7 (up,vp) I€2>1,j€Z40,(i,]) 7 (un,vn)

7vhh“h —

(13.3.7)

Finally, we prove the assertion by contradiction. Assumption ! implies limy,_yo0 Apy, , = p # 0. We
(

deduce limy, ..U (h,q(r)) = p # 0 by equations (13.3.3) and (13.3.7). In particular,

1

i Yt La(r) _
h=eo  U(h,q(r))

Also, inequality (T3.3.3)) and Assumption [2]imply

vph'h — v (B4 1)+ >yt — vy (h+ 1)" > —thhhuh71 > h,

since —vy(h+1)" = —v,h“ — vjuph"»~' — ... Then, inequality (T3:3-4) yields
Viht1 (h+1)uh+1 1
lim q(r) - = lim _ N
h—yoo q(r)vhh 300 q(r)"hh h—vpp 1 (he 1)t

Sy, 0k fs, . .
Therefore, because = 2l equation ives
i 1
S,nh

s,y

= lim - - lim = oo
h=e fon, h—oo  q(r)vnh™ h—e  U(h,q(r))

lim fy,nhkh (r) . q(r)Vh+l(/’l+1)lAh+l . U(l’l"‘ l,q(r))

(13.3.8)

This contradicts Claim in Proposition|13.12] since Q(%) is a merged pair by Claim of Lemmall3.14, O

Also, we obtain the following vanishing constraint on parcel numerators without assuming -monomials
(see Remark [8.38). Compared to Proposition 13.16} the following allows j € Q. and takes A; ; € Q, which

is independent to m € Z'.

Proposition 13.17. Assume finitely many non-zero Ay, A; j € Q for i € Z>1 and j € Q. Let s = (0,0),
1 =1, and q be =-admissible. Consider a ='-merged-log-concave F = A(s,l,w, =, f;,0,p,x, %) such that

each (h) € [s]' satisfies

L =ho+ Y Zija" € Q(X).

i€Z>1,j€Qx0
Then, we have
)u,"j =0

foreach i € Z>y and j € Q.
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Proof. We prove the assertion by contradiction. Hence, suppose the largest u € Zx, such that there exists
j € Qo with A, ; # 0, and the smallest v € Q¢ such that 4,,, # 0. Let (1) = ((s, l,mi,ni,ki))ie[[eﬂ, h € Z>,
and r € Ox.

First, suppose p(i, j,h) = jh' —vh" for i € Z>; and j € Q. Then, by Claimof Lemma we
consider

Uh,q) =" fom = Ro0g ™" + Ay + )Y D" .
€21 ,J€Qy0. (1) A1)

Since u € Z>» and v € Q, limy,_,.. —vh* = oo. Hence, if A; j # 0 and (i, j) # (u,v), then lim,_,e p(i, j, h) = oo,
as we have the only three cases: j >0;0> j>vandi=u; and, 0 > jand 1 <i < u. In particular, since
0 < g(r) < 1 by Claim|[I]of Lemmal[5.22] we have

lim U (h,q(r)) = Auy- (13.3.9)

h—yoo

Second, u € Z>; and v € Qg imply vA* —v(h+1)* > —vuh*~! > —vh > 0, since —v(h+1)"* = —vh" —
vuh*~1 — ... Hence, we have

lim = lim =

Then, since A, , # 0, equation (13.3.9) yields

v(h+1)*
fim Lo (1) _ g 90 gy YA L)
h=eo  fyn, h—oo  gq(r)V" h—eo  U(h,q(r))

This contradicts Claim[2)in Proposition[13.12] since Q(.%) is a merged pair by Claim[3|of Lemma[13.14, O

13.4 Merged pairs and critical points

By front, rear, and asymptotic critical points of merged pairs, we discuss the variation of almost strictly
unimodal sequences. Also, we obtain real algebraic sets not only of front and rear critical points, but also of
asymptotic critical points by tame factors. Moreover, we introduce the notion of semi-phase transitions and
phase transitions by these critical points. In particular, we obtain front phase transitions by monomial parcels
of general lengths.

First, we introduce the notion of path-parcel differences.

Definition 13.18. Suppose a (0,X)-merged pair § = (P, F) such that & = A(s,l,w, =, f;, ¢,p,x,X) and
P=((s,] ,mi,ni,ki))ie[[eﬂ. Assume the canonical [-mediator . Then, we define the following rational
functions:

]' FD(g) = ‘%ﬂgl Ekgl - fngl y

2. Rp(¢) = 9,192 — ynezkez’ if P is finite-length;

3. Ap(g) = Hq)(x)"(K)VOW —t- Hy/(x)c(")v"w, if F is tame along P by t € Q(X).
We call Fp(8),Rp (), and Ap () front, rear, and asymptotic path-parcel differences.

Then, we obtain the following variation of almost strictly unimodal sequences.
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Theorem 13.19. Suppose a (6,X)-merged pair § = (P,.%) with r € Ox.
1. Then, we have the following.

(a) u(&,r) is a strictly decreasing sequence if Fp(&)(r) > 0.
(b) u(&,r) is a hill and decreasing sequence if Fp(§)(r) = 0.
(¢) u(g,r) is a two-sided hill or strictly increasing sequence if Fp({)(r) <O0.

2. Suppose that P is finite-length. Then, we have the following.
(a) u(§,r) is a two-sided hill or strictly decreasing sequence if Rp(&)(r) > 0.
(b) u(&,r) is a hill and increasing sequence if Rp(§)(r) = 0.
(c) u(,r) is a stricily increasing sequence if Rp(§)(r) < 0.

3. Suppose that F is tame along P. Then, we have the following.
(a) u(8,r) is a two-sided hill or strictly decreasing sequence if Ap(&)(r) > 0.
(b) u(&,r) is an asymptotic hill if Ap(&)(r) = 0.
(¢) u(g,r) is a strictly increasing sequence if Ap(&)(r) <O0.

Proof. Let P = ((s,l,mi,ni,ki));cqo7-

Proof of Claim|l| The first and second terms of u({,r) are jmel = (r) and ﬁnel (r). Thus, Claim
1b

holds by Claimof Proposition because u({, r) is almost strictly unimodal by Theorem Claims|1b
and[Ic]hold similarly.

Proof of Claim|2| The penultimate and last terms of u({,r) are .%,, (r) and /,,9 ko, (r). Thus, Claim
holds by Claim 2] of Proposition[I3.3]and Theorem [12.18] We obtain Claims 2] and 2 n similarly.

Proof of Claim[3] Claims [3a and [3c| follow from Claim [T] of Proposition [T2.12] Claim [3a of Proposi-

tion[13.12] and Theorem [I2.18] Claim[3b]holds by Proposition O

Second, we state the following lemma for the real algebraic sets of critical points.

Lemma 13.20. Consider .F = A(s,l,w, =, f;,¢,p,x,%X). Let r € Ox and m,n € [s]'. Then, we have the
following.

L Te(X)(Fm)1(r) # 0.
2. (Fw—Fn)(r) =0 if and only if det(Ir(X)(Fn), Ir(X)(F)) (r) = 0.

Proof. ProofofClaim Since f; is >-positive, we have fs%m > 0. This implies ffm >0, 0. Also, [T (x)™"-

. Ssm
[m] !%V >03€.0 by Propo.smon 12.12| Then, .72 >0, 0by F = Mo e and Lemma|12.11} Hence, we
obtain Claim T|by Claim [3|of Lemma[I3.1T]

Proof of Claim[2] Claim2]follows from Claim ] O

We introduce the following real algebraic sets.

Definition 13.21. Suppose a (8,X)-merged pair § = (P,.7) such that P = ((s,l,mj,ni,ki))c oy Then, we
define the following:

1. Fo(§) = {r € O | det(16(X) (Fon, it ) IN(X)(Fi ) (1) = 0}
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2. Rz(8) = {r € Ox | det(Ir(X)(Fpy, ), (X)) (Fg i1, ) (1) = o}, if P is finite-length;
3. Az(8) = {r € Ox | det(AIr(X)(8),Alr(X)(£,8)) (r) = 0} if F is tame along P by t € Q(X).

By Claim 1| of Lemma|13.11} Fz(&) above ignores the choices of I6(X) (P, Ekg, ) I1(X) (Fng, ) € Q[x].
The same holds for Rz({) and Az({).
We thus have the real algebraic sets of critical points.

Theorem 13.22. Suppose a (0,X)-merged pair { = (P,.%). Then, Fz(§), Rz(), and Az(§) are the real
algebraic sets of front, rear, and asymprotic critical points of §, respectively. Namely, r € Ox is in Fz({),
Rz(8), or Az(&) if and only if Fp(&)(r) =0, Rp(§)(r) =0, or Ap(§)(r) = 0, respectively.

Proof. Statements hold by Claim [2]of Lemma|[T3.20} Claim [3b]of Proposition[T3.12] and Theorem[I3.19 [

Third, we introduce the notion of front, rear, and asymptotic semi-phase and phase transitions of merged
pairs. In Section[T4.3] there is a merged pair with a semi-phase transition but not with a phase transition. Also,
in Section[14.4] there is a merged pair with asymptotic critical points but not with a semi-phase transition.

Definition 13.23. Suppose a (0,X)-merged pair § = (P, F).
1. We say that § has a front, rear, or asymptotic semi-phase transition if

* 0#Fz() # Ox,
* 0 #Rz(C) #Ox, or
o 0+ Az(8) # Oy, respectively.

2. We say that § has a front, rear, or asymptotic phase transition between ry and r) if

* Fp(§)(r1) -Fp(£)(r2) <0,
* Ro(§)(r1)-Rp(£)(r2) <0, or
* Ap(8)(r1)-Ap(8)(r2) <0, respectively.

Remark 13.24. Strictly decreasing sequences turn into two-sided hill or strictly increasing sequences by
front phase transitions, which give statistical-mechanical phase transitions in Sections[I.1T]and[I9]

We obtain front phase transitions on monomial parcels by the lemma below.
Lemma 13.25. Let T € X. Assume Bot(T),Top(T) € Q(X)? with the following conditions:
1. Bot|(T),Boty(T), Top,(T),Top,(T) >0, 0;
2. Frac(Bot)(0) > Frac(Top)(0) in R;
3. Frac(Bot)(1) < Frac(Top)(1) in R.

Also, let F;(T) = TB(;I:’E;; fori € [2]. Then, there are real numbers 0 < ro < ry < ry <1 such that Fi(rp) <

Fz(r()), F (}”1) = Fz(l"l), and Fi (}”2) > Fz(r‘z).

Proof. Conditions]and[3|give 0 < ro < | < r < 1 such that Frac(Bot)(ro) > Frac(Top)(ro), Frac(Bot)(r;) =
Frac(Top)(r;), and Frac(Bot)(r2) < Frac(Top)(r2). Now, Condition [I|implies the assertion. O
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Proposition 13.26. Let (I,w,y) be a monomial index with palindromic w, (}/,-71)1.6[[”], and (]/,'72)1.6[[1]]. For
s = (0,0), assume a wrapped fitting path P = ((s,l,mi,ni,ki))ie[[e]] and monomial parcel F = A(s,l,w, -
Wsy.q,0,%,%). Let § = (P,.F). Then, we have the following.

1. { is a merged pair.

2. If q is fully admissible by X, then the following statements are equivalent.

(a) € has a front semi-phase transition;
(b) ty(me,) —ty(mg, Hke,) € Q>0;
(c) € has a front phase transition.

Moreover, if X = {X,} and ty(mg,) — t,(me, ke, ) € Q>0, then { has a front phase transition at the
unique front critical point.

Proof. Let 8; = 1 and each ¥; 3 = 0 for simplicity. Let 7 € Ox.

Proof of Claim/[I} First, .7 is flip-invariant by Proposition[12.8] Second, .7 is >0, -merged-log-concave
by Theorem [8:40}

Proof o Claim LetT € Xand h € Z>; such that T = q/l’z for the fully admissible g. First, we prove
Statement [2b| from Statement Since P is wrapped, m; Hk; € [[s]]l. Also, since % is flip-invariant,
Fn, (r) = P, (r). Thus, there exists ¢ € O such that

q(c)ty(mEkl) B q(c)ty(ml)

mlEkl)glq:q(c) B (ml)mq:‘I(C)

Tty (€) = ( = F, (©). (13.4.1)

Moreover, we obtain 0 < % < 1 by o(k;) >0 and w > 0. Hence, equation (I13.4.T) implies
q'q9=q\c

Statement since otherwise g(c)"r!™e)~rimeEke,) > 1
Second, we prove Statement [2c| from Statement Let Bot;(T) = (miEk1)}), Botz(T) = (my)}),
Top, = ¢"""™Bk) and Top, (T) = ¢'7™) € Q(X). Then, Lemma gives a front phase transition of {.
Third, Statement[2d/implies Statement[2a]by Definition[13.23] The latter statement holds by X = {T'}. O

In Sections and we further discuss phase transitions by width-one monomial parcels.
13.5 Ideal merged pairs

There is a merged pair (P,.%) such that .# is not >,-merged-log-concave, but its merged determinants along
P give g-polynomials (see Section[T4.6.2). We introduce the following notion of ideal merged pairs to obtain
not only almost strictly unimodal sequences, but also polynomials with positive integer coefficients. This
extends Definition[[. 18]

Definition 13.27. Suppose a (0,%X)-merged pair { = (P, #) such that P = ((s,l,mi,n,-,k,-))ie[[eﬂ and F =
A(s,L,w, =, f5,0,0,x,%X). We call { ideal if each i € [0] satisfies

A(y)(s7lvw7mi7ni;ki?¢ap7x,X) >, 0.

For example, suppose an ideal (0,X)-merged pair { = (P,.%#) such that % = A(s,l,w, =, f5, ¢,p,x,%X)
and x = (g). Then, each i € [0] satisfies A(F)(s,l,w,m;,n;, ki, ¢, p,x,X) >, 0. Also, these g-polynomials
give almost strictly unimodal sequences u({,r) in Theorems[12.18}[13.19] and[13.22] We compute several
explicit ideal merged pairs with critical points in Section [T4}
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13.6 Comparison of fitting paths

We introduce the following notions of finer and equivalent fitting paths. By the notions, we compare wrapped
fitting paths, which give almost strictly unimodal sequences by merged pairs. In particular, we discuss the
existence and the non-existence of finest wrapped fitting paths, depending on the widths of wrapped fitting
paths.

Definition 13.28. Assume fitting paths P, = ((s;, l7miaj’”i~,j7kiqj))jeﬂe,-]] forie[2].

1. We say that Py is finer than or equivalent to P, if there is an order-preserving map f : ([6:],<) —
([62], <) such that each i € [61] satisfies

myi =My r(),
i =12,1()
When P, is finer than or equivalent to P>, we write
P +DB.
2. We say that Py is equivalent to P, if 0, and 6, have the same widths and each j € [0, 8, » — 0, 1] satisfies
m1.e,,+j = 12,6, +j>
1,611+ = 12,651+
When P, is equivalent to P», we write

P] EPz.

We prove the antisymmetricity of - on the equivalence relation = by the following binary relation.
Definition 13.29. Suppose m,m’ € 7! for 1 € Z>1. If m < m' orm" < m', then let
m<m.
Lemma 13.30. The binary relation < is a strict partial order on 7\

Proof. First, we prove the irreflexivity. If m € Z!, then m < m does not hold. Also, m < m" does not hold
either, since m < m” implies m; < my =m; <m) =my.

Second, we prove the transitivity. Let m,my,m3 € Z! such that m; < mp < ms. Then, m; < my or
my < my, and my < m3 or my < my. We have m; < ms or m; < mj, since taking ¥ preserves the order <. [J

We state the antisymmetricity of - with respect to the equivalence relation =.

Proposition 13.31. Suppose fitting paths P, = ((s;, l’mi»j’ni=j’ki7j))je[[6i]] forie€[2]. If P+ Pand P - Py,
then Pl = P,. In particular, \- is a partial order on fitting paths with respect to the equivalence relation =.

Proof. By P, - P, and P - P, we have order-preserving maps f : (0),<) — (62,<)and g: (6,,<) — (6,<)
such that

my i = my s for each i € [61], (13.6.1)
my i =my g; for eachi € [6,]. (13.6.2)
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First, we prove

Fli+1)— ) =1 (13.6.3)
for each i € [6,]. Suppose
Fl) <u< fli+1) (13.6.4)
for some u € [6,]. Then,
myy <My f(iy1) = Myl (13.6.5)
by Lemma[12.27]and equation (T3:6.1). Let us show g(u) < i+ 1. If g(u) > i+ 1, then
My i1 <My g() = Moy (13.6.6)
by Lemma|[12.27]and equation (13.62). If g(u) =i+ 1, then
My i+l =M g(y) = M2u (13.6.7)

by equation (13.6.2). By inequality (13.6.5), inequality (I3.6.6)) and equation (I3.6.7)) contradict Lemma[I3.30]

Also, inequality (13.6.4) implies
myi = my ¢ <mpy-.

As above, i > g(u) implies Moy = My () < M1 OF My = My g() = M. In either case, we have a con-
tradiction to Lemma [13.30] It follows that i < g(u) < i+ 1 against g(u) € Z. Therefore, equation (13.6.3)
follows.

Second, assume f(6;,1) > 6. Then, Lemmas [12.27|and [13.30| imply g(62,1) < 6;,1, which can not
happen. It follows that f(6 ;) = 6, 1. We deduce P; = P; by equation (13.6.3).

We obtain the latter statement by the reflexivity and transitivity of . O

We introduce the notion of restricted fitting paths.

Definition 13.32. Suppose a fitting path P = (P,-)ie[[el]]. For a gate 0, such that 011 < 6,1 < 6,5 < 01, we
define the restricted fitting path

ro,.6,(P) = (Pi)ie[[ez]] :
Then, we realize width-one fitting paths by (A, /) and the equivalence relation =.

Lemma 13.33. Forl =1, consider a fitting path P = ((s,1,mj,n;,ki))c[e,]- Then, we have

ic
P= relﬁez(ﬂ()»,h))
for some (1) = (ke ,) € Z!, (h) =mg, , — O (ke,,) €Z!, and 6, = (1,01, — 611 +1) € 22,

Proof. The equivalent supports k; give o (k;) = (1) for some A € Z>;. Also, m; = n; by [ = 1. The assertion
follows, since m; = n; = (A(i — 811 + 1) +h) € Z' for some h € Z such that me,, =ng,, = (h+A1). O

Furthermore, we obtain (1) as the finest fitting path among all the width-one wrapped fitting paths.
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Proposition 13.34. We have the following.
1. If P is a width-one wrapped fitting path, then (1) b P.

2. If there exists a wrapped fitting path P’ such that P' = P for each width-one wrapped fitting path P, then
z(l)=P.

Proof. ProofofClaim For some gates 6; and 6,, P = rg, ¢,(7(A,h)) by Lemma|13.33] We obtain Claim
since h € Zx>( for the wrapped P.
Proof of Claim[2|Claim [2holds by Proposition[I3.3T|and Claim 1] O

Next, for each / € Z>1, we prove the non-existence of finest fitting paths among all the width-/ wrapped
fitting paths. We state the following lemma.

Lemma 13.35. Assume fitting paths P = ((s,l,mi,ni,ki))ie[[eﬂ. Let uy,up € [0] such that uy < up. Then,
thereis U € Zzzo such that y > 1, Y U = upy —uy, and

my,, OF (13.6.8)
Vv Vo 27
w6 (kyy) + p20 (kyy ) +nyy = {mxz (13.6.9)
Proof. Since (ny,—1 Bky,—1)" = my,, we have
O (kuy—1) +ny, = my,. (13.6.10)

This gives the assertion when uy —u; = 1.
We demonstrate the assertion by the induction. Let uy —u; > 2. Also, let A € Zz>0 such that A; > 1,
YA =u—u;—1,and

S [ or (13.6.11)
A0 (k) + 220 (kuy) +"u1—{ v (13.6.12)

mu27] .

First, suppose equation (I3.6.11). If n/ | = m,,_1, then we obtain equation (13.6.8), adding equa-
tions (13.6.10) and (13.6.11)). By equation m we deduce

0 (kuy—1)" +nyy—1 = my,, (13.6.13)

up-*

Hence, n,,—1 = my,—1 gives equation (I3.6.9) by equations (I3.6.11) and (I3.6.13).
Second, suppose equation (I3.6.12). If n,,—1 = m,,_;, then equation (I3.6.9) follows from equa-

tions (13.6.12)) and (13.6.13)). Also, n1\4/2—1 = mxz_l gives equation (13.6.8) by equations (13.6.10) and (13.6.12).
O

We obtain the non-existence of finest fitting paths for higher-width wrapped fitting paths.

Proposition 13.36. Let [ > 2. Then, there is no width-I fitting path P such that P+ P’ for each width-1
wrapped fitting path P'.

Proof. We prove the assertion by contradiction. Suppose a fitting path P = ((s,1,m;, nivki))ie[[e]] such that
P+ P’ for each width-I wrapped fitting path P'.
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Let & = (1) € Y(1,1), s’ = (0,00), and 6’ = (1,e0). Then, by Theorem|I2.32|and Lemma [12.36| there is a
fitting path P' =P, ¢ o = ((s,1,m;,n}, k})) ;g7 Such that

[ R R |

mh=nl=i!(1).

Furthermore, P - P’ implies m| = m;, and m}, = m;, for some i1,i, € [6] such that i; < i. Then, Proposi-
tion [13.35|gives u € Z2, such that Yt = i — iy, gy > 1, and

w0 (ki) + oo (ki)Y = miy —mi = my—m) =1'(1).

Hence, (k) > 0 implies i —i; = 1 and o(k;) = 1/(1). Also, we obtain flat m; = n; = (j —iy + 1)t/(1) for
j€[0].

However, by Theorem [12.32|and Lemma(12.36] & = (I,1) € Y(2,1) gives a wrapped fitting path P’ =
Pyyes=((s,1,mi,n; kf))ie[[e,]] such that each i € [0'] satisfies

[RE SR )
mh=nl=(5)# 1" 4) + (- D' 3).
Then, P - P’ can not hold, since each m; of P is flat. O

By Propositions[I3.34]and [T3.36] the finest fitting path exists only for width-one wrapped fitting paths.
We simply call 7(1) the finest fitting path for our convenience.

13.7 On phase transitions of width-one monomial parcels

We obtain some phase transitions of width-one monomial parcels by canonical mediators and the finest fitting
path 7(1). This uses the following lemma on tame factors.

Lemma 13.37. Let ! =1 and u = (I,w,y) be a monomial index. Consider the t-monomials Wy y 4. Assume
r € Oz such that 0 < q(r) < 1. Then, for i € Z>q, we have

lim )
i—oo 0 otherwise.

a0t _ {61(7)71’2 ifrni=0,
Fsra0.0)

Proof. The monomial conditions of u yield y;,; > 0. Hence, the assertion holds by

¥ ; N (D712 (41) )
lim 24Dy GO T i () @ 0ma
i—o0 lPs77,q(r)7(i) i—o0 q(r)yl.ll +Y1 20 i—roo

We then state the phase transitions.

Proposition 13.38. Suppose a monomial parcel F = A(s,l,w, =, ¥y y4,0,x,X) such that s = (0,0), [ =1,
and ¢(x) = (1 —q) € Q(X)'. Then, for the merged pair { = Q(.F), we have the following.

1. € has no rear critical points.
2. & has no asymptotic critical points.

3. If q is fully admissible by X, then the following statements are equivalent:
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(a) € has a front semi-phase transition;
b)) np+r2>0;

(¢) & has afront phase transition.

Moreover, if X = {X,} and Y11 + Y12 > 0, then { has a single phase transition at the front critical
point.

Proof. Proof of Claim[I] Claim [1]holds, since 7(1) is infinite-length.

Proof of Claim|2| Let r € Ox. Then, Claim |l of Lemma implies 0 < ¢(r) < 1. Hence, by
Lemma [13.37 % is tame along P by t € Q(X) such that r(r) = q(r)"2 if 7, ; = 0, and 0 otherwise. Let
n(1) = ((s,l,mi,ni,ki));co7- Then, o(kg,) = (1) € 7! yields

An(§) =[To@ o)™ —r-TTo () )" = (1—g)" (1-1).

Thus, Ap({) = 0 has no solutions over Ox.
Proof of Claim[3} Claim [3|follows from Claim [2]of Proposition[13.26 since

ty(mg, ) —ty(mg, Hko,) = 11,1+ Y12-

Then, Claims [T and [2] give the latter statement of Claim 3] O

14 Explicit critical points, phase transitions, and merged determinants

We adopt the following notation for simplicity.

Definition 14.1. Consider a (0,X)-merged pair { = (P,.%) such that X = {X,}. Suppose (h) € Ox for a
real number 0 < h < 1.

1. For a path-parcel sequence, let
u(G,h) = u(g, (h)).

2. We call h a front critical point of §, rear critical point of §, or asymptotic critical point of € if (h) is a

* front critical point of §,
e rear critical point of §, or

* asymptotic critical point of {, respectively.

We recall the following parcel ., which appears in equation (1.4.3) by a different terminology in the
introduction.

Definition 14.2. Let s = (0,0), [ =1, w= (1), and X = {q% } Then, we define the q%—linear monomial
parcel

= A(S,Z,W,F,lljs?((o_%?o))ﬁq,x,:{).
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14.1 Golden angle as a critical point
Forl=1,w=(2),s=(0,00), and X = {gq}, let

F :A(S,Z,W7 >q7\Ps‘,((O,1,O) x7%)

)

P
such that . %, = ﬁ for A € [s]. Also, by Theorem [8.40| and Proposition [13.26] we consider the ideal
q

merged pair { = Q(.%) for a critical point and phase transition, since the path-parcel sequences u(&,r) of
r € Oz are almost strictly unimodal by Theorem[12.18

14.1.1 On critical points and phase transitions

Let (1) = ((s,,mi,ni, ki)) e o7 With mg = no = (0) and ko = ag = bo = (0, 1). Then, areal number 0 < g <1
is a front critical point of ¢ if and only if

Therefore, the unique front critical point F¢ (&) of § is the golden angle: i.e.,

Fc() = 3 _2\@ = 0.381966. ...

By Proposition|13.38] { has neither rear nor asymptotic critical points. However, { has the front phase
transition at Fc(§) such that

* u(£,0.3) is a strictly decreasing sequence,
* u(§,Fc(§)) is a decreasing and hill sequence, and
* u(£,0.4) is a two-sided hill.

For each i € [0,5], Figure[6] plots the bottom point for .7, (0.3), the middle point for .7, (Fc({)), and the
top point for .%,, (0.4).
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0.0 ® o
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0 1 2 3 4 5 i

Figure 6: .%,,(q) of ¢ = 0.3 (bottom), Fc({) (middle), and 0.4 (top)

14.1.2 Polynomials with positive integer coefficients of an ideal merged pair
Fori € Z>, § gives the following g-polynomials with positive coefficients:
(i) (i+1);

A(F) (s, 1, w,mj,ni ki, x, X) = .
B 0)7- (1)

(yl.mitghni _‘g‘\lami—lg\lanﬂrl)

UG (a)z_ ¢ g
(0)7- (1) (i)g (i—1)7 (+1)3
Explicitly, some of them are
A(F) (s, 1, w,my,n1,ky,x,X) =2¢° +¢*,
A(F)(s,1,w,ma,n2,kz,x, %) = 2¢° + 24" +¢8,
A(F)(s,1,w,m3,n3,k3,x,%) = 2¢° + 24" +2¢"" +¢'2,
ACFE) (5,1, w,my,ng, ks, x, %) = 2¢'2 +2¢" + 24" + 24" + ¢',

A(F)(s,1,w,ms,ns, ks, x, X) = 24" +2¢"°+2¢"7 +2¢"% + 24" + 4.
14.1.3 Golden angle from golden ratio as critical points

The q% -linear .Z has the golden ratio as the front critical point in Section Moreover, .Z gives .%, because
o 1
&z ’= A(S,l, w, >_7\Ps,((07170)),qax7 {q2 })7

and 7 =r(1),(2) (.£°?) by the parcel restriction r(1),2) (or F = £°%in Q(q%)).
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14.2 A non-canonical mediator with phase transitions
Consider s = (0,00),l=1,w=(2), p = (1), and X = {g}. Also, let

o(x) = <§(9) —5q+5q2> e Q).

Then, B(s,l,w,m,¢,p,x,X) >, 0 for each m € [s]' by p = (1) and Claimof Lemma Hence, ¢ is a
non-canonical (s,/,w,>,,p,x, X)-mediator, because ¢ (x;)"! >0, 0 by

29 5 1\ 1
_ =5(g—=) +-. 14.2.1
50 5+ 5¢ S(q 2) +5 ( )

Now, these analogs ¢y (x;)* [4] l4 of g-Pochhammer symbols (1), give the monomial parcel
F = A(s,1,w, >q7\Ps,((0,l,0)),q7 ¢,p,x,X)

such that each A € [s]' satisfies

g™

F = :
2\
(50 —5¢+5¢%) 7" - M]3

By Theorem [8.40} .% is >,-merged-log-concave. Hence, we have the ideal merged pair { = Q(.%), which
gives the same merged determinants in Section by Proposition[7.2]

14.2.1 On critical points and phase transitions
Let P = 7(1) = ((s,1,mi,n, ki));crop With mo = ng = (0) and ko = ap = by = (0,1). First, unlike the
canonical mediator in Section 14.1L the non-canonical ¢ of { gives exactly the two front critical points by

equation (T4.2.T). More explicitly, we have the front critical points Fc({); = 0.253594... and Fc(§), =
0.884885... that solve

q
Fmg(q) =1 = ——————5 = Fm (9)
(33 —5q+5¢°)
Second, there are no rear critical points for the infinite-length P. Third, .% is tame along P by ¢ in
Lemma|13.37] Thus, an asymptotic critical point 0 < g < 1 solves

2
Ap(§) = (;9)—5q+5q2> —q(1—¢)*=0.

For v(q) = q(1—¢)*,V'(q) = (1—q)(1—3q) and v (}) > ¢ (%)2 Then, equation (T4.2.1)) gives the two
asymptotic critical points Ac(§); = 0.30813... and Ac(&), = 0.63486. ... Hence, we obtain the following
table of phase transitions.

0 Fc(&)i Ac(&) Ac(§)2 Fc(8)2 1
B [+ 0 =] = =] = =] 0 [+[+
A [F+] + |+ 0 [=| 0 [+ + [+|~+
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In particular, the non-canonical mediator gives not only the front phase transitions at Fc({); and F¢ ()2, but
also the asymptotic phase transitions at Ac(§); and Ac (), between the front phase transitions.

First, the front phase transition at Fc({); gives the strictly decreasing u({,0.2), decreasing and hill
u(&,Fc(8)1), and two-sided hill u(£,0.3). For each i € [0,5], Figure plots Fm;i(q) of ¢ =0.2 for the
bottom point, ¢ = Fc(&); for the middle point, and ¢ = 0.3 for the top point.

Fmi(q)

0.0 4 ° °-

- L\ N " ; L
0 1 2 3 4 57

Figure 7: .%#,,(q) of ¢ = 0.2 (bottom), Fc({); (middle), and 0.3 (top)

Second, the front phase transition at Fc({); gives the two-sided hill u(£,0.8), decreasing and hill
u(¢,Fc(8)2), and strictly decreasing u({,0.95). Figure (8| puts %, (q) of ¢ = 0.95 for the bottom point,
q =Fc (&), for the middle point, and g = 0.8 for the top point.
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Fm(q)

®
L !
I 2

|
iy

Figure 8: .%,,(q) of ¢ = 0.95 (bottom), Fc(&)» (middle), and 0.8 (top)
Third, Proposition gives the asymptotic hills u({,Ac(§);) and u({,Ac({)2). Also, we obtain

the strictly increasing sequence u({,q) for Ac(§); < ¢ =10.5 < Ac({)2. Figure |§|plots log(Zm,(q)) of
q = Ac(&); for the bottom point, ¢ = Ac(§), for the middle point, and ¢ = 0.5 for the top point.
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Figure 9: log(:%#,,(q)) of ¢ = Ac({)1 (bottom), Ac(&)2 (middle), and 0.5 (top)

14.3 A non-canonical mediator only with a semi-phase transition

We have a parcel % with a front semi-phase transition, but without a front phase transition. Consider
s=(0,0),l=1,w=(1),p = (1), and X = {q}. Also, let

_ (3¢ 4.3 I
o= (2 -243) e
Then, ¢ is a (s,1,w, >4, p,x, X)-mediator as in Section | since 3L — ¢ I+1=3(q- %)2 +Landp =(1).
Hence, the analogs ¢; (x1)* [A1]!,, of g-Pochhammer symbols (2 ) q glve the >4- merge—log—concave monomial
parcel

F = A(S,I,W, >qalPs,((O,1,0)),q7 ¢apa~xa :*:)

such that %, = for A € [s]'. This also gives the ideal merged pair { = Q(.%).

M
1(xy ’11 (Mg
14.3.1 On critical points and phase transitions

Let P=n(1) = ((s,1,mj,n;, l))ze[[e]] with mg = ng = (0) and kg = ap = bp = (0,1). Then, { has the single
front critical point Fc({) = 1 that solves

Fmyg) =1= % = Py (4):

2

[SSIENY
o0l

As Fz(&) # Ox, € has the front semi-phase transition at Fc(&). But, { has no front phase transitions, because
Fng(9) 205 T (@) by % —§+3—q=3(g—1)*>0.
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There are no rear critical points for the infinite-length P. By Lemma[13.37] .% is tame along P by g. But,
there are no asymptotic critical points, since ¢1(g) >0 % implies

ao@)= (3 -2+2) ~al1-0) 20,0
14.3.2 Polynomials with positive integer coefficients of an ideal merged pair
The merged determinants of § give the following g-polynomials with positive coefficients:
A(F) (s, 1, w,my,ny,ki,x,%) = ¢°;
A(F)(s,1,w,mp,na,ka, x, %) = ¢°
A(F)(s,1,w,m3,n3,k3,x,%) = ¢°;

14.4 A weight-zero parcel with critical points and without semi-phase transitions
For s = (1,e0), / = 1, and X = {qg}, consider the weight-zero g-number parcel

F =N(s,1,>4, Xs.1.9. %)
Also, there is the fitting path P = m(A,h) = ((s,l,m;,ni,k;));c o7 With mg = ng =miBky = (h) > 1. Then,
we have the ideal merged pair { = (P, ).

First, ¢ has no front critical points by .%,,, — %, >4 0. Second, { has no rear critical points either, since
P is infinite-length. Third, for each r € Ox, u({,r) is an asymptotic hill, since 0 < g < 1 implies

l_qu»l,]

mj,|

, 1 e gt
fim Aobamic _ o, 1HgH g — lim

=1.
=% Xl qm; i—yoo 1_~_q_|_...+qmr:,l—1 i 1—gq

Consequently, { has asymptotic critical points without semi-phase transitions.

14.5 A finite-length merged pair with a rear phase transition

For s = (1,3), I = 1, and X = {¢}, we have the >,-merged-log-concave g-Stirling parcel .# = A(s,l,>,
,85.1,4>%). Then, Claim 2| of Corollary gives the finite-length >,-merged-log-concave parcel

G = A(s,1,w, >ans,l7q7x7x)
forw= (1) and x = (g). Moreover, 0 = (1, 1) gives the fitting path P = V(I’W))g(ﬂ:(l, 1)= ((s,l,mi,n,-,ki))ie[[eﬂ

such that m; = n; = (2) and k; = (0, 1). Therefore, we obtain the finite-length ideal merged pair { = (P,¥).
Let mg =np = (1), my = ny = (3), and ko = k» = k for our convenience.

14.5.1 On critical points and phase transitions

We have no front critical points of {, because

_ q+2 r
Do) = (T 50— 7O Tg — I (@)

Since P is finite-length, { has no asymptotic critical points either. However, { has the rear critical point
Rc (&) =0.86676... that solves

_ q+2 _ 1 B
Il = i) T T

In particular, Theorem [13.19| gives the rear phase transition of { such that
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* u(£,0.84) is a two-sided hill,
* u({,Rc(&)) is a hill and increasing sequence, and

* u(£,0.9) is a strictly increasing sequence.

In Figure|10| each i € [3] puts the bottom point for ¢,,,(0.84), the middle point for ¢, (Rc({)), and the top
point f%r (?f)mi (0.9).
Imi\q

20(

ll_() L L L L i3 L L L L '_’L_() L L L L 5z

Figure 10: ¥, (q) of ¢ = 0.84 (bottom), Rc({) (middle), and 0.9 (top)
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14.5.2 Polynomials with positive integer coefficients of an ideal merged pair

The ideal merged pair § gives the following g-polynomials with positive coefficients:

2
A(9)(s,1,w,mo,no, ko, x, X) = (Dg(2)g (( 1 )>

(O)q(l)q 1—¢g
=1+g¢;
_@,0) g¢+2
AD) (s, 1, w,my,ny, ki, x,X) = (O)Z(I)Z ’ <<(1 —q)(1 —512)>
(1-q) (I-g)(1-)(1 -4
=3+479+ 94> +5¢° +¢";
()@ ! ’
A )(s,1,w,mp,n2,ka, %, X) = (O)Z(I)Z ' ((1 —q)(1-¢*)(1 —q3>>
=1+q+q+q.

14.6 A higher-width parcel with a phase transition and conjectures
We discuss a higher-width parcel, unlike the examples above in Section[14] Let I =3, 5 = (0,e0), w = (1),
_J _ _(/(1 1 1 . .
X= {qz }, and >—>q%. Also, let y = ((5,0,0),(—3,0,0),(3,0,0)). Then, we obtain the width-three
monomial parcel # = A(s,[,w, =, ¥ y4,%, X) such that each A € [s]’ satisfies
AP-23+13
g

T = ) e )y

Since ¥ is palindromic, .% is flip-invariant.
Moreover, let £ = (2,1), h =4, and 6 = (1,0). Then, Theorem [12.32] gives the infinite-length fitting
path P =P ¢ , = ((s,/,mi,ni, ki)),c o] such that each i € [6] gives

m;i=n; = (6,5,4)+ (i—1)-1(4),
a; =v(k)=1(0,1,2,4,5,6),
b; = v(mi,ni,k;) = (6,6,6,10,10,10) 4 (i — 1) - 1% (4),
o(k)) =(6,4,2).
Then, we have the merged pair { = (P,.%). Let my = ng = (2, 1,0), ko = k1, ap = v(ko), and by = v(mo, no, ko)
for our convenience.

14.6.1 On critical points and phase transitions

As s is infinite, { has no rear critical points. Moreover, .% is tame along P by 0, because 0 < g2 < 1 gives

W (A1) 22— @A)+ D)2 (44 1)

. 2 i
lim SYgmivy lim q . — = lim q161+12 —0.
imeo Wy am; i—voo (@i42)7 (i )7+ ()7 =300

q
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Thus, { has no asymptotic critical points, since u({,r) is a hill or decreasing sequence for each r € Ox by

Claim [T] of Proposition [[3.12}
We have t,,(m;) —ty(mo) = 12 > 0. Also, there is the front critical point Fc({) = 0.82439... that solves

g 3 27
(2)4(1)q(0)g  (6)4(5)q(4)q
Claim of Proposition [13.26|implies the unique front phase transition of § at Fc(&). In particular,

S~—| NI

* u(£,0.8) is a strictly decreasing sequence,
* u(&,Fc(&)) is a hill and decreasing sequence, and
* u(£,0.83) is a two-sided hill.

Foreachi € [0,3], Figure gives the bottom point for log(.%,(0.8)), the middle point for log(.%,, (Fc(£))),
and the top point for log(.%, (0.83)). Figure[11]takes the log scale to avoid point collisions.

log(Fm (q))

0r

- 10 [ .

220 1

-25 .

-30 .

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 11: log(:%,(¢)) of ¢ = 0.8 (bottom), Fc({) (middle), and 0.83 (top)

14.6.2 Ideal property of a merged pair

The parcel .# is not >,-merged-log-concave, since the following is not a g-polynomial:

37 35 33 31 29 27 25
AF) (5,0, w,(3,3,3),(3,4,3),(0,0,0,1,0,1),x,X) = ¢ F +3¢% +7¢7 +13¢7 +19¢% +23¢7 + 244>
£23¢% 42097 +177% +12¢% 4747 +3¢7% 447
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However, { is ideal, because each i € [0] gives

such that

A(F) (s, 1, w,mi,n ki, x, X)
C (4i42)y(4i+2)4(4i+2),(4i+6)4(4i+6),(4i+6),
B (0)4(1)¢(2)¢(4)q(5)q(6)q

(4i+2) (4z+1) +(4z) 2
qg
( ( (4i+2)4(4i+1)q(4), )

(4i=2)%— (4i-3)2 + (4i-4)2 (4i46)2— (4i+5)2+ (4i-+4)?
qg Tz )

— . q
(4i—2),(4i—3),(4i—4), (4i+6),(4i+5),(4i+4),

2
(4i+2)2—(4i+1)%+(4i)? Do
(qz _ qlﬁz +8i+3 >q 07

(4i-2)2—(4i=3)2 1 (4i-4)2  (4i+6)%— (4i+5)2+(di+4)2 2 e
g 5 g 5 = g6 819 >, 0.

14.6.3 Polynomials with positive integer coefficients of an ideal merged pair

For instance, A(%)(s,l,w,mp,ng,ko,x,X) is

q3+3q4+6q5+10q6+156]7+20q8+23q9+246]10+23q1l+206112+156]13+10q14+66]15+3q]6+q17

Then, A(F)(s,1,w,my,ny,k1,x,X) is

Also, A(F

7 +5¢%° + 19¢% + 584" + 158¢°" + 38842 + 8854 + 18904
+ 38284 + 73904°° + 136884°7 + 244124 + 420894 + 703274
+ 1141824¢*" 4 180469¢** 4 278185¢* + 418794¢™ + 6165764*
+ 8887214 4 12553984"" + 17394294™ + 23658484 + 31609604
+ 4151230¢°" + 5361659¢°% + 68140444 + 8524865¢>* + 105032354
+ 12748773¢° + 1524983747 + 17982091¢ + 20907732¢ + 239754454
+ 2712121445" 4 3027009645 + 333387864 + 362391004%* + 388818934%
+ 41181562¢%° + 43060365¢°%7 + 444527924 + 45309075¢%° + 455982184"°
+ 45309614¢"" 4 444538504"% 4 4306190147 + 41183518¢"* + 3888419447
+36241661¢"° 4 33341512¢"7 4 3027289248 + 27123986¢"° + 239781094
+209102144%! + 179843354 + 1525180443 + 12750444¢5* + 105046084
+ 8525955¢% + 68148784%7 + 53622724 + 41516614%° + 31612484°°
+ 2366030¢°" + 17395364°% + 1255456¢°° + 8887494°* + 6165884
+ 4187984 + 2781864°7 + 1804694°% + 114182¢%° + 703274'®
+ 4208940 4 244124¢'%% 4 136884¢'% + 7390¢'™ + 38284'% + 18904!%
+ 885¢'77 + 3884'% 1 158¢'% + 58410 4+ 19! + 5¢'12 4 4113

)(S7law m27n27k2ax x) 18

g% + 5% +19¢% + 5845 + 1584%7 + 39048 + 8994 +19514%° + ...
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14.6.4 Conjectures

Some leading coefficients of A(.%)(s, I, w,m;,n;,k;,x,X) for i € [2] coincide in the above. Also, these
A(F)(s,1,w,m;,n;, k;,x, X) are not palindromic, but log-concave g-polynomials. Thus, we make the following
conjectures.

Conjecture 14.3. For each i € Z>o, consider the q-polynomial

fi = Zfl,jq] = A(‘gz)(sal7Wami’ni7ki7‘x’x>'
J

For ordy(f;) < o < -+ < degq(fi), let fl.+ = (Jci,ordq(ﬁ)vﬂjz""afi,degq(ﬁ)> denote the non-zero positive
coefficients of fi. Then, each i € 7> satisfies

24 —1),5+4(—1)) = f;7 2+4(1—1),5+4( - 1)).

For example, f;" = (1,5,19,58,158,388,885,...) and f;" = (1,5,19,58,158,390,899,...) in Section|14.6.3
Thus, we have

£fi7(2,5)=(5,19,58,158) = £, (2,5).
We adopt the following notation to state another conjecture on log-concave g-polynomials.

Definition 14.4. For a Laurent polynomial f € Q[q*!], let

= Lo
1 0 otherwise.
Conjecture 14.5. Let i € Z>o.
1. A(F)(s,1,w,m,ni ki, x, X) is a log-concave g-polynomial.

2. The following is a log-concave g-polynomial:

Cy(A(F) (s, L, w,mis1,nit1,kiz1,%,X)) — Cy(A(F) (5,1, w,mj,ni, ki, x, X)) >4 0.

Claim[T]of Conjecture[T4.5]is analogous to Conjectures [8.54]and [8.56]

15 Parcel convolutions

15.1 Convolution indices

Consider a parcel &% = A(s,l,w, =, f;,0,p,x,X) with = 1 and s = (0,e0). Then, multiplying generating
functions of .% gives a sequence of rational functions, which, however, is not necessarily a parcel A(s,/,w, >
85,9, p,x,X) for some g5 = (g5,m € Q(X)),,z- Hence, we introduce the notion of convolution indices.

Definition 15.1. Assume the following:
(a) squaring orders O; = {>;,~;} on X fori € [3] such that O3 D 01,0y,
(b) 1=1,A€Qly andx = ((qki))ie[Bﬂ € [ieps) QX)"s
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(C) y.t :A(si,l,w,>i,f,',si,¢,p,-7xi,%)f0ri6 [[2]]’
(d) p=(pPi)icpsy € Miez) 2 s = (51,592,581 +52), 0 = (0) ez and 0 € 7.

We call C = (s,1,w,0,¢,p,x,%,q,1,0) a convolution index of (F1,F,) when C satisfies the following
conditions:

1. 01 = 02y = A3;

2. 07'p1=03"py=ps;

3. ¢ isa (si,l,w i, (0:),xi, X)-mediator for each i € [2];
4. ¢ isa(s3,1,w,=3,p3,x3,X)-mediator.

We refer to Conditions (I} 2| [3| and [{] as the (A,0)-exponent equation, (p,o)-base-shift equation, (C,0)-
mediator condition, and (C, p3)-mediator condition.

In particular, we have the following on convolution indices.
Lemma 15.2. Suppose a convolution index C = (s,l,w,0,9,p,x,%X,q,A,0) of (F1,.%2).
1. Then, x; is O;-admissible for each i € [2].
2. Provided the (A,0)-exponent equation, x3 is O3-admissible.
3. Suppose that A and p are flat.
(a) If o = 1%(1), then we have the (A,o0)-exponent and (p,o)-base-shift equations and the (C,0)-
mediator condition.

(b) If one of s\ and s, is infinite or (0,0), then we have the (C, p3)-mediator condition.
(c) Similarly, if w= (0), then we have the (C, p3)-mediator condition.

4. Suppose that ¢ is the canonical I-mediator.

(a) Then, the (C,o0)-mediator condition holds.
(b) Provided the (A,0)-exponent equation, the (C,p3)-mediator condition holds.

Proof. Proof of Claim[I} Claim|I]holds, since the parcel .%; has the squaring order O; and the base x;.

Proof of Claim We have o € Z2 , for the convolution index C. Then, since there is the (4 ,0)-exponent
equation, x3 = (q}”—*) is O1- and O;-admissible by Claimof Proposition and Claim Thus, Claim
holds by the compatibility O3 D 01,0, in C.

Proof of Claim By o = 1%(1), the flatness of A and p yields the (A,0)-exponent and (p,0)-base-shift
equations. Let t; = (s;,1,w, >, (0;) ,x;,X) for i € [2]. By Claim Claimof Lemma|[5.20|implies 1 >; 0
for i € [2]. This gives the base-shift positivity of ¢ and y; by Claim [1jof LemmaW.2|and o = 1?(1). Thus, the
(C,0)-mediator condition holds, since we have the base positivity of ¢ and ; in the parcel .%;.

Proof of Claim|3b, Suppose that s; is infinite or (0,0). Then, m € [s1 +s,]' implies m € [s1]' if 51 is
infinite, or m € [s2]’ otherwise. Thus, by the flatness of p and A, m € [s; + 5]’ such that m € [s;]' gives

B(s1+s2,l,w,m, ¢,p3,x3,%X) = B(s;,[,w,m, ¢, pi,x;, X) >; 0.
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Therefore, the (C, p3)-mediator condition holds by the compatibility O3 3 Oy, 0, in C.

Proof of Claim Let us = (s3,1,w, >3, p3,x3,%). Notice that x3 is >3-admissible by the flat A and the
compatibility O3 3 0. First, Claim[I]and Claim [2 of Lemma [5.20]imply 1 > 0, which gives 1 >3 0 by the
compatibility. Hence, the base-shift positivity of ¢ and u3 follows from Claim [I]of Lemma.2] Moreover,
Claim follows, since we have the base positivity of ¢ and us by w = (0).

Proof of Claim[d} Claim[&a]follows from Claim[T} Claim[2]of Lemma[5.20} and Lemma T-8]

Proof of Claim[#D] Similarly, Claim @b follows from Claim 2] Claim[2]of Lemma[5.20] and Lemma [T.8]

O

We now obtain parcels by convolution indices.

Proposition 15.3. Consider .F; = A(si,l,w, =, fis;, 9, pi,Xi, X) for i € [2] with a convolution index C =
(5,0,w,0,¢.,p,x,X,q,A,0). Assume

H = (%nl = Z ng.l,mz 'QZ,ml—mz € Q(%)) ;
mleZI

myez!
Frsy = (B =[O 3)"™" - [m]ty, -0, € QX)) , -
Let 7, = (0;) € lel for i € [2]. Then, we have the following.
1. Whenm ¢ [s3]',
T = 0.

2. Whenm; € 7/,

w

mi

f3,S3,m| = Z |: ] 'B(S]alawam23¢7rlax1;%)'B(S27lawaml7m27¢3727x27x)'f],shmzfz,b‘z,m]fmz'
my 7! M2 ] x5

3. f3,s; i =3-positive.

4. A is a parcel such that

H = A(s3,1,w, =3, f3,55,0,p3,%3,%).

Proof. Proof of Claim|[l] Claim [l]holds, because .71 ,, = 0 for m & [s1]' and F,, = 0 for m & [5]".
Proof of Claim|2} Since x3 = (¢™), we have

by the (4,0)-exponent equation. Thus, for each i € [2] and m € [s;]’, we have

T16 (x3)™ - [m]12, 19 ()™ - [m] !;v?.
H¢(xi)mow : [m] ‘}‘; - H(f)(xi)mow . [m} 1)1'5 = B(S[,Z,W’m7 ¢? T[,.X,’,%)_
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Hence, if m; € [[S3]]l, then

Siszm = H¢(x3)mlow'[ml]!;v3' Z F1my F2,my —my

my€Z!
=T 0a)™" - [mi)y,
S1s1m . J2,50,m1—my
L1 Iormae[sppt 11O (00)"27% - [ma] - T (o) (m =)o - iy — ma 1Y,
[ma ]!,

my€[si ] my—mp€lss]! [m2] % [ — ] %

TT19(x3)™ - [ma] %, TT9(x3) ™2 - [y — ma] 1Y,
w : fl,sl,msz,xz,mlfmz

IO (1) [ma] Y, TT6 () (M=o g — o] 13,

w
S
my€[[s1]! ;my—my€[[s2]! 21

'B(S],l,W7m2,¢,T1,x1,x) ~B(s2,l,w,m1 _m27¢a727-x27%) 'fl,sl,meZ,Sz,ml—mz-

If m; ¢ [s3]', then both sides of Claimare zero by Claim and the >;-positivities of f;;, of 1 <i < 2.
Proof of Claim For my € [[s3])', we obtain

f3,S3,m1 =
my€[s1 ] mi—mp sz ]!

w
|:m1:| 'B(Sl7l7w7m27¢7rl"xl’x) 'B(S27l7w7ml 7m27¢’127x27%)

ny X

'fl,.s‘l,mz 'f2,$2,m|7m2- (1511)

In equation (I3.1.1), m;,m; —my > 0. This gives [Z;];V >3 0 by the >3-admissibility of x3 in Claimof
3
Lemma[I5.2] Also, in equation (I5.1.1), the compatibility >33, > implies

B(s1,1,w,ma,¢,71,x1,%) - B(s2,l,w,my —my,§, 72,2, %) =30,
fl,sl,mz ’fZ,sz,mlfmz =30

by the -;-positivities of f;;, for 1 <i <2. Hence, Claim [3]holds by equation (I5.1.T)), since f3 5, = O for
n ¢ [s3]! by Claim
Proof of Claim 4| Claim ] follows from Claim [3|and the (C, p3)-mediator condition. O

By Proposition[T5.3] we introduce the parcel convolutions below.

Definition 15.4. Suppose F; = A(si,l,w,>i, fi;, 9, Ppi,xi,X) for i € [2] with a convolution index C =
(s,0,w,0,0,p,x,%,q,1,0). Then, we define the parcel convolution

<gfl >|<<$$2 - A(S?);lvwv>37f3,$37¢ap37x37}:)
such that f3,33,m = H¢(x3)mow : [m} ';; 'Zn1+n2:m gzl,nlyl,nz € Q(x) form e z.

In particular, we have the following parcels by identity functions.
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Lemma 15.5. Suppose s; = (0,0), [ =1, F =A(s1,[,w, >, 15,,0,p,x,%), and ¥4 = A(s2,l,w, =, fs,,9,p,x, X).
Then, ¥ x9 =9.

Proof. Letx = (¢q) and O = (0; = {=,>}),c[3]- Then, (#,¥) has the convolution index

((s1,52,52) ,1,w,0,0,1°(p), 1’ (x), X, ¢,1°(1),1%(1))

by Claims [3al and [3b|of Lemma

Hence, we have the convolutions below by Lemma[I5.5]and Claim [3]of Lemma[I5.2}

=1. O

—

. IA,/5(0>
5.2} Thus, the assertion holds by .7 o) = NSICER O

Definition 15.6. Letl =1, A € Z>o, and F = A(s,I,w, >, f5,9,p,x,%). Assume that s = (0,0) or infinite,
or w=(0). Then, we define the A-fold parcel convolution

T = A(As, 1w, =, 825, 9,0,%, %)
such that g, = 1(9,0) when A =0, and

Sasm =[O x)"" - [m]!Y - Z Frpy v T, for m € Z! when A > 0.
ny+- g =m
15.2 Extension of the Cauchy-Binet formula

The Cauchy-Binet formula describes minors of a matrix product AB by those of A and B. Hence, we extend
the Cauchy—Binet formula to obtain the merged-log-concavity of parcel convolutions, as merged determinants
extend 2 x 2 determinants. This uses the following notation with Definition 2.3

Definition 15.7. Letd € Z>1, A € Z;l, and Q be a commutative ring.

1. Consider a Ay X Ap-matrix A = (Ai=/)ie[[/11]] jelr] € Mj, 3,(Q). Suppose a € T-(d, A1) and B €
T<(d,A2). Then, we write the minor

A A A

a.f a,p ai,Ba
Ao, B) = det A B A p Agy By
Aoy By Aoy -+ Aagpy

2. Suppose a € T(d, A1), B € T<(d,A3). A € My, 3,(Q), and B € My, 3,(Q). Then, let
To(d, 22,2, B,A,B) = {y € T<(d, 2) | A(,7)B(v,B) # 0} .

We recall the Cauchy—Binet formula, which holds by summation reordering in the Leibniz formula of

A(a,y) and B(Y, B).

Theorem 15.8 (the Cauchy-Binet formula). Letd € Z>, A € Z;l, and Q be a commutative ring. Consider
A€ Mll-,/lz(Q>’ Be M}%xs (Q), acT. (d,},l), and B €T (d,l3). Then, AB(O{,ﬁ) = ZyeT<(d712)A(aa Y)B()/,ﬁ)

Let Q* denote the units of a ring Q. We then generalize the ring shift factors in Definition[6.1}

Definition 15.9. Ler Q be a commutative ring and d € Z>;. Let O(x,u) € Q for k € [3] and u € Z.
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1. Fori€ [2], suppose ¢; € Z>1, v € T(d, ¢;), and ; € [3].

(a) For each u € 7Z, we define the ring shift factor

I O, ni—ni1+u)
e G)( - ' ) if H O(,ni—n1+u) €0,
(11, i, 71, Yo, u) = § Tiegag OB, Y1 =i ) ™ Sy

0 otherwise.
(b) For eachu € Z and C € My, 4,(Q), let

C(u, 12,71, 12, 0,u) = Oy, 2, 71, Y2, u) - C(11, 1)

If O(1,u) = O(2,u) = O(3,u) for each u € Z, then we also write ®(u) = O(k,u) for x € [3],
®(7177’2»”) = 6(“17“27/}/17’)/2114)’ and C(ylvyz’(%)a M) = C(”h:uZa }’1,’}’2,@,”).
2. Suppose A € 73|, A € My, »,(Q), B € My, 3,(Q), a € T<(d, A1), and B € T-(d,23). Then, we call
R=(0,d,A,o,B,A,B,Q) a ring shift index when R satisfies the following conditions:
(a) O(x,u) € Q" foreach x € [3] and u > 0;
(b) Tlicpa ©(K, % — 01 +u) € Q™ for each x € [3], y € T<(d, 1, &, B,A,B), and u > 0;
(¢) [icfa) ©(x, Bi — 11 +u) € Q* foreach x € [2,3], y € T<(d, A2, &, B,A,B), and u > min(0,y; —
061).
We call Conditions 2a) 2b] and[2c|the ©-nonsingularity, [3]-product nonsingularity, and [2,3]-product

nonsingularity of R, respectively.

There is a ring shift index (0,d,A,a,,A,B,Q) such that each ®(u) = 1. Then, AB(,3,0,u) =
AB(a,B), A(a,y,0,u) = A(a,7y), and B(y,3,0,u) = B(y, ). Hence, ring shift indices extend minors by
ring shift factors.

We state the following lemma.

Lemma 15.10. Consider a ring shift index (©,d,A,o,3,A,B,0). Let y € T (d, A2, @, B,A,B). Then, we
have the following.

1. Oy, W, a,y,u) € Q™ whenever iy, Uy € [3] and u > 0.
2. O(ur, U, v, B,u) € Q* whenever uy, i € [[2,3] and u > min(0,7, — o).
Proof. Proof of Claim[I] Claim[I]holds, since we have

H ®(nu17ai_al+u) € QX7
ie[d]

H (9(/.12,)/,-—061 +u) S Q><
i€[d]

by the ®- and [3]-product nonsingularities.
ProofofClaim If 0 = min(0,y; — @), then

[T e, %—r+u) cQ
i€[d]

for each u > min(0,y; — ;) by the ®@-nonsingularity; otherwise, the same holds by the [3]—product nonsin-
gularity. Thus, Claim follows from the [2,3]-product nonsingularity. 0
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Now, we obtain the following extended Cauchy—Binet formula by the ring shift factors.

Theorem 15.11 (the extended Cauchy—Binet formula by ring shift factors). Consider a ring shift index
(0,d,A,a,B,A,B,Q). Then, for each u € Z>o, we have
AB(1,3,(X7B7®,M): Z A(1,2,a,y,@,u)B(2,3,y,ﬁ,®,}/1—(X1—|—u).
YE€T<(d,22)
Proof. Lety € T<(d, ) and u > 0. First, suppose A(o,y)B(7,B) = 0. Then,
A(1,2,a,7,0,u)B(2,3,7,8,0,71 — a1 +u)
=0. (15.2.1)

Second, suppose A(a,¥)B(Y,B) # 0. Then, Lemma|15.10|yields

A(aa’}/) (’}/7B) - (1 2 o,Y,u ) ®(233a’}/7ﬁ7’yl — +M)71
A(1,2,a,7,0,u)-B(2,3,7,3,0,71 — o) +u). (15.2.2)

Moreover, we have

u)-0(1,2,0,7,u)"" - ©(2,3,7,8,71 — 0 + )~
_ e ©G.Bi — a1 +u) Tliepap (1,0 — 01 +u) Tlieap®(2% — 1+ 1 — o +u)
T Tiegay @106 — 0 + 1) Tliefqy ©2.% — 01 + 1) ey ©G.Bi —n +n — o1 +u) (15.2.3)
_ e ®G.Bi — a1 +u) Tliepap ©(1, 0 — o1 + 1) liefay ©(2,% — 01 +u)
(1, u) licap®2.% — o +u)  Tlicfa©3. B — o1 + u)

o(1,3,a,p,

Hze[[d]] 01,0 — o +
= 1.

Therefore, equations (I5.2.1)), (I5.2.2), and (15.2.3) and Theorem [I5.8]yield

AB(1,3,0,,0,u)

= ®(1737a7ﬁ7u) .AB((X’B)

= Z @(1,3,067[3711) -A((L’)/)B(’)/,ﬁ)
YET<(d,A2)

= Z ®(1 3 aﬁ ) (1 Z(X’% ) ®(273»}’aﬁa7’1*0€1+“)_
YeT<(d,Ap,0,B,A.B)

A(1,2,0,7,0,u)-B(2,3,7,8,0,71 — o1 +u)

= Z A(1727a7%®7u)B(2a3a’}/7B7®7%_al+u)
YeT<(d,Ap,00,B,A,B)

= Y A(1,2,a,7,0,u)B(2,3,7.5,0,11 — 04 +u).
yeT<(d,A)

1

O

In particular, the extended Cauchy—Binet formula reduces to the non-extended one with trivial ring shift
factors

1=0(1,3,0,8,u) =0(1,2,0,7,u) = 0(2,3,7,,1 — 01 +u)
of each y € T(d, A2, ,3,A,B) and u > 0.
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Remark 15.12. If ©(u) = [u]!, for each u > 0, then ®(u) gives a ring shift factor in Definition Moreover,
consider

O(L,u) = [u]ly,
002.u)= [,
O3,u) = [u] !2.

Then, Proposition [8.19]and Theorem[T5.11] give g-polynomials with positive integer coefficients by convolu-

tions of (¥> and (%)
[m]q meZxq [m]q meZxq

this manuscript.

. However, we discuss parcel convolutions with the same weights in

ﬁ
Consider }3c7., ﬁtl and Yz, %tl. Then, for Schoenberg’s Pdlya frequency on real num-
bers [Scho, Theorem 3] (see [Bral [Edr])), we conjecture the following analog on polynomials. Proposition[8.19]
gives the d = 2 case of the conjecture.

Conjecture 15.13. Let h,A,p,w € Z> and d € Z>3. Consider My, j,,N,,, € Mh,h((@(q%)) such that My, p, ; ; =
(=?
and Ny p; i = % if0 < j—i,and My, ; j = Ny i j = 0 otherwise. Moreover, for o, € T(d,h)

1

such that B > a, let

icgay (Bi — a1 +4)7

Flwp,do0.p) = Miegay (0 — o +2)5

Then, we have

F(W7palaaaﬁ)Mwh(

>

a,
F(W7P717 a7l3)Nw,h(a7

B) 0.

NI

B) >qO,
>
q

15.3 Fitting tuples and strictly increasing sequences

We introduce the following notion to discuss fitting tuples and strictly increasing sequences by the extended
Cauchy-Binet formula.

Definition 15.14. Suppose a gate s > 0 and | € Z>y. Let u € Z, m,n € 7!, and k € Z*. Then, we define
oy ((s,,m,n,k),u) = (s,,0,3)
such that
a=v(k)—k +ucZ?,
B=m+4n+acZ?
We then obtain strictly increasing sequences from fitting tuples.
Lemma 15.15. For a fitting L = (s,1,m,n, k) and u € Z>, let (s,1,0,B) = oy (U, u).

1. Then, (21,a,B) is pre-fitting and > o > u.
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2. Ifl=1, then o, B € T<(21,(u,h)) for some h € Z>.

Proof. Proof of Claim[I] Claim[T|follows from Claim ] of Proposition[8.10]and Claim 2]of Lemma[3.7]
Proof of Claim[2] Claim[I]gives Claim[2] since c, B are strictly increasing when / = 1. O

By the following, we obtain fitting tuples from increasing sequences.

Definition 15.16. For a gate s > 0 and | € 7>, suppose U = (s,1,a, ) such that o, € 7. Letu € 7.
Then, we define

(1) = (5,0,me .o g ke pu)
such that
mep=(B—a)l:eZ,
nep=B-a)l+1:2€Z,
ko pu=(u)(a2:20] —al : 20— 1]) € Z*.
When I = 1, we define @y(s, &, 3,u) = @, (WL, u) for our convenience.
Furthermore, we prove the following reciprocity between w, and @,.

Proposition 15.17. Assume a gate s > 0 and |l € Z>,. Let m,n € 7 ke 7, and u = (s,1,m,n,k). Also, let
a,B € Z* and u' = (s,1,,B). Then, we have the following.
1. 04((s,1, 0y (1, 00)3, 0y (1, 01)a) k1) = Q.

/

2. wv(wd(#/7k1),al) =u.

3. Suppose l =1, 0y € Z>o, k1 € Z>o, and u = ay (U, k1). Then, u' satisfies a — B € [s]* and o, B €
T (21,(a1,h)) for some h € Z>, if and only if W is fitting.

Proof. Proof of Claim[I] Let y(u,0n) = (s,1,0/, B’). Then, we have

(ky) - (o/[2: 21) — '[1: 20 — 1)) = (ky) 4 (v(K) —ky + 06)[2 : 2] — (v(k) — k1 + o )[1 : 21— 1])

(
= (ki) 4 (V(R)[2 2 21) — v(K)[1 : 20 — 1])

Hence, Claim|[T]holds by B’ — &’ = m+ n.
Proof of Claim[2} Let (' k1) = (s,0,m',n’ ,K'). Then, k' = (k) 4 (a[2: 21] — at[1 : 21 — 1]) gives

v(k’)—kﬁ—al :(k],k]+062—061,...,k1—I—OCQZ—OC])—k]—I—OCl =a.

Thus, Claimfollows fromm' #n' =B —a.

Proof of Claim[3] The if part follows from Claim[2]and Claim 2] of Lemma [I5.15] We now prove the only
if part. First, a — B € [s]* gives the inclusion condition of u. Second, k| € Z>¢ and & € T (21, (a1, h))
imply the lower slope condition of y. Third, B € T (21, (ay,h)) gives the upper slope condition of u. [
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15.3.1 Merged determinants by Toeplitz matrices and ring shift indices

We consider the following Toeplitz matrices.

Definition 15.18. For [ = 1, suppose F = (F, € Q(X)),,cq1- For h € Z>y and i, j € [h], we write a matrix
Mg p € Mpn(Q(X)) such that its (i, j)-element Mz j; j is F(j_y)-

In particular, we have the following by @,.

Lemma 15.19. Suppose | = 1 and % = A(s,l,w, =, f5,¢,p,x,X). Let d =2. Consider h € Z>, and
o, € T<(d,h). Then, we have the following.

1. Mg p(o,B) # 0 implies B — a € [s]".

2. Let F be ='-merged-log-concave. Then, w;(s,o,f,u) is fitting for each u € Z>o if and only if
Mz (e, B) #O.

Proof. ProofofClaim Assume | — a; < s1. Then, F(B—ay) = 0. Also, F (g, _q,) =0, since Br— o < sy
by o > 1. Hence, we obtain the contradiction

0# Mz p(et,B) = F(p—a) F (Br-c) = F(Br—a) F (B1—0r) = O-

The same contradiction occurs when either 81 — @) > 52, B — @ < 51, or B — atp > s7.
ProofofClaim Let wy(s, o, B,u) = (s, l,ma’ﬁ,na’ﬁ,ka?ﬁﬁu). First, we prove the if part. Since kg g, =
(u, 00 — 1), kg gy > (0,1) by u> 0 and 0 > . Furthermore, since mq g Hnqp5 = — o, B2 > Py gives

YN +kaﬁ,u‘2 = (ﬁZ — (X]) > (Bl _ 061) =mg.p.

Thus, Lemma[3.10]and Claim [T give the if part. Second, we prove the only if part. We have
Mo Bk p.= B —o1—(—01))= (B — ),
no.p ka,ﬁ,u = (/32 — 0+ ((x2 — 0‘1)) — ([32 _ 051) )

Then, Mg p(at,B) = Fm, 4 ﬁnvﬁ — yma,ﬁaka,ﬁ,uy("a,ﬁka,ﬁy)v' Thus, the only if part holds by the >'-

merged-log-concavity of .%. ’ O

Also, we introduce the following notation.

Definition 15.20. Let! € Z> andw € le0~ Consider an indeterminate y € Q(X)! and ¢(y) € [Ticp Qi)
Then, for each u € 7!, we define

- YW )Y ifu >0,
01wy 0.1~ { LTOOV 1T
0 otherwise.

We then realize merged determinants by Toeplitz matrices and ring shift indices.

Proposition 15.21. Let [ = 1. Suppose F; = A(si,l,w, =, fis;, 9, Pi,Xi, X) for i € [3] such that F; is ~!-
merged-log-concave for each i € [2]. Let

C: (S?lvw707¢ap7x’x7qak’0)
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be the convolution index of (F\,.F>) and F3 = Fy * F». Lety = x5 and @ (u) = O(1,w,y, ¢, (1)) for each
u€Z. Also, ford=2,h€Z>y and o, € T.(d,h), let

= (G)vdv 13(h)a avﬁngl,th,ﬁz,h;@(}:)) .
Then, we have the following.

1. R is a ring shift index.

2. Foreachy € T-(d,h) and u > 0, we have

Mﬁ\lﬁh(aaY7®7u> = A(yl)(slalaw7m0!,}’7na,’)/7kl%)/,u7¢7p1axlax)a (1531)
M,?z,h(}/aﬁ7®7u) = A(QZ)(S%lvwvm’y,ﬁany,ﬁvky,ﬁ,ua¢7p27x27$)7 (15.3.2)
Mg&h((x,ﬁ,@ﬂ,t) = A(93)(S3,l,mmaﬁ,na_ﬁ,ka?ﬁ_’u,¢,p3,x3,.’{). (15.3.3)

Proof. Proof of Claim[I] First, we prove the ®-nonsingularity. The base positivity of ¢ in .73 gives
[1¢(x3)" >0, 0. Thus, [T¢(y)" #0by p3 € Z>1 Moreover, gM >0, 0 by Clalmof Lemmau This
implies

A A
Y=g 3P3,1 — q 101P3,1 >03€ 0.

Hence, we have the ®-nonsingularity, since [(u)]!} # 0 for each u > 0.

Second, let us prove the [3]- and [2, 3]-product nonsingularities. Assume y € T (d,h,a, B,Mz, n,Mz, ).
Then, Claim (1| of Lemma @l implies ¥, — o1 > 0 by Mg, (0, Y)Mz, 4(7,B) # 0. Thus, we obtain
the [3]-product nonsingularity by the ®-nonsingularity and y» > 7. Also, we have 0 = min(0,7; — o),
and B1 — 71 > 0 by Mz, (0, )Mz, ;(7,B) # 0 and Claim [1] of Lemma Thus, the [2,3]-product
nonsingularity follows from the ®@-nonsingularity and §, > f;. In particular, Clalmlholds

Proof of Claim[2} We prove equation (T5.3.1), since equations (15.3.2)) and (I5.3.3) hold analogously. Let

doyu = V(kayu),
boyu = V(may,nay,koyu)-

Thel‘l, ka"y"u - (u, OCQ - 061) and ma7'y ‘H’ na_"y - /y_ (04 glVe

Aoyu = (U, 00 — Oy +u), (15.3.4)
boyu = Gayu+maytnay= (Y — 01 +u, 12— a1 +u), (15.3.5)
Mo yHkayu= (v —on) — (e —a1) = (n — x), (15.3.6)
noyBkayu = (1 —0)+(—a1) = (rp—o). (15.3.7)

First, suppose 1 — o1 +u < 0. Then,

ey ®(i —au +u)
®(a7’)/7u) - Hig[[d]] ®((X1_ o +I/t) - 07

Y(Shl?Wa m(X,77n(X,’)/7k(X,’J/,u7 ¢7P1 7x17:{) =0

by equation (13.3.3). Hence, equation (13.3.1)) holds by 0 = 0.
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Second, suppose y; — o +u > 0. Then, since o — o +u > 0 by u > 0, equations (15.3.4), (15.333),
([538), and (537 give

Mgz, n(a,7,0,u) = O(a,y,u)Mz, 4(a,7y)

O(p —a +u)®(y — oy + u)
= - (M Mz — Mz M 5
(o — ay + u)O(u) ( Fr.hon M Lhen, v F1.h00,7 ~/1Jl70¢2~71)

T (y)")atun—atiow[(y — oy +u)|1¥[(y1 — o + u)]1¥
[1(0 (y)) —atunon (o — oy + )W [(u)]y
’ (gla(ﬂ*al)yl,(h*az) - yl-,()’zfal)yh(%*az))
LI

= TI(@ (7)) e [bg . N
TT(9 (v)2)“er [,y 1

Furthermore, we have

T1(9 (9)™) % (b ) 3
MO 0) ) ™ ag yal

(ylsma.yyl Jl\o/‘.y - 'g.l -,ma.yEka.y.u yh(”a’yka,y,u)v)'

= T(Slalawyma,y,noc,yaka,y,m 0,p1,x1,%),

1 )
since y = x£° = (ql3)0‘ o= (qll"l"l Phl) = (qllplwl) = x in the convolution index C. Thus, we obtain

equation (T15.371). O
15.4 Merged-log-concavity

If there is a squaring order >4 compatible to >/, =/, and >3 in Proposition [15.21} then Theorem|15.11|and
Proposition (15.21| give the >}-merged-log-concavity of .%3. But, we need the >}-merged-log-concavity of
%3 for polynomials with positive integer coefficients. Hence, we introduce the following notation to obtain
fitting tuples for Mz, j(a,y,0®,u) and Mz, (7, B,®,u) in Proposition|15.21

Definition 15.22. Suppose gates 51,52 > 0. For each u € 7 and «, B € 72, we define
FT.(s1,s2,0,B,u) ={y € T<(2,(ai1,B2)) | @s(s1,0,7,u) and @;(s2,7, B,u) are fitting.} .
Then, we prove the following existence of fitting tuples.
Lemma 15.23. Letl =1 and o € Z>). Assume the following:
1. s3 =151+ 52 for gates s1,52,53 > 0;
2. afitting L = (s3,1,m,n,k);
3. (s3,,0,B) =y (u,0n);
4. y=(max(si1 +ou,Bi —s22),min(s; 2 + 0, Br — 52.1)) € Z2.
Then, we have the following.

(a) There exist the following inequalities:

71 < min(sy o+ o, B —s2,1); (15.4.1)
max(si,1 + &2, B2 —522) < Pos (15.4.2)
N <nr. (154.3)
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(b) For each u € Z>, there exists Y € FT.(s1,s2,0, B, u).

Proof. We state the following inequalities to prove Claims [(a) and [(b)] First, the inclusion condition of
Assumption2]and 8 — ot = m + n of Assumption[3]imply

531 < Br—ay <s3p, (15.4.4)
531 < Pr—on <s3. (15.4.5)

Second, Assumption [2]and Claim 2] of Lemma [I5.15] give some h € Z> such that

1<oy <op<h, (15.4.6)
1<Bi<B<h. (15.4.7)

Proof of Claim First, we prove inequality (I5.4.1). Then, by Assumption[I]and inequality (15.4.4),
we have

(s124+0a1)—=(Br—s22)=s12+822+0 —Pr=s320—(B1—a) >0
(B —52,1) - (Sl,l +oy)=p1—o— (Sl.,l +Sz,1) =B —o —s531=>0.
Therefore, we obtain inequality (I5.4.1)), because Assumption T|implies

(si2+01)—(si1+0)=s12—s11 >0,
(Br—s21) — (B1 —s22) =522 —521 > 0.

Second, inequality (T5.4.2)) holds similarly by Assumption [T|and inequality (15.4-3).
Third, we prove inequality (T5.4.3). By Assumption[I]and inequalities (I5.4.6) and (I5.4.7), we have

(s12+ ) —(sii+o)=(s12—s11)+(—ou
(Ba—s21) = (B1 = $22) = (22— 21) + (B2 — 1) >
Furthermore, Assumption[I]and inequalities (I5.4.4) and (I5.4.7) give

) >
)>

Bo—s21)—(s11+a1) =P —o1—s31>Pir—oy —s31 >0.

If 8§32 = 0o, then Nn=s,1+0 if S22 =% 0r 'Y = ﬁz — 52,1 if §1,2 = 0. Thus, suppose s32 < oo. Then,
Assumption[T]and inequalities (T5.4.4) and (15.4.6) imply

(s1p+0)—(Bi—s22)=s30—P1+ 00 >s32—PB1+a1=s30—(B1—o) >0.

Thus, inequality (15.4.3) follows.
Proof of Claim[(D)] First, we prove

Y€ T<(2, (a1, B2))- (15.4.8)

Since s1,1,52,1 > 0 by Assumption[T} Assumption[d]implies ot < 7; and ¥5 < f,. Therefore, inclusion (T5.4.8)

holds by inequality (15.4.3).
Second, we confirm that @, (s, o, y,u) = (s1 Jd,me y, na,y,ka,%u) is fitting. By Assumption@and inequal-

ities (I5.4.1)) and (15.4.2)), each i € [2] gives inequalities s 1 +; < ¥ <sj12+ 0 and Bi —s22 < % < Bi—s2.1,
which are equivalent to

s110 <% —0; <512, (15.4.9)
521 < Bi—7% < 522 (15.4.10)
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Then, inequality (T5.4.9) implies
Moy Nay = (% — 0i)icpa] € [s1]?.
Moreover, inequality (15.4.3) gives
Moyl tRayu2 =% —01 >V — 0 =Mgy1.

Hence, (s, @, ,u) is fitting by inequality (15.4.6) and Lemma
Third, we prove that @y (s, ¥, B,u) = (s2,1,myg.nyg.kyp,) is fitting. By inequality (T5.4.10), we have

my g 4 ny5 = (Bi = %)iegy € [s2]*-
Also, inequality (15.4.7) gives
nypit+kypur=B—1>p1—v =myp;.
Therefore, @;(s2,7, B, u) is fitting by inequality (I5.4.3) and Lemma [3.10} O
Moreover, we rewrite FT. (sq,s2, o, B, u) as follows.

Lemma 15.24. Let o, € T(2,h) for some h € Z>,. Suppose u € Z>¢. Then, Y € FT(s1,s2,¢,B,u) if
and only if v € T-(2,h) and both ®y(s1, &, v,u) and @, (s2,7, B,u) are fitting.

Proof. The only if part is clear. Hence, we prove the if part. The fitting ,;(s1, @, y,u) and @;(s2,7, B, u) give
o < v and P < B, because

Moy = (n—o)e [[Sl]]la
nyp = (B2 — 1) € [s2]
by s1,52 > 0. Thus, v € T<(2,(1,B2)), since 1 < 72 by ¥ € T<(2,h). O

We now state the following merged-log-concavity of parcel convolutions. Its weight-zero case applies to
the convolutions of strongly >,-log-concave polynomials, which carry convolution indices by Claim of
Lemmall3.2]

Theorem 15.25. Let I = 1. Consider F; = A(s;i,1,w, =i, fi 5, @, Pi, i, X) for i € [3] such that F3 = F\ = F,.
For a fitting 1 = (s3,1,m,n,k) and oy € Z>1, let (s3,1,0,B8) = wy (U, o). Then, we obtain

A(g})(é‘%lavaanvka¢7p3vx37%)

= Z A(yl)(sl717W7ma,77na,77ka7’y‘k1’¢'7p17x17%)
YEFT<(s1,52,0,B.k1)
-A(g\g)(é‘z,l,W,m%ﬁ,I’ly_ﬁ,k%ﬁ_’yl_aﬁ_kl ,0,02,%2,%). (15.4.11)

Moreover, let F; be -!-merged-log-concave for i € [2] with O; = {>;, =} fori € [3] and O, = {=!, -1} for

D

i € [2]. If there are squaring orders Oy = {=},-4} 3 0{,04,03, then F3 is =}-merged-log-concave by

A(ﬂg)(g,l,w,m,n,k,¢,p3,X37%) >/3 0. (15412)
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Proof. First, we prove equation (I5.4.11). Consider the convolution index C = (s,l,w,0,9,p.x,%,q,1,0)
of (#1,.7,). Also, lety = x5 and ®(u) = O(l,w,y, ¢, (u)) for each u € Z. Then, we have a ring shift index

R= (@7d7 3(h), a,B,Mz, ’h,M%Jl,Q(%)) for some h € Z> by Claimof Proposition|15.21
We then have

Mg‘}.,h(a’ﬁ)@akl) = A(ng3)(53a17W,m7n,k7¢aP33x37x)

by the convolution index C and Claim [2] of Proposition [[5.21] because @y (s3, o, B,k1) = (s3,1,m,n k) by

Claim of Proposition|15.17} Furthermore, if Mz, ;(ct,Y)M 2, (7, B) # O, then Claim of Lemmal|l5.19
implies 1 — o > 0. In particular, Claim 2] of Lemma [I5.19]implies

M?l,h(a7y7®7k1) = A(yl)(Sl7luw7ma,7/7n06,}’7k0£,y,k1u¢7p17x17%>7
M?z,h(%ﬁan h—o +k1) = A(ﬂz)(‘g%laWam)/,ﬁ,nyﬁaky,ﬁ,ylfaﬁrkl ’ ¢,P27x27x)~

We have Mz, , = Mz, 1Mz, j,, since 3, = Yonez! Flmy * F2.m—m, for each m; € Z'. Hence, Theo-
rem[I5.11] with the ring shift index R gives

A(F3)(s3,1,w,m,n,k,0,p3,x3,X) = M@yh(avﬁv@»kl)

= Z Mfl,ll(a77/7®ak1)'Mﬂz,h(77ﬁv®7yl*al‘{’kl)
YET<(2,h,0.8.Mz| n,Mg, 1)
= Z A(yl)(slvl»Wamtxm”oc,y»ka,y?k]»¢7P17x17:{)

YET<(2,h,0.8. Mz, ;Mg 1)

’ A(yg)(SQ, Lw, My ”%I%k%ﬁm —0+ky ¢, p2,%2, %)
This implies equation (I53.4.11)) by Claim[2]of Lemma[I5.19and Lemma[15.24]

Second, we prove inequality (15.4.12). Let
A = (max(sy,; + o, B — s22),min(s1 o + 0, fo — 52.1)) € Z*.

Then, A € FT(s1,52,,,k;) by Claim[(b)] of Lemma|[15.23] Also, the merged-log-concavity of .%; and
T says

A(yl)(slalawvma,lan(x,laka,l,kl ) ¢7P17x17%) >_/1 Oa
A(jZ)(s%lyW,mk,ﬁanl,ﬁaklﬁ,l]fa] +ky > ¢7P27x27:{) }/2 0.
Thus, equation (I3.4.T1)) and the compatibility 0% 3 O/, 0} imply inequality (15.4.12). O

Example 15.26. We explicitly compute both sides of equation (I3.4.11)) in Theorem [I5.23] Let [ =1,
s1=s5=53=(0,0), w= (1), x1 =x =x3=(q), X = {q}, =1=>2=>3=>,4, and Y= ((0,0,0)). Then,
for i € [2], suppose parcels

% = A(Si,l,W, >-ialPS,’)/,q7xiax)'

Moreover, let p; = ps = p3 = (1), A = 13(1), and 0 = 1*(1). Then, Claims [3a] and [3b] of Lemma [15.2]
give the convolution index C = (s,l,w,0,9,p,x,X,q,A,0). Thus, consider

yf’) :yl *92 :A(S3,l,W,>-3,f,X3,x)
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such that f,, = [T (x3)"™" - [m]'¥, - Yiy jm F1,:-F2,j for each m € [s]".

Furthermore, Lemma gives a fitting u = (s3,/,m,n,k) such that m =n = (1) and k = (0,1). Then,
o= (1,2) and B = (2,3) satisfy (s3,0,a,8) = @y (U, 0). Thus, FT.(s1,s2,0, B,k ) consists of 1 = (1,2),
1 = (1,3), and 13 = (2,3). In particular,

Y = (max(s11 +ou, B —s22),min(s1 2+ 00, B —521))

as in Claim 4 of Lemma [[3.23]
The right-hand side of equation (I5.4.1T) in Theorem[T5.25] sums the following g-polynomials:

A(F1) (51,1, w,mey oy ke k> X1, X)
-A(ﬁg)(sz,l,w,myl_ﬁ,n%’ﬁ,k%’ﬁm‘],aﬁkl,xzﬁﬁ)
= A(F1)(s1,1,w,(0),(0),(0,1),x1,%X) - A(F2) (s2,1,w,(1),(1),(0,1),x2, %)
=q;
A(F1) (51,1, w,may Noy Koy k5 X1 X)
'A('QZ)(s%leamyz,ﬁ7”72,ﬁ7k72,ﬁ,y2717a1+k17x27%)
= A(F1)(s1,1,w,(0),(1),(0,1),x1,%) - A(F2)(s2,1,w,(1),(0),(0,2) ,x2, %)
=q+1
A(F1) (1,1, w,me oy Koy k5 X1, X)
“A(F2)(s2,1,w, m?’3-ﬁ’n737[3’k73~,[5773,1*061+k17x27:£)
=A(F)(s1,L,w,(1),(1),(0,1),x1,%) - A(F2)(s2,1,w,(0),(0),(1,1),x2,%)
=q.

Then, we obtain 3g + 1. Therefore, this coincides with the left-hand side:

2
A(F3) (53,1, w,m,n, k,x3,X) = (2 (2327(1) *93,(0)93,(2)) =(2)q ((( : )) 1 93 ) -

(0)g(1)q l—¢q 1—g)(1—¢*)
The following gives polynomials with positive integer coefficients by Theorem [15.25]

Corollary 15.27. Let I = 1. Consider F; = A(si,l,w, i, fis;, 9, pi,xi, X) for i € [3] with the parcel convo-
lution 3 = F| x F. Also, for each i € 2] and fitting (s;,1,m,n,k), suppose k| € Q=g and K, € Q such
that

g MTIA(E) (50,1, w,mon, k, @, pi, xi, X) > gm0
Then, for each fitting (s3,1,m,n,k), we have
g MIMIA(F) (53,1, w,m,n, k, ¢, p3,x3, %) > 0.
Proof. In equation (T5.4.17) of Theorem [I5.23] we have
min=p—a,
Moy Hngy=7yY—0Q,
myp tnyp =B —v.
Thus, the assertion follows, because

Kz(ma,y_yl +na7y_,1)+ Kz(m%ﬁ’l +I’l%ﬁ’1) = K’Q(ﬁ] — —|—132 — Otz) = Kz(ml —|—n1).
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16 Explicit parcel convolutions, critical points, phase transitions, and
merged determinants
We compute explicit parcel convolutions of finite gates in this section, as ones of infinite gates appear later.

16.1 A parcel convolution of weight one

Lets; =(1,4), =1, w= (1), =>=>4, p = (1), x=(g), and X = {q}. Then, we have ¢-Stirling and
monomial parcels .%| and .%, such that

yl = A(S] 3 l7 >_7c51,l,q7x)7
Ty = A(Sl’lawv >alPsl,((O,LO)),qap»xa %)
Then, Claim [I] of Corollary gives the >-merged-log-concave parcel
y3 = A(slvl7wa>_af3.sl7pax7x>

such that f3 5, = ¢ ¢y, 1,gm form € Is1]".
Now, let s, =2s; = (2,8). Then, Claims [3a|and @] of Lemma and Theorem |15.25| provides the
>-merged-log-concave parcel

yﬁl = ﬁ3 * <§Z~3 = A(S2717W7 >_7f4,szapax?x)'
Explicitly, we have the following g-polynomials:
frs @) =@ +5¢° +12¢" + 18¢° + 18¢° + 124" + 5¢° + ¢*; (16.1.1)

fis3) = 24" + 124" + 364° + 704° + 944" + 904° (16.12)
+60g° + 264" + 64°;
frs @y =" +7¢" +27¢"2 +70¢" + 133" + 191¢° + 2124° + 183¢" + 120¢° + 55¢° + 15¢*;
Frs(5) =240 +12¢"° +40g" +90¢" +154¢'% +214¢"" +-2444'° +2364° + 1864° + 122¢ +604° +204°;
frsne) = a"° +5¢" + 184" + 414" + 744" + 1084" + 139"
+157¢'2 + 154¢" +1364'° + 101¢° + 664° + 354" + 15¢°;

from =20"" 4+ 64%° + 149" + 204" + 32¢'7 + 424'° + 504" + 524" (16.13)
+ 54¢" + 469" 4+ 40¢" +28¢"% + 18¢° + 104® + 64’

Fisns) = P+ P 4242 +3¢" + 560 +5¢"° + 74" + 797 + 84" 16,14
+7¢" + 7" +5¢" +5¢" +3¢" + 24" + & + 4.

16.1.1 On critical points and phase transitions

For 6 = (3,7), let P = r(y ) o(7(1)) = ((s1,1,mi,ni, ki) ) g7 Such that m; = n; = (i) and k; = (0, 1). Then,

we have the ideal merged pair § = (P,.%4). First, { has the unique front critical point Fc({) = 0.181093...
that solves

T4.2)(@) = F4.3)(@)
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by equations (16.1.1) and (16.1.2). If Bot; (¢) = (2)4, Bota(q) = (3)4, Top,(q) = f4,(2)(¢), and Top,(q) =
f4,5,,(3)(q), then we obtain the front phase transition of { at Fc(¢) by Lemma|13.25| Second, ¢ has the
unique rear critical point Re () = 0.978644. .. that solves

Ta.(@) = F43)(q)

by equations (16.1.3) and (16.1.4). Then, Lemma [13.25|gives the rear phase transition of § at Rc(&). Third,
¢ has no asymptotic critical points for the finite gate .

16.1.2 Polynomials with positive integer coefficients of an ideal merged pair

Let my =ny = (2) and ky = (0, 1). Then, the following g-polynomials are merged determinants of {:

A(F) (52,1, w,ma,n0, k2, p, %, %) = ¢ + 11¢"° + 60g'® + 21547 + 5654'0 + 11524"

+ 1882¢'* +25104"3 + 2760¢'? + 25104'! + 18824"°
+1152¢° + 565¢° + 215¢" + 60¢° + 11¢° + ¢*;

A(F) (52,1, w,m3,n3,k3,p,%,%) = 3¢% +39¢** + 253¢% + 1091¢** + 35004*' + 88624¢*° + 18351¢"°
+31793¢'8 +46772¢"7 +58972¢'® + 640384"> + 599544+ 4 482594"3
+33163¢"% + 19215¢' +9201¢'° 4-35264° + 1024¢® +203¢” 4 214°;

A(F) (52,1, w,ma,nq, kg, p,x, %) = ¢ + 15¢°" + 114¢°° + 584¢% + 22634 + 70544
+ 18368¢% + 409574 + 79554¢°* + 136253¢* + 2075904
+2831364°" + 347192¢%° + 3836914'° + 38237848
+3431994'7 + 276483¢'0 + 198741¢" + 126308¢'* + 700134'3
+33168¢'2 + 130104"" + 40084'° + 875¢° + 1054°.

In particular, A(F4) (52,1, w,m;, n;, ki, p,x, %) is a log-concave g-polynomial for each i € [e(0)]. Also, it
is palindromic for each i = 2,8, but not for i € [6].

16.2 A parcel convolution of weight two

Let s1 = (0,2), s = (1,2), [ =1, w=(2), ==>4, p = (1), x = (¢), and X = {gq}. First, we have the
g-number parcel

fg.l = A(s27lv >_a152,q7x)
and monomial parcels

T = A(SZalawa>'alPsz,((O,O,O)),qapvxax)a
F3 = N(s1,L,w, =¥y, ((0.1,0)),90 P % X).

These %1, %,, and %3 are >-merged-log-concave. Then, Theorem gives the >-merged-log-concave
9\4 = 9} Oﬁz = A(Sz,l,m >,xSM,p,x,3€).

Moreover, let s3 = 51 +s3 = (1,4). Then, Claims andof Lemma and Theorem |15.25|yields the
>-merged-log-concave

%\5 = 93 *g\‘l :A(S3,Z,W,>—,f51537p,x7x)
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with the following g-polynomials:

Sssy =1 (16.2.1)
Fosn2)=a +24°+2q+1; (16.2.2)
Fsss.3) =24°+5¢° + 84" +7q° +44* + q; (16.2.3)
Fssp@y =" +3¢"0+7¢° +11¢° +14¢” + 14¢° + 11¢° + 74" + 3¢ + ¢*. (16.2.4)

16.2.1 On critical points and phase transitions

For 0 = (2,3) and P = r(; ..) ¢ ((1)), we have the ideal merged pair { = (P,.s). First, { has no front critical
points, because 0 < ¢ < 1 does not solve

957(1)(6]) = 95,(2)(‘1)

by equations (16.2.1) and (16.2.2). Second, { has the unique rear critical point Rc(§) = 0.618034... that
solves

9\5,(3) (q) = 3‘\5,(4) (@)

by equations (16.2.3) and (16.2.4). Then, we have the rear phase transition by Lemma[I3.25] Third, there are
no asymptotic critical points of { for the finite gate 6.

16.2.2 Polynomials with positive integer coefficients of an ideal merged pair

Let P = ((sl,l,m,-7n,<,ki))ie[[9]] with m; =n; = (1), ma = ny = (4), and k; = kg = kp. Then, we have the
following merged determinants of {:

A(Fs5)(s3,1,wymy,ny,kp,p,x, %) = @ +2q+1;
A(Fs5)(s3,0,w,mp,np, ko, p,x, %) = g0 +6¢° +17¢% +31¢" +41¢° +42¢° +35¢* + 244> +13¢4* + 5¢ + 1;
A(Fs)(s3,1,w,m3,n3,k3,p,x,%) = 3¢'8 +21¢"7 +81¢'° +219¢"° +4564'* +768¢"> + 1074¢"% + 12664"!
+ 12664'° 4 1074¢° + 768¢% + 4564 + 219¢° + 81¢° + 214" + 34°;
A(Fs) (53,1, w,ma,nq, kg, p,%,%) = ¢°° + 8¢% + 384 + 132¢%" + 369¢%° + 870¢% + 1782¢**
+ 323247 + 5260¢°% 4 77544%" +104234%° + 128364'° 4 145274'%
+ 15136¢"7 + 145274 + 128364 + 104234'* + 775443 + 52604
+3232¢'" +1782¢"° + 8704° + 3694° + 1324” + 384° + 84° + 4.

In particular, A(.%s)(s3,1,w,m;,ni, ki, p,x, %) is a log-concave g-polynomial for each i € [e¢(0)] and
palindromic for each i € [e(0)] except i # 2.

17 Primal monomial parcels

Definition 17.1. Suppose a parcel F = A(s,l,w, =, f5,p,x,X). We call F primalif s = (0,00), [ =1, w= (1),
ZF(0) =1, and x is fully ~-admissible.

The primal parcels are important for the theory of the merged-log-concavity. First, they construct parcels
of arbitrary gates, widths, and weights by cut and shift operators and separable and Hadamard products.
Second, they allow arbitrary base shifts by canonical mediators. Third, they consist of primal monomial
parcels A(s,[,w, =, W y4,p,x, X) such that y; 3 = 0.
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17.1 Primal monomial parcels and g-dilogarithms

The generating functions of primal monomial parcels are quantum dilogarithms in [FadKas, [Fad Vol, Kir,
KonSoi, Rom, |Schul [Zag]. This is because the generating functions satisfy pentagon identities in the following
theorem, which is due to [FadKas|,|[FadVol, [Schu] (see also [Kir, |Zag]). For completeness of this manuscript,
we provide a full proof.

Theorem 17.2 ([FadKas| [FadVol, Schul]). Let Q = Q(X) and g € Q. For ugp =1 and u; € Q*, consider a
formal power series ky(t) = Y5.cz.,upt”* € Q[[f]]. Let O = Q(z1,22)/(z122 = g2221). Also, let p=1—q and
u=up. B

1. The following statements are equivalent.

(a) We have the (—1)-pentagon identity ky(z1)kq(22) = kq(22)kq(— 12221 )ky(z1) in O.

A
(b) kq(t) = Z/’LEZZO &Tq tl

2. The following statements are equivalent.

(a) We have the p-pentagon identity ky(z2)kq(z1) = kq(z1)kq(Uz221)kq(22) in Q.
A1)
2 ).

(b) kg(t) =Lacz, % it

Proof. Proof of Claim|l| First, assume the (—u;)-pentagon identity. By z1zo = ¢gzz1, both sides of the
(—u)-pentagon identity read

k(z)ke(z2) =Yy, g2z, (17.1.1)
V],VQGZZO
k ( k,(— k = Vi vh vy
g()ky(—pzz)ky(z) = ), uguguz' (—H221)2z)

o
V]Vo,V3 €Z>g

ol
;o valn-1) Y R RY
— v 12,7273
= ) wuguy (R Tz g

VW
Vi Va3 E€Z>0

(17.1.2)

To obtain the term zzzzi in equation (I7.1.2), we only have the following twe cases: first, v = v, v, =0,
vp(vp—1)

and v = 1; second, v| = v, — I, v, = I, and v§ = 0. Both cases satisfy ¢~ 2 = 1. Hence, we have
Uiy, q"? = Uy, U1 — Uy, U1 L, comparing coefficients of z?z% in equations (T7.1.1) and (T7.1.2). Then, since
Mity,—1 = Uy, (1 —¢") by uy € Q%, "‘szlﬁ = u,, implies Statement

Second, suppose Statement Then, both sides of the (—u )-pentagon identity read

ky(z1)ky(22) = Z

V],VzEZzO (vl)‘I(Vz)q

uvﬁ»vz i .
q9"'"z7z), (17.1.3)

f v’z(v/z—l) MV/1+2V,2+V; TRV,
kq(22)kg(—pmz)kg(z) = Y, (=1)2q 2 Wz;] 272, (17.1.4)
1/9\"2/9\"3/)q

v’I 7v’z,v'3 €Z>0

Now, v} +v, =v,V5 +V; =v, and v, = A imply v| =v, —A >0 and v§ = v; —A > 0. Thus, comparing
coefficients of z;°z|! in equations (T7.1.3) and (T7.1.4), the (—u)-pentagon identity follows from

qvll’z (71)}’qw

(V1)g(v2)q B xe[[o,m%{vl )] (1 =2A)q(A)g(v2 — A)q'
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Multiplied by (vi)4(v2)4 on both sides, this is equivalent to

A1)
g = )3 [1;5] [t{](l)q(—l)*qz- (17.1.3)
A€[0,min(vy,v)]

Let us prove equation (T7.1.5). Assume v; > v, without loss of the generality. When v, = 0, equa-
tion (I7.1.3) clearly holds. Furthermore, the induction on v, gives

L [szl_l][jll](l)q(—l)kqw =g,
A€[O0va—1]

[ T e
A€[0,2—1]

Thus, we obtain equation (T7-1.5), as the g-Pascal identity gives

A

- A0l A

alva—11[v A=)
e
Ae[va]

=lﬂ%%w[wxlﬂj]unv4ﬂq“f>

e (L =g"t) |va —1][vi —1 A0-1)
e P | M (OO MER

A€[n] (1—g*) |2 -1
— qV1(V2*1)
iyl v —1ffvi—1 B DY o ()
+0qm1%quqwlmnqz
— qV1(V2*1)

+(¢" — 1)qv2_1 Z [Vzl 1] [VIA 1] (l)q(*l)lql(l{l)
Ae0v,—1]

— qw(szl) +(¢" — l)qulq("ﬁl)(\’zfl)
— qvll/z'

Proof of Claim 2| First, suppose Statement By ug = 1, ky(t) € Q[[t]*. Let w,(t) = k,(t)™' =
1 —uit +.... Then, inverting both sides of the p-pentagon identity, we have

y(21) 0q(22) = @y (22) 0y (—(— ) pzoz1) Wy (21). (17.1.6)

A
Hence, Claim [1|implies @, (¢) = Yjcz., %tl. By the Euler binomial identities, Statement [2b| follows
= q
from

A(A—1) A(A—1)

- (=D*¢ > (=w)* 5 gz ut;
ky(t) = @, (1)~ = = LR
o t% () l%(%

Second, suppose Statement [2b] Then, we go backward the discussion above, as Claim [I]is an equivalence.
This gives equation (T7.1.6) for @, (t) = k,(¢)~". Thus, k,(t) satisfies the pu-pentagon identity. O
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In Theorem |17.2} k,(r) that satisfies one of the pentagon identities is a quantum dilogarithm. In particular,
we adopt the following notation by g-Pochhammer symbols.

Definition 17.3. Let k € Q and q € Q(X). We call k,(t) € Q(X)[[t]] a Pochhammer quantum dilogarithm, if

KA
94 A or

k ( ) AEZZO( )q

q\t) = A(A=1)

Z g.[l.
(A)q

AEZZO

These Pochhammer quantum dilogarithms have been studied intensively. For instance, (x;q)« in [FadKas]

A(A=1) A2
is kg(1) = Laez.y ﬁ forx = —1. Also, 1 +Y ez, (qliqlfl)_?(quiq)(qlil)x’l in [KonSoi, Section 6.4] is

A
ky(t) =Xa Zso ﬁt’l. Furthermore, we state the following.

Proposition 17.4. Suppose a primal monomial parcel F = A(s,l,w, =, W y4,p.x,X). Then, Z,,(t) is a
Pochhammer quantum dilogarithm.

Proof. The monomial conditions of u = (I,w,y) imply 11 =0or 711 = % If 11 =0, then Z,,(t) =

Y.2A . Az +1124
Tacze, o+ € QU] Also, if 11,1 = 4 then Z4(¢) = Laez, S — 1+ € Q)] O

17.2 Phase transitions and the golden ratio

We now study the almost strictly unimodal sequences and phase transitions. This gives the golden ratio as a
critical point. We introduce the following notion for merged pairs.

Definition 17.5. Suppose the merged pair {p = (P,.%) of a parcel F = A(s,1,w, >, f5,9,p,x,%) and fitting
path P= ((s,l,mj,ni,ki)) oy

1. We call {p vanishing if lim; o u(&,r); = 0 for each r € Ox.
2. We call {p probabilistic if ¥ic[0(6y #(E,7)i < o for each r € Ox.

If Cp is vanishing (resp. probabilistic) for each fitting path P, then we call F vanishing (resp. probabilistic).
We have the following equivalence.

Proposition 17.6. Suppose a primal monomial parcel F = A(s,l,w, =, ¥ y4,0,X,X). Let r € Ox. Then,
the following statements are equivalent.

1. F is vanishing.
2. There exists some A € Zx>1 such that ty((u)) > 0 for each u € Z.

3. There exist real numbers Ny(r) > 1 and 0 < Sy(r) < 1 such that F,y(r) < Ny(r)Sy(r)* for each
ue Zzo.

4. F is probabilistic.
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Proof. We prove Statement 2| from Statement [T} Since w = (1), the monomial conditions of k = (I,w,7)
imply y1.1 = % or 0. Suppose 71,1 = 0. If 1, <0, then

r)n2 q(r)ZYLz
7<j2(r): <,
T=q(r) =77 (1—q(n)(1—4(r?)
since 0 < ¢g(r) < 1 in Claim [l|of Lemma However, this is against Statement |1} which makes Q(.%)
vanishing. Hence, Statement [2|follows from y1, > 0. If y1 1 = % then Statementholds for any 712 € Q.
We prove Statementfrom Statement Since y1,1 =0and y1, > 0,0r y11 = %, we have Uy € Q-0 and
Vy(r) € Z>¢ such that each integer u > V,(r) + 1 satisfies

ﬁ(o)(r) =1< 3”\(1)(}’) =

U
1_§3&m1<h (17.2.1)
(1)) > Uypt. (17.2.2)
Let v(r) = 17}](”, Sy(r) = %, and x,(r) = % > 1. In particular, y € Z> gives
Nﬂ>1qi€%7 (17.2.3)
Sy(r) > q(r)° (17.2.4)

T l—g(r)Wrre

Also, let @ (r) = max(g(r)"(©) =1, q(r)" (") and Ny(r) = (@y(r)z(r) """ > 1.
First, assume yt > V,(r) 4 1. Then, inequality (I7.2.2) gives

q(r)ty((“)) q(r)UY
T = e < AL Ty
Halg=q(r)  icquy * —4
Hence,
F(uy(r) < ()78, () = 2y (1) )8y ()R < Ny(r) Sy (r)*

by inequalities (T7.2.3) and (17.2.9).
Second, suppose 0 < p < V) (r). Then,

r u r
%mﬂﬁ(%“> < (@, ()"

Thus, inequality (T7.2:1)) gives
Sy(r)*

F () < @)™ s

= Ny(r)Sy(r)*.

Statement (4| follows from Statement since ¥,,.c 50 Fm(s) < Ny(r) Liez., Sy(r)! < oo. Also, Statement@
implies Statementby F(u)(r) > 0. O

We discuss phase transitions first by asymptotic critical points.
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Lemma 17.7. Consider the merged pair § = (P, F) of an infinite-length P and a primal monomial parcel
F =A(s,1,w, =, Wsy.4,P,%,X). When r € Ox, we have the following.

L Ifni=n2=0, thenu(g,r) is an asymptotic hill.
2. If not, then § has no asymptotic critical points.

Proof. Let P = ((s,l,mi,n;,ki))ie[[e]] of an infinite 6. Let 6; = 1 for simplicity. Then, Lemma|13.33|provides
K € Z>) and h € Z such that m; = n; = (ix + h) for i € [0].

Proof of Claim[l] Claim[Iholds by Proposition since Claim [T]of Lemma[5.22] gives
gzm.H—l (r) T (jK+ h)q‘q=q(r) 1

lim —————— = lim — = lim —_— =1
J=ee ngmj (r) J=re ((]"’ 1)K+h)q|q=q(r) jﬁ‘x’ie[[l]] 1-— ‘I(r)]prhﬂ

Proof of Claim[2} First, suppose A € Z> such that each yt > A satisfies
ty((p)) > 0. (17.2.5)

Then, Lemmaand Propositionyield lim;j_eu(&,r)j = 0. Thus, Claimfollows, since u(§,r) >0
is a hill or strictly decreasing sequence by Claim 2] of Theorem [T2.18]

Second, assume that inequality (T7:2.3) does not hold. This gives y;,; =0 and y;, <0, since 7;,; = 3
or 0 by the monomial conditions. Thus, the assumption of Claim |Z| implies ¥, = 0 and ;2 < 0. Then,
g(r)"2 > 1 by Claim|[T]of Lemma|[5.22} Claim[2]now holds, since

hm gmjjrl 1m q(r)((j*’l)lf“rh)"le (jK+h)q|q:q(r) . q(r)KYI'z
Y 1 . » = i v
joe Ty o (((HDE+Hglgmgry  q(r)ix Mmoo [Tiepe (1 — g (r)/<H+)

> 1.

By the following notation, we obtain front and rear phase transitions.

Definition 17.8. Let 6 = (1,00) and x > 1 be a gate. Suppose a merged pair Q, (F). Then, let
QY(F) = (rex(n(2)),7),
which we call a restricted merged pair.

Lemma 17.9. Let F = A(s,l,w, =, ¥ y4,p,x,X) be a primal monomial parcel. Suppose some A € 7>
such that each |1 € Z), satisfies

ty((u)) > 0. (17.2.6)

Then, we have the following.
1. The merged pair §; = Q, (%) has a front phase transition.

2. The merged pair §) , = Q;f (%) has a rear phase transition for each finite gate .
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Proof. For 6 = (1,0), suppose the fitting path 77(4) = ((s,/,m;, n;,k;)) ;g With mo = ng = (0). Let us use
Lemmal[l3.23] |
Proof of Claim There is d € Z>1 such that T = g4 € X for the fully admissible g. Then, we put

Bot(T) = Top,(T) =1,
Boty(T) = (A4)g,
Tops (7) = ().

In particular, Frac(Top)(T)

= ¢"{®*)) and Frac(Bot)(T) = (4),. Then, Frac(Top)(0) = 0 by inequal-
ity (T7.2.6) and Frac(Top)(1) = 1. Also, we have Frac(Bot)(0) =

1 and Frac(Bot)(1) = 0. Thus, Lemma|13.25

gives Claim[T] by
Top,(T)
ng(0) (q) = BOt] (T) )
Top,(T)
Zw9) = g (1)

Then, we have Frac(Bot)(0) = 1, Frac(Bot)(1) = 0, and Frac(Top)(1) = 1. Also, Frac(Top)(0) = 0, because
inequality (T7.2.6) and ;1 > 0 imply
ty(((k + 1A)) = 1y((k2)) = (€ + 1DA)* = (k2)) %1 + (K + DA — KA) N
= (2K + A7)0 + A%z
= 2k71.1 +1y((4))
> 0.

We have the following positive values of #, by semi-phase transitions.
Lemma 17.10. Consider a primal monomial parcel F = A(s,l,w, =, ¥, yq,p,%,%X). Let A € Z>.
1. If Q) (F) has a front semi-phase transition, then ty((1t)) > 0 for each L € Z ;.

2. For a finite gate Y, lfﬂi{ (Z) has a rear semi-phase transition, then there is A € 7> such that
ty((n)) > 0 for each p € Z>y,.
Proof. For 6 = (1,e0), let T(A) = ((s,1,m;,ni,k;));c oy With mo = no = (0). Also, let k = (I, w, 7).
Proof of Claim([I} We have 0 < (A)g|g—y(»)< 1 by Claim|T]of Lemma Also, the front semi-phase
transition gives r € Oz such that

q(r)t]/((l))

Ty (1) =1= F—
! (A)q|q:q(r)

=T, (1).
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Hence, 0 < ¢(r)"(*)) < 1, which implies

t(A)) = 11,1A* + 7124 > 0.

Claimmnow holds, since ¥;,1 > 0 by the monomial conditions of k.
Proof of Claim|2] The rear semi-phase transition demands » € Ox such that

qlr IY((XZA)) q(r IY(((XZJ"I)A))
F, (1) = (;)L __q() = = Py (7).
(XZ )q|q:q(r) ((%2+ ) )q|q:q(r)

Then, 0 < g(r)"((FDA)-1(0R) < 1 by 0 < B )dlazatn

FZY3 P < 1. In particular,

(2 +1DA) —ty(22)) = QA +A%) N1 +A%2 > 0.
Thus, the monomial conditions of k imply y1,1 = %, ory;;=0and y12>0. O

Then, we obtain the following on the phase transitions of primal monomial parcels. This extends
Proposition[T3.38] by vanishing and probabilistic parcels.

Theorem 17.11. Suppose a primal monomial parcel F = A(s,1,w,=,¥s y4,P,X,X). Then, we have the
following.

1. Each merged pair (P,%) has no asymptotic semi-phase transitions.
2. The following statements are equivalent.

(a) F is vanishing.

(b) F is probabilistic.

(c) There exists some A € Zxy such that ty((1)) > 0 for each p € Z ;.

(d) For some A € Z>1, Q; (F) has a front phase transition.

(e) For some A € Z>1, Q) (.F) has a front semi-phase transition.

(f) For some A € Z>) and finite gate ¥, Qi{ (F) has a rear phase transition.

(g) For some A € Z>, and finite gate ¥, Qi{ () has a rear semi-phase transition.

3. If one of Statements—@ holds by some A € Z>1, then each of Statements — holds by the same
Ac Zz].

Proof. Proof of Claim[I]} Claim[I|holds by Lemma[I7.7]
Proof of Claim[2] We obtain Claim 2]by the following.

» Statements [2a] 2b] and [2c]are equivalent by Proposition[T7.6
» Statements[2c] [2d] and [2¢]are equivalent by Claim [T)of Lemma[I7.9)and Claim []of Lemma[T7.10]
» Statements [2c] 2f] and [2g]are equivalent by Claim 2] of Lemma[I7.9)and Claim [2] of Lemma[T7.10}
Proof of Claim[3} Claim[I]of Lemma and Claim ] of Lemma imply that Statements [2c] 2d]
and [2¢]hold by the same A, which give Statements [2f] and [2g| by Claim [2|of Lemma 0
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Furthermore, Theorem [T7.11] gives the following polynomials with positive integer coefficients by the
finest fitting path 7(1).

Proposition 17.12. Let F = A(s,l,w, =, ¥ y.4,p,x, X) be a primal monomial parcel. Then, Statements
and 2| below are equivalent.

1. The merged pair & = Q(.F) is ideal with a front phase transition.

y= ((0,2,0)), (17.2.7)
Y= ((;;0» (17.2.8)

Proof. For 6 = (1,e0), let m(1) = ((s,1,mi,ni,k;));cpop With @; = v(k;) and b; = v(m;,n;,k;). Suppose
0 (x) = (1—¢q) € Q(X)" and i € [6]. Then, Theorem gives

2. We have some A € Z> such that

or some A € Z>q such that

qiz(%’li2+’yl’2i)A(y)(sal7wami7niaki7 ¢7pax7%> = J(V)zi(s7lawa ¢7pat'y,A(mi7niaki)7-x)
>4 0. (17.2.9)

We prove Statement 2| from Statement [l| Since A(.F)(s,l,w,m;,ni,ki,§,p,x,X) >, 0 for the ideal &,
inequality implies

2N+ 1120) € Z. (17.2.10)
First, assume 7,1 = 0. Then, inclusion (T7.2.10) gives 27 » € Z by i = 1. Thus, equation (I7.2.7) holds by
H((1) =r2>0

in Claimof Theorem |17.11| Second, assume ¥, = 1. Then, inclusion (T7:2:10) implies 1+2v > € Z by
i = 1. Hence, equation (17.2.8) follows from

1
(1)) =5+mn2>0
in Claim 3 of Theorem [[7.111
We prove Statement|T| from Statement[2] First, suppose equation (I7.2.7). By inequality (T7.2.9), & is
ideal, since

2V 1 4 Yi20) = i € Ly

Thus, Statementholds by Claim@of Theorem|17.11] since any i € Z> satisfies

() = 51> 0.
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Second, suppose equation (T7:2:8). By inequality (T7.2.9), & is ideal, since
2(71,11'2 +7100) = PHAicLs.

Claim [3]of Theorem[T7.TT|now gives Statement|[T] since any u € Z> satisfies

O

We introduce the following notation to compare merged pairs by bases and almost strictly unimodal
sequences.

Definition 17.13. For i € [2], suppose parcels F; = A(s,l,w, =, fis, i, pi»x, X;) so that each x; € Q(X1)N
Q(%2).

1. If ry € Az, and ry € Ax, satisfy x(r1) = x(r2) € R/, then we write (X1,r1) =* (X2,12).

2. Consider (0,%;)-merged pairs §; = (P,.%;) fori € [2]. If u(&1,r1) > u(&p, ) whenever (X1,r1) =*
(X2,r2), then we say that §) covers § on x and write §; >* §,.

Let us state the following reflexivity and transitivity of the covering relation >*.

Lemma 17.14. Fori € [3], consider the (0, X;)-merged pairs §; = (P, %;) of Fi = A(s,l,w, =, fi s, 0, Pi, %, %)
Then, we have the following.

1. & >* (.
2. & > & and § > L3 imply §) >* G

Proof. ProofofClaim Claimholds by u(&i,r1) > u(&i,r) for rp € Ox, .
Proof of Claim[2} Claim [2]holds, since (X1,71) =¥ (X2,r2) = (X3,73) implies u(1,r1) > u(&,r2) >
M(C3,r3). O

The antisymmetricity of >* does not hold in general. However, we state the following.

Lemma 17.15. For i € [2], consider the (0,X;)-merged pairs §; = Q(%;) of primal monomial parcels
Fi = A(S,I,W, >-,',‘Ps_%7q,p,',x,ff,'). IfC] >* Cz >* C], then % = %>.

€L €1
Proof. By the primal assumption, g1 € X; and g2 € X, for some dy,d, € Z>. Then, the covering relations
€1 €1
imply # (;y(q™ ) = F5,(;)(q¢™) for each i € Z>( and 0 < g < 1. This implies

1
Fri)=F2i) €Q (qd1d2>
so that #; (; = 7, ;) have infinite solutions. O
We now identify the q%—linear % in Definition as the extremal parcel among primal monomial

parcels by g-polynomials with positive integer coefficients and phase transitions. Also, we obtain the golden
ratio of . as the critical point of Q(.%) (see Section|[L.8).

171



Corollary 17.16. Consider the ideal merged pair § = Q(Z) of the the q%—linear
L =A(s,L,w, =¥ y4,0,%,%).

1. Let F = N(s,l,w, =", ¥ y 4,p",x, X) be a primal monomial parcel and {' = Q(.F). If {' has a front
phase transition, then § > {'.
2. Consider all primal monomial parcels F = A(s,l,w, =",V y ,,p',x,X") such that each Q(F) has a

front phase transition. Among them, £ gives the unique maximum ideal merged pair { with respect to
the covering relation >*.

3. The single critical point of { is the golden ratio Fc(§) = 7';

IS

Proof. Proof of Claim[I] By the existence of a front phase transition, Proposition[T7.12]implies

Y = ((O,g,O)) for some A € Z>1, or
1 A
Y = (<2,2,0)> for some A € Z>y.

Thus, each i € Z> satisfies
i

(D) =

Also, suppose (X,r) =" (X,7). Then, 0 < ¢(r) = g(+’) < 1 in Claim[I| of Lemma Hence,

<ty ((0)-

|

gD g7

B (i)q‘q=q(r')

= u(g/,r/),-.

u(G,r)i =

’)q|q=q(r)

Proof of Claim 2} Claim2]follows from Lemma|[I7.15]and Claim I}
Proof of Claim/|3} A real number 0 < q% < 1 is a front critical point of { if and only if

D=

q
I—gq

whose solution is Fc(§) = *1%6 Since s is infinite and .Z is vanishing by Claimof Theorem|17.11},
has no other critical points.

Loy=1= =2

¢

O
We recall the following parcel 2, which appears in equation (T.4.4) by a different notation in the

introduction.

Definition 17.17. Let s = (0,00), =1, w= (1), and X = {q% } We define the q%—quadratic monomial

parcel

2= A(S,I,W,>,TS,((%70,0)),X,:{).

By quadratic primal monomial parcels and 2, we have following analog of Corollary
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Corollary 17.18. For the q%—quadratic 2 = A(s,l,w, =, W 4P, %, X), suppose the ideal merged pair
€=9Q(2).

1. For a quadratic primal monomial parcel F = A(s,l,w, ', ‘P‘s.n/_yq,p’,x, X'), suppose the ideal merged
pair §' = Q(.F) with a front phase transition. Then, { >* {'.

2. Consider all quadratic primal monomial parcels F = (s, 1,w,=",\¥; y ,,p’, x,X') such each Q(.F)
has a front phase transition. Among them, 2 gives the unique maximum ideal merged pair  with
respect to the covering relation >*.

3. The single critical point of { is the golden ratio Fc(§) = _1?@.
1
Proof. Claims and [3{ hold as in Corollary [17.16} since 2y = % and }'{71 = % by the monomial
conditions of (/,w,Y). O

17.3 Convolutions of vanishing monomial parcels and phase transitions

Theorem [17.11] gives vanishing monomial parcels .%# with phase transitions. We obtain more vanishing
parcels with phase transitions by convolutions. We first state the following, since convolutions of vanishing
sequences are not necessarily vanishing.

Lemma 17.19. Let § € Z>,. For each i € [6], assume a primal monomial parcel F; = A(s,l,w, >
s Ws.yi.q> P> %, X) such that Q(F;) is vanishing. Consider the parcel convolution 7 = *c[51Fi. Then,
Q(H2) is vanishing.

Proof. Letr € Ox and u € Z>. Then, Proposition gives Nj(¢g(r)) > 1 and 0 < S;(g(r)) < 1 such that
F () (r) < Ni(q(r))-Si(q(r))* for each i € [8]. Consider real numbers N(g(r)) and 8(¢(r)) such that each
i € [8] satisfies

N(q(r)) = Ni(q(r)),
1> 8(q(r)) = Silg(r)) >0
The assertion holds by J#7,,)(r) < N(g(r)® - (u+1)%=1-S(q(r))*. O
Then, the following monomial indices give convolutions with front critical points.

Proposition 17.20. Suppose integers 0 < dy < dp such that dy € Z>. Let | =1 and w = (1). Consider
monomial indices (I,w,%) for i € [dy] such that i € [d,] gives ¥; = (0,¥;2,0) with

Y >0, (17.3.1)

and i € [dy + 1,d,] gives ¥, = (%,%,2,0) with

1
T2 > =3 (17.3.2)

Fori € [do], let Fi = A(s,l,w, =, ¥y y 4, P, X, X) be primal monomial parcels such that X = {g*} of some
k! € Z>1. Moreover; consider the parcel convolution

H = *icla) Fi = A5, L,w, =, hs, p,x, X)

and the merged pair § = Q(F). Then, we have the following.
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1. & has the unique phase transition at the front critical point 0 < Fc(§) = ¢* < 1 that solves

. 1.,
l—g= Z q%,2+ Z q2+Yt‘2.
icd] i€dy+1,d]

2. § has neither rear nor front critical points if one of inequalities (17.3.1) and (17.3.2) fails.

Proof. Proof of Claim Since s is infinite, { has no rear critical points. Moreover, each .%; satisfies
Statementof Theorem @ Hence, £ has no asymptotic critical points by Claim f Theoremand
Lemma[[7.19
Let us prove that { has the single front critical point. First, pj(¢*) = 1 — g is strictly decreasing over
0 < ¢* <1 with p;(0) =1 and p;(1) = 0. Second, inequalities (17.3.1) and (17.3.2) imply that p,(¢*) =
Yie[a] 9" + Lic[d+1.4] q%“’il is strictly increasing over 0 < ¢* < 1 with p>(0) =0and p>(1) =d, > 1.
Hence, there is the unique solution 0 < Fc(§) = ¢* < 1 for

pa2(q")
00 g
such that p>(Fc()) = p1(Fc()). Also, there are ry,r2 € Ox such that gy (r1) < 1) (r1) and (g (r2) >
e%ﬂ(l) (r2).
Proof of Claini2] If one of inequalities (I7.3.1]) and (I7.3.2)) fails, then we have no front critical points as
p2(g*) > 1 for 0 < ¢* < 1. We have no rear critical points either for the infinite s. O

In particular, Proposition [I7.20 determines front phase transitions of Q(.7#) for each convolution .7 of
primal monomial parcels. Moreover, the following gives explicit front critical points by metallic ratios.
Corollary 17.21. Consider the q% -linear £ = A(s,1,w,=,¥s.y4,P,X,X) and q% -quadratic 2 = A(s,l,w, -
Wiy g0 %,X) of X = {q% } Let n € Z>1. Suppose merged pairs

& =Q(Z™),

Then, we have the following.

1. X is fully optimal for £*" and 2*".

— 2 . .
2. &, is ideal and has the unique phase transition at the front critical point Fo(§,) = —5N212 ‘2n+4, which is
a metallic ratio.

3. The same holds for Cn with the front critical point Fc(gn) =Fc ().

1

Proof. Proof of Claim Claimholds by .,2”(*1’5 = g.

Proof of Claim By Corollary|15.27|and Proposition|17.12} {, is ideal. Thus, Claimfollows, since &,
has the front phase transition by the critical point Fc({,) by Proposition [17.20]

Proof of Claims Claimsholds similarly, since ,@E"I’) = 'g(*l”) O

18 Monomial convolutions and graded monomial products

We discuss graded monomial products and monomial convolutions in Section [I.10}
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18.1 Merged-log-concavity of graded monomial products

We first prove that all monomial convolutions are generating functions of merged-log-concave parcels by
parcel convolutions. Second, we prove the same for all graded monomial products by separable products.

For a multimonomial index (d,w, ¢, 3,7), the monomial convolution involves the change of variable
q — g™ . Hence, we discuss the following change of parcel parameters.

Proposition 18.1. Let [ € Z> and x,p1,p2 € lel- Consider a parcel F = A(s,l,w, 1, f5,9,p1,x1,X) and
X2 = x{. Assume the following.

1. There are squaring orders Oy = {=2,>2} D 01 = {=1,=1}.
2. ¢isa(s,l,w o, K,x1,X)-mediator.
3. 9 isa (s, l,w,=2,p2,x2,X)-mediator.

Then, we have the following.

(a) There exists a parcel 4 = N(s,1,w, =2,8s,0,P2,%2,X) = .F such that each m € [s]' satisfies
8sm = fm - B(s,L,w,m,9,x,x1,%).
(b) Suppose squaring orders O' = {>',>"} 2 O,. Fori € [2], let
o= (s,L,w, =", 9, pi,x:, X)),
Wer = (s,L,w, =", 0, piyxi, X))

Furthermore, let Ko py = py. Then, .F is |1 ,-merged-log-concave if and only if F is |1, -merged-
log-concave. Also, F is U1 »-merged-log-concave if and only if F is [+ 1-merged-log-concave.

Proof. Proof of Claim For each m € [s],
f?,m [1¢ (XZ)mOW ) [m] ')‘/C\; 8s.m

T T19 (o) [ T1O Cer )™ - ]2 T1O (xa)™v - )1,

Also, g is —2-positive by Assumptions|[T]and[2] since f; is >-positive. Hence, Assumption 3| gives Claim[(a)}
Proof of Claim|(b)} Claim[(b)|holds by Claim [(a)] because x5> = x{" implies

Fm

T(s,l,w,m,n,k,¢7p1,x1,ff) :Y(S7law7man7ka¢7p27x27x)

for each m,n € Z! and k € Z*. O
We introduce the following notations of multimonomial indices by Definitions [I.TT)and [T.13]

Definition 18.2. For a reduced multimonomial index (d,w, o, y) and B = 1%(1), let

M(d7W>a7’}/7‘I7Z) :M(d,W,OC,B,'y,q,Z),
A (dw, 0, 7,q,v) = A (d,w, 0, B, Y,q,v)-

We call M(d,w,®,7,q,z) and A (d,w,a,7,q,v) a reduced graded monomial product and reduced monomial
convolution (or a graded monomial product and monomial convolution for short).
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In particular, for each monomial convolution .Z (d,w, c, 3,7,q,v), there exists a reduced monomial
convolution .Z (d',w, o',V ,q,v) = A (d,w, 0, B,Y,q,v).

We now obtain the merged-log-concavity of all monomial convolutions. For parcels .71, ..., %y, we write
*ic[qa]7i for the parcel convolution Fj - - - x Zy.

Theorem 18.3. Consider a multimonomial index (d,w, o, ,y) with 0 € Z>1 and k € Zle such that koo =
19(8). Let s = (0,00), [ =1, ==>g 94 P € ZZZI, y= (q‘s), and X =g y 4. Fori € [d], let x; = (¢*%) and

Fi=A(s,L,w, >7\{"5,(7/,-),(10@ s DisXiy X).
Then, we have the following.

1. There is the =-merged-log-concave parcel
G = A(S7l7 w, >‘7fs,P7)’a %) = *iG[d]]‘?i*ﬁi'
2. For an indeterminate v,

g‘f(v) :%(dawvavﬁv%cbv)'

Proof. Proof of Claim Without loss of generality, assume a reduced multimonomial index (d,w, ¢, ). First,
letd = 1. Then, we have y = x| and 7| = A(s,1,w, =, ¥ () g1 , 9, p1,%1, X) for the I-canonical mediator ¢.
Hence, Claim [(a)] of Proposition[I8.1] gives the parcel

9 :A(svlku>vfsvpvy7:{) = gl'

By Theorem [8.40, ¢ is (s,I,w,>,¢,p1,x1,X)-merged-log-concave. Hence, Claim [I| holds, since ¥ is
(s,1,w, =, ,p,y,X)-merged-log-concave by Claim|[(b) of Proposition
Second, let d > 2. Then, the induction gives the >-merged-log-concave parcel

H = A(s>l7wa>_ahS7pay7}t) = *iG[[dfl]]yi'

Also, we have Fy = A(s,[,w, =, ¥, (3,) 4o, 9, Kap, i, X) for the canonical /-mediator ¢. Let A = (3, a4, 6),
T=(p,kap,p), O = (0; ={=,=});cp3p> and 0 = (1,ky). Hence, (,.%,) carries the convolution in-
dex (13(s), Lw,0,0,7,(y,x4,y) ,%,q,/’L,o) by the exponent equation 01A; = 024, = 6 = A3, the base-shift

equation 0;1 T =0, 'y =p =13, and Claimof Lemma Theorem |15.25|now gives the >-merged-
log-concave parcel

G =A(s,Lw, =, f5,p,3,X) = H * Ty = *ic[q) Fi-
Proof of Claim[2] Claim[2]follows from Claim T} O
We introduce the following notation, which generalizes Definition [T.T9)
Definition 18.4. Let # = A(s,l,w, >, f5,0,p,x,X) and z = (zi)ie[[,]] be indeterminates z;.

1. We write the generating function % (2) = Zz(z1,...,21) of F such that

2@ =Y, Za- [l € Q) z):

A€zl i[l]
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2. In particular, if s = (0,00) and .F = A(s,l,w, =, W y4,p,X,X), then let
Zya(D) =27 (21, 2).
When w =1'(1), let 23,4(z) = Z37.4(2).
Hence, we obtain the following merged-log-concavity of graded monomial products.

Theorem 18.5. Consider a graded monomial product M(d,w, o, 3,7,q,z). Let s = (0,00), ==>¢ y4, p €
Z‘él, x = (qai)ie[[d]}’ and X = U 4. Also, suppose z = (z;), of indeterminates z;. Then, we have the
merged-log-concave parcel F = A(s,d,w, >, fs,p,x,X) such that

Zz(z) =M(d,w,a,B,7,9,2). (18.1.1)

Proof. For each i € [d], Theorem gives the merged-log-concave 5% = A(s, 1,w, >, fis,p,xi, X) such
that

(1w, (0), (B) (1) 1 4:20) = Zo(20).
Then, Theorem[9.7)yields the merged-log-concave
F =A(s, d,w, -, fs,p,x,X) = 0...0H%
in equation (I8:1.T). O

18.2 Graded monomial products and eta products

We first realize the eta function 1)(7) in Definition and its inverse by weight-one linear and quadratic
monomial parcels.

Lemma 18.6. Ler s = (0,00), [ = 1, and w = (1). Consider ki,%» € Q such that x| + k> = 1. Let
ar. —
‘/1 _A(Svlawv>_7lPS,((()’KI,,z]j))’q7pax7x)7

jZZA(S,l,W,>-,lPS( )) q7pax7x)'

1
24

—
I?’\
o)

Then, g = ™% of Imt > 0 satisfies




O

Hence, we have the following by ¥(8,k) and T'(z,q,a, 8, k) in Definition[1.24] Then, graded mono-
mial products M(d,w, o, |B]|,7(B,X),q,z) give the merged-log-concavity of infinitely-many T (z,q, &, 3, k)-
analogs of each eta product E; o g(7) by choices of k € Q.

Proposition 18.7. Letd € Z>, w= (1), a € Z‘él, Be Z‘;O, and x € Q. Then, we have the following.

1. There exists a width-d merged-log-concave parcel & such that
Z7(z) =M(d,w,a,|B],v(B,x).q,2).
2. For each q = ¢*™ of Im(7) > 0,

E T)= li % .
d"“’ﬁ() T(z,q,a,ﬁ,;)rgzd(l)ecd 7(2)

Namely, Zz(z) is a t-analog of Ey o g(7) fort =T(z,q,, B, ).

Proof. Proof of Claim([l} Claim[I]follows from Theorem[18.5] since (1,w, (y(B,k);)) is a monomial index
for each i € [d].

Proof of Claim 2| Let o; = 1 for simplicity. First, assume f; > 1 for some i € [d]]. Then, when
T(z,q,@,B,%) — 1%(1) € C? as z varies, we have

1-k;

—q¢ 7 u—l
which implies

<1

L 1
q2zi — —q2

i

Hence, suppose z; € C such that —g~ "2 - z; is sufficiently close to 1 so that

ﬁzi( <1. (18.2.1)
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A2, Kk
Also, let a (q,z;) = £ Z(M 7. Then, we have
q

P
’az (g:z)z | =

12
Consider a primal monomial parcel G = A(s,l,w, =, ¥ 4P, %, X) such that &, = W Then, ¢ is prob-
abilistic by Proposition|17.6 This implies that Y3 c7_, a2 (q,z)| converges absolutely and uniformly by
the Weierstrass M-test for all z; € C that satisfy inequality (I8.2.1). Therefore, the dominated convergence
theorem gives

1 1
lim g Y ai(q,z) =g fim a,(q.2
T(z.g,08,)—1(1) ECd AGZZ‘LO me l€§>oT(Z’%(Xﬁyk)’—ﬂd(l)ecd 1(9,2)
22
4 q7 1ia
=q* Z ) (—q?)
A‘EZZO q
=n(1).

Second, assume f3; < —1 for some i € [d]. This case holds similarly as follows. When T'(z,q, o, B, x) —
19(1) € C4 as z varies, we have

q_(l_Ki> - Zi — 17
which implies

: 1
g%zl = g < |¢2| < 1.

Now, suppose that g~ (=% . z; is sufficiently close to 1 so that

lg"izi| < q2 (18.2.2)
AK;
Also, let ay (q,7z;) = E]l)q z*. Then, we have
A
(@5z2)*| | 4°
laz (g,2i)| = <
l (A)g (A)q

A
Consider a primal monomial parcel 4 = A(s,l,w, >, ¥ y4,p,x,X) such that &, = % Then, ¥ is proba-

bilistic by Proposition|17.6| Hence, Y1z, [ax (¢, )| converges absolutely and uniformly by the Weierstrass
M-test for all z; € C that satlsfy mequahty (18:2.2). In particular, the dominated convergence theorem gives

1
lim a,(¢,z)=q lim a(q,zi
T (z,9,0,B,%)—14(1 eLCf’ AEZZ:>0 ' AE§>OT(qO£ﬁ,K)'—>1d(l)EC‘[ ( l)
A
—gn Yy 1
AEZEO( )q
=n(r) "
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Example 18.8. Let s = (0,0),d =3, w= (1), ay = (1,1,1), op = (2,1,1), B = (1,2,2), p = 1%(1), and
Y= ((0,0,0) , (0, %,O) o ( 70,0)). Also, let x; = 19(q)%, =i=>g7.q> and X; = U, 44 for i € [2]. Then,
Claim [1] in Proposition gives width-d parcels .%; = A(s,d,w, =, fs, p,x;, X;) such that each i € [2]
satisfies

g%(zlﬁ"'7zd) :M(d7w7 ai7B7YaQ?Z)'

Hence, suppose Py ;¢ = (]P’S_’d‘g_’h_,» = (s,d,mi,n;,k;)). o7 in Example |[12.34/with k; = (0,1,0,2,1,0).
ke =
q

D@D Moreover, we have the following unimodal g-polynomial:

For instance, .#} ,, =

A(F) (s, d,wymy,ny ky,p,xy, X)) = @+ 2¢7 + 74 +12¢% + 25¢** 4 384 + 634 + 884!
+ 128¢°° 4 168¢%° + 2214 + 274¢%" + 331¢%° + 388¢%
24 23 22 21 20 19 18
+ 437¢%* 4 48647 + 515¢%% + 544¢%" + 5444%° + 5444"° + 5154
+ 486¢'7 + 4374'° + 388¢" 4 331¢' + 2744"3 + 2214'% + 1684""!
+ 128¢'% 4 88¢° + 63¢° + 384" +25¢° + 12¢° + 7¢* + 2¢° + ¢*.

However, the following is not a unimodal g-polynomial:

A(F2)(s,d,wym ni ki, pox, X2) = 670 + 67 + 567 +5¢7 +14¢%° +13¢% + 2947 + 2567
+49¢7 +40q> +70¢™° + 549" + 864'® + 624"
+92¢'° + 629" + 869" + 549" +70¢'% + 404" + 494"
+25¢° +29¢° +13¢" + 14¢° + 5¢° + 5¢* + &> + ¢*.
Since we are interested in the unimodality, we conjecture the following (see Conjecture for
M(1,(1),(1),(1),((0,0,0)) 4, (21)))-
Conjecture 18.9. Under the notation of Example A(F) (s, d,w,mi,ni ki, p,x1,%1) is a unimodal
q-polynomial for each i € Z>.
18.3 Weighted g—multinomial coefficients and monomial convolutions

We employ the following notation.

Definition 18.10. Ford € Z>, A € [d], and j € 74, let

0(]72’) = (jlv--'ajlfla"',jd) GZd'

For instance, j € Z¢ and i € Z>, give the g-Pascal identity | ]q =Y el grrelr-11Jx [OEL

i ! ] . We extend
J A) q
this by weighted g-multinomial coefficients.

Proposition 18.11. Letd € Z>;, a € Z‘él, 8 =lem(a), and 8, = ged(at). Ifi € Z>y and j € 79, then we
have a weighted q-Pascal identity

i — 312;«[[11]]%[ i—1 ] [51]
. = q . .
[]]a.q ;ng:[[d]] o(j,4) o.g LOA 4%z

In particular, [;]a zqag 0.
q
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Proof. Assume j € Z¢ €0 and Y j = i; otherwise, the weighted g-Pascal identity holds by O = 0. Then, by the
unweighted g-Pascal identity, we have

H B H . e (in)

Hag  Lilg Thepa ()

[ i—1 ] ' e (in)
9

— 8 Yxe[r—1]Jx
L 0(j;2) s Taepay(a)g@

Aeld]

On each summand above, if j; < 1, then [Oé;}l)] 5 = 0= [Oé;}l)]a . If not, then since each a;, divides &,
4)q ’ q

we have

[ i—1 ] . [rerar(in) (i—1)5 [iefar Ur) 3
0(j:A) |5 Taegay(Ga) g er[[d]]( o(J;A)x) Teag () gan
51/;1)

B [<_ 1>]a,q I—q%)

A)
(I1—¢%%)
(1—g%n)
Lo ., L),
a.q oy /A
Thus, we obtain the weighted g-Pascal identity.
Since [;]a =1 or 0 when i € Z<(, the weighted g-Pascal identity gives the latter statement by the

q

induction on i € Z>. O

Example 18.12. Let o)y = (1,A,4) for A € [2]. Then, we have the following unimodal g-polynomials:

3 (3)q 3 2
= —————=q +29"+2q+1;
[(lal’l)]alq (l)q(l)q(l)q
3 (3)2 7. 6 5 4 3 2
=—————=q9 +q +2¢+2q¢" +2¢ +2q"+q+1.
[(lalal)](x q (l)q(l)qz(l)qz

However, [(4_’130,3)]%# is not a unimodal g-polynomial by - - - +24094° + 239048 +2409¢%” + - - - in

q°+4"” +3¢" + 497 +997 + 119" +21¢7° + 26¢% + 43¢° + 53¢ + 804*°
+97¢% + 138¢%* + 165¢% + 221¢%% + 2624¢°" + 3364 + 392¢°° + 485¢°% + 5594”7
+ 6684 + 7614 + 884¢>* 4+ 99347 + 112542 + 1248¢°" + 1380¢°° + 15124*
+ 1637¢*® + 17694"" + 18794 + 20044 + 20884** + 21984™* + 22524™*
+23364*" + 2355¢* + 24094 + 239047 + 240947 + 23554°° + 23364
+2252¢°* + 219843 + 208847 4 20044>' + 1879¢° + 1769¢%° + 163743
+1512¢%7 4 1380470 + 1248¢% + 1125¢** + 993¢% + 8844°% + 761¢*' + 6684%°
+559¢" + 4854'8 + 392¢'7 4 3364'® + 2624"5 + 221¢'* + 1654 + 1384'2
+97¢" 4 80¢' + 53¢° +43¢% + 264" +21¢° + 11¢° + 9¢* + 44> + 34> + g+ 1.
Thus, it would be interesting to clarify the unimodality of weighted g-multinomial coefficients, as that of

non-weighted ones is important [[Oha, [Sylf]. For instance, a computer program checks that [31.0] (14.8).g isa

unimodal g-polynomial for each j € 2321
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18.4 Monomial convolutions and merged determinants
We write monomial convolutions by the weighted g-multinomial coefficients and the following rational

functions by Definitions and

Proposition 18.13. Suppose a multimonomial index (d,w,o.,y) with d = lem(a). Then, we have the

following.
Y czd Vayq.i [_i‘]WI ;
1. «%(dawa o, y&q7v) = Zl’EZzO W : Vl.

115
2. Lets=(0,00), =1, and p € lel' Then, there is the merged-log-concave parcel F = A(s,1,w,>q y4
w
s fssPs (q‘s) Mayq) such that f,, = Yiczd Vaya,j [";l]afq and

c@F<7(‘)) :%(da‘%a;?/aQav)'

Y(a ,q,(i i .
Proof. Proof of Claim|l| We have ./ (d,w,,Y,q,v) = [Tre[q] (Ziez>0 % -v’) . Thus, we obtain

0,
Claim[T] because
Ya.1.4.i i
. w
Maear(a) o,
()3 R

= q,] " N TN v
L Y Varai MacraUa)ye (s

i€220 \ jeZlo.Xj=i q

%(dawaav,%ébv) = Z

i€Z>0 jez;go,z j=i

i1
ZjEZ‘éij:i Ya,y.q.j [j]a’q

- ,E;;O (i)5

i

q

Proof of Claim[2} Claim 2]follows from Theorem [I8.3]and Claim|[I]
We define the following merged determinants of monomial convolutions.
Definition 18.14. Letl=1,p € lel, m,n € 7!, and k € Z*. Consider a multimonomial index (d,w, a, 3,7)

with x = (q'cm(a)) and X = U y 4. Then, we define the merged determinant

A(d,w,a,ﬁ,}/,m,n,k,p,q)
_ %(d7waa7ﬁ77/7q)m1 ‘%(d>waaaﬁa/)/7q)n1+k2
=Y(s,l,w,m,n,k,p,x,X)det [%(d7w,a,ﬁ,77q)mlk2 (w0, B Yo, € Q(X).

Let A(d,w, o, y,m,n,k,p,q) = Ald,w, 0,14 (1), y,m,n,k, p,q) for a reduced multimonomial index (d,w, &, 7).

Then, we obtain the following strict inequality by monomial convolutions and weighted g-multinomial
coefficients. This appears as Theorem[I.16]in Section[I| with a different notation.
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Theorem 18.15. Suppose a multimonomial index L = (d,w,a,y). Let & = lem(at), s = (0,0), [ =1,
=gy and p € ler Then, for each fitting (s,1,m,n,k), we have the following strict inequality:

Ald,w,a,y,m,nk,p,q) > 0.

Proof. The assertion holds, because Claim [2] of Proposition [I8.13] gives the --merged-log-concave parcel
F =A(s,L,w, -, f5,p, (q‘sl) Mayg) such that A (d,w, o0, 7,q,v) = Zz(v). O

Example 18.16. Consider the multimonomial index (d,w, a,7) such thatd =2, w= (1), @ = (2,3), and
Y= 1((0,0,0),(0,1,0)). Then, >¢ y,=>,. Letx = (qlcm(“)). Then, we have

(m)Y A (d,w,00,7,q)m >4 0
for each m € Z>¢. For example,

(O)x%(deaav%Q)Oz 17

(et (d,w,0,7,9)1 =4° + 4" + @+ + 1,

(Z)X%(d,w,a,y,q)z:q16+q15+q14+q13+3q12+q“+2q10+2q9+3q8+q7+3q6+q5+2q4+q3+q2
+ 1,

(3)xtl (d,w, 00, 7,q)3 — P 0+ 426 4367 +3¢% 385 + 562 + 47 + 647
5" +74%° +5¢" +9¢'% + 5¢'7 + 84'° + 645 + 8¢™ + 4¢3 + 84"
+4q“+6q10+4q9+5q8+2q7+4q6+q5+2q4+q3+q2+1.

Furthermore, let k = (0,1) and p = (1). Then, Theorem 18.15| gives the following g-polynomials with
positive coefficients:

A(d,w,a,7,(0),(0),k,p,q) = 1;

A(d,w,,7,(1),(1),k,p,9) = ¢'° + ¢ + ¢ +2¢" + ¢ +3¢" + ' + 3¢
+2¢° 4268 + 4" +3¢° + ¢ + ¢t + ¢ + ¢

Ald,w,0,7,(2),(2) k,p.q) = 6% + ¢ + 24" + 26" +5¢" + 447 + 74 + 7477 + 134
+10g7° + 174 + 167 +22¢% + 19¢°" + 28¢°° + 22¢” + 31¢°*
+ 28q27 + 326126 + 27q25 =+ 37q24 + 27q23 + 326122 + 28(]21 4 31q20
+22¢" + 284" + 199" + 224'° + 164" + 17¢'* + 104"
+13¢"% +7¢" + 74" + 4¢° + 54 + 24" +2¢° + ¢ + ¢*;

Ald,w,0,7,3),3),k,p,q) = ¢ 4+ q7° + 24" +3¢" +64"° + 647 + 12¢"* + 1447 + 2147* + 254"
+37¢" 4 40¢% + 56¢% + 64¢%7 + 83¢%° + 92¢% + 118¢% + 1294%
+ 158¢%% 4 171¢°" 4 206¢%° + 2164°° + 259¢°% + 271¢°" + 3104°°
432097 4+373¢7* 436797 + 418¢°% +420¢°" 4 464¢°° + 4524 + 5084
+4784"" +529¢* + 5044™ + 539¢* +499¢* 4 5504** +4904*! + 5254
+475¢% 450248 +435¢%7 +4674°° + 3964 +416¢>* + 3524 + 3644°>
+296¢°" +313¢°° +248¢% 4 252¢%® + 200477 +205¢% + 152¢% + 1564**
+ 115¢% + 115¢7 + 82¢%' + 81¢%° + 55¢'% + 564¢'% + 364" + 34¢'°
+22¢" +21¢™ +12¢" + 114" + 64" + 64" +3¢° + 2¢° + ¢" + ¢°.
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In Example[18.16] A(d,w, a,7, (i), (i) .k, p.q) are not log-concave g-polynomials for i € [3]. Even
A(d,w,*(1),7,(1),(1) k,p.q) = ¢* + ¢ +2q
is not a log-concave g-polynomial either. However, we state the following conjecture.
Conjecture 18.17. Let A1,A; € Z>) and A3 € Z>¢. Consider the multimonomial index (d, w,a, By, , )/) such

thatd =2, w= (1), & =1%(1), B, =14(M1), and y = ((3,—1.0),(0,1,0)). Then, the merged determinant

A(daw’ avﬁll Vs ()L?) ) (23) ) (O’ 1) ) (1’2) aq)

is a log-concave g-polynomial.

For the multimonomial index (d,w,a,By,,7) in Conjecture [18.17} suppose ﬁil =(A1,—A1) and x =
(—1,2). By Proposition , we have the (¢,t)-analog M(d,w,, By, , y(ﬁil ,K),q,2) of the eta product

=@M (1) =Eyqg (7).

We now obtain the merged determinant in Conjecture|18.17|by the monomial convolution . (d,w, o, B;,, v(B 7/Ll ,K),q,V)
of the (g,¢)-analog (see Section|1.10).

18.5 Examples and conjectures for merged determinants of monomial convolutions

We consider multimonomial indices (d,w,a,y) such that y=14((1,—1,0)), 14((0,0,0)), or 14((0,1,0)).
They give the eta products [Tic[qa) 1(0i7) or [Ticfa N (0;7)~! in Proposition , multiplied by the constant
overall factors.

Example 18.18. Ford € Z>j and @ € Z¢ |, v = 19((0,0,0)) and 1> = 19((0, 1,0)) give the same eta products

[Ticgay (0;7)~ L. But, their merged determinants differ non-trivially.
Lets = (0,00),/=1,d=2,w= (1), =(1,2), k=(0,1),and p = (1). Also, let m; = (i) € leo so that
(s,1,m;,m;, k) is fitting for each i € Z>. First, 71 gives

A(daWaOCle;mlaml,k»PaCI) =1+ 2q+ 3q2 + 2q3 + C]4,
Ald,w, o, 11, my,ma,k,p,q) = 1 +2q + 64 + 8¢° + 13¢* + 14¢° + 11¢° + 12¢" + 7¢° + 4¢° + 3¢'°,

A(d,w, e, y1,m3,m3,k,p,q) = 1 +2q + 6¢* + 12¢° + 21¢* + 32¢° +49¢° + 58¢" + 69¢° + 78¢° + 77¢4"°
+76¢" +68¢"% +58¢"3 +44¢" +34¢" +22¢"0 +12¢" +7¢"8 + 24" + 4.

Second, 9, gives

A(d,w, 0, yo,my,m1,k,p,q) =2q° + 24" +2¢° + 3¢°,

Ad,w, 0, po,m,mp,k,p,q) = 3¢° +4q" +7¢° +12¢° + 11¢"° + 14¢" +13¢"* + 84" + 64" +2¢" + ¢'°,

A(d, w, &, pp,m3,m3,k,p,q) = 4¢° +64'° +12¢" +23¢'2 4 304" + 46¢'* + 584" + 694" +764"7 +804"*
+78q19+67q20+60q21+44q22+32q23+22q24+12q25+7q26+2q27+q28.

We define the following differences by merged determinants of monomial convolutions.
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Definition 18.19. Suppose a multimonomial index (d,w, o, B,7). Let k= (0,1), d =lcm(a), and 1,42, 43 €
Z>o. Then, in Q[qg™*7], we define
é(deva7ﬁ77’7)~17)~27}1’37p7q) = A(d7wvavﬂv% (}1'1 —|—}1,3) ; ()*1 +)~2 +)~3) 7k7P7Q)
—A(d,w, 0, B,7, (M), (M +22) .k, P, q).

Ifﬁ = ld(l)’ then ZEté(de’aa%z‘la;{’%)“%paq) = é(d7wvaaﬁa’}/7113;{’272’37paq)'
We then conjecture the following positivity of &.

Conjecture 18.20. Let d € Z>), w,p € Z121, and o € Z‘él. Consider the multimonomial index (d,w,a.,y)
such that y=14((0,0,0)). Then, for each A, Ay € Z>o, we have

E(d,w,o,7,A1,22,1,p,9) >4 0.

Example 18.21. Suppose the multimonomial index (d,w, ¢, y) such thatd =2, w = (1), & = (1,1), and
y=19((0,0,0)). Letk = (0,1) and p = (1) Then,

)
ko p, q) =4 +3q +84% +3q + 1,
J,p,q) =3q" +5¢° +12¢° + 14¢* +18¢° +8¢* +3q + 1,
kopsq) = ¢ +3¢" + 124" + 18¢° + 304° + 394
+46¢° 4+ 394° 4 384" + 18¢° + 8¢ + 3¢ + 1.
Thus, the following are g-polynomials with positive integer coefficients:

é(de7a7’y»070a ]7p7q) = 3q;

§(d,w,a,7,1,0,1,p,9) = ¢* + 3¢’ + 8¢°;

E(d,w,,7.2,0,1,p,q) =3¢’ +5¢° + 12¢° + 13¢" + 15¢°;

E(d,w,,7,3,0,1,p,9) = ¢' + 3¢ + 12¢'° + 18¢° + 30¢® + 369" + 41¢° + 274" + 244*.
Example 18.22. Conjecture [18.20|does not extend to the case of d = 1. Suppose the multimonomial index
(d,w,a,y) such thatd = 1,w= (1), & = (2), and y = ((0,0,0)). Let k = (0,1) and p = (1). Then, we have
g(deaaa’}/72717lap7q) ?éq 0’ Since

Ald,w,a,7,(2),(3),k,p,q) = ¢ +4",
A(d,w, . 7,(3),(4) . k.p,q) = ¢* +¢°.

Example 18.23. Conjecture [18.20 does not extend to the case of y = 14((0,1,0)) either. Consider the
multimonomial index (d,w,a,y) withd =2, w= (1), & = (2,1), and y = 19((0,1,0)). Let k = (0,1) and
p = (1). Then, £(d,w, ,7,0,0,1,p,q) %40, because

A(d’w’ a7’)/’ (0) ) (O) 7k’p7q) = 17

Ald,w, a7, (1), (1) .k, p.q) = 3¢°+2¢° +24" +2¢4°.

In Cla1ml0f Theorem- 18.3L A(d,w, 0, B,y,m,n,k,p,q) € Q[qi"w}. By Cguay in Definition [14.4] we
define the following notation to state another conjecture for y = 14 ((0,1,0)) of d € Z>».
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Definition 18.24. Consider a multimonomial index (d,w,a,B,y). Let 1 =1, m;n € Z!, k = (0,1), and
A, A2, A3 € Z>q. Then, in Q[g"*7], we define

Ac(deaavﬁv'y»mvnvkypﬂq) :Cqua.y(A(d,m(x,ﬁ,}/,m,n,k,p,q)ﬁ
éC(dﬂ’V,a;ﬁ;'}/72'1;}{/2,2137[);5]) :Ac(devavﬁv% (;{’1 +A’3)a(2’1 +2’2+2'3) ’kvpaq)
—Ac(d,w, 0, B,7, (M), (M +A2) .k, p,q).

Ifﬁ - ld(l)r then let éC(d;W,a,'y,ll,)Q,zG,p,(I) = éC(daWaaaﬁa%llalbl%paq)'
Let us recall the following generalized Narayana numbers |Guy].

Definition 18.25. Let d € Z>1 and h,A € Z>¢. Then, the generalized Narayana number N(A,d, h) satisfies

om0, 1)

For instance, N(0,d,h) are Narayana numbers, which refine Catalan numbers. We also employ the
following numbers.

Definition 18.26. Letd € Z>3, hi,hy € Z, and o € Z‘él. Then, we define
p(d,hl,hz, OC) = (d — Lhz(a))hz —I-hthz(OC) € 7.
Notice that i, > hy > 1 implies p(d, hy,hy, @) > 2. We now conjecture the following positivity on &c,
periodicity on Ac and p(d,hy,hp, o i, and equality on Ac and N(A,d, h).

In particular, Conjectures [18.20{and [18.27| claim different positivities for 14((0,0,0)) and 1%((0,1,0)),
which give the same eta products (see Example [T8.18).

Conjecture 18.27. Letd € Z>>, w,p € lel, oe Z‘él, and k= (0,1). Fori € [2], consider multimonomial
indices (d,w, o, ) such that ; = 1%((0,1,0)) and 1, = 1*((3,—3,0)).

1. If M, Ay € Z>, then we have

éC(d7wa(xa’yl7)Lla/’l'27lap7q) >(1 0.

2. Let hy,hy € Z>y with hy > hy. Suppose o; = hy or @; = hy for each i € [d]. Then, whenever A1, A, €
Z>0, we have the following periodicity of Ac: first, if Ly, (o) > 0 and Ly, (ct) > 0, then

éc(dawvay/y%kl71‘27p(d7h]ah27a)5p70) =0;
second, if Ly, (&) =d or L, (o) = d, then

Ecld,w, o, 2, A1,42,d,p,0) =0.

3. Assume o = 14(1) and A,h € Z>q such that h < d — . Then, we have

Ac(d,w, 0,1, (h),(h+A),k,p,0)=N(A,d+1,h+14+1).
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In particular, weighted g-multinomial coefficients would extend the generalized Narayana numbers
NA,d+1,h+1+1) by Ac(d,w,a, o, (h), (h+ 1) ,k,p,0) > 0.

Example [T8.21] supports Claim [I] in Conjecture To see this, suppose multimonomial indices
(d,w,o,7) of w=(1),d =2, a =14(1), and y = 1%((0,1,0)). Also, let k = (0,1), p = (1), and ¥ =
14((0,0,0)). Then, we have Ac(d,w,a,7,(i),(i),k,p,q) = Ac(d,w,, 7, (i), (i) ,k,p,q), since & is flat.

Example [18.23] is also consistent with Claim [I| in Conjecture [18.27} as Ac(d,w,a,7,(1),(1),k,p,q) =
3¢° +2¢* +2q+2.
The following supports Claims 2] and 3]in Conjecture [I8.27]

Example 18.28. Consider the multimonomial index (d,w, &,y) such that d = 3, w = (1), & = 14(1), and
y=14((3,-1,0)). Letk = (0,1) and p = (1). Then,

= 10¢° 4 35¢° + 88¢ + 155¢° + 162¢° + 1444"* + 834> + 434> + 8¢q + 1,
= 15¢" + 57¢" + 162¢"* + 357¢" + 642¢'% + 858¢"" + 10414'°
+1041¢° +912¢% + 678¢" + 447¢° + 222¢° + 964" + 274° + 647,

+4905¢"8 +6105¢'7 + 6951¢'° +7161¢" + 6882¢'* 4 59584"'% +47914'?
+ 34504 4 22804¢'° + 1308¢° 4 690¢% + 2944 + 111¢° +274° + 64*,

+ 12248¢% + 183744 + 25457¢% + 331064°° + 402064
+ 46214¢°* + 49983¢% + 513424°% + 496904*' + 45663¢%°
+395344" + 32462¢' + 24969¢"7 + 181214'® + 12227¢" + 7745¢"*
+4463¢" +2382¢'% + 11244"" + 4764'° + 164¢° + 52¢° + 84" + ¢°.

We have L () = d. Thus, Claimandin Conjecture [18.27|agree with &c(d,w, @, 7,i,0,3,p,0) = 0 for
i € [0,3], and with

Ac(d,w,a,7,(0),(0),k,p,0) =1=N(0,4,1),
Ac(d,w, oy, (1),(1),k,p,0) =6=N(0,4,2),
Ac(d,w,a,7,(2),(2),k,p,0) =6=N(0,4,3),
Ac(d,w,a,7,(3),(3),k,p,0) =1=N(0,4,4).

Example 18.29. Suppose the multimonomial index (d,w, o, y) such that d = 4, w = (1), & = 1%(1), and
y=14((3,-3,0)). Let p = (1), k= (0,1), and A = 2. Then, as in ClaimofConjecture 18.27, we have
the following periodicity:

Ac(d,w,a,y,(0),(04+ 1) ,k,p,0) =Ac(d,w,ct,7,(4),(4+ 1) ,k,p,0) =6;
Ac(d,w, o, 7, (1), (1+2),k,p,0) =Ac(d,w,a,7,(5),(5+1),k,p,0) =15
Ac(d,w,0,7,(2),(24+A) ,k,p,0) =Ac(d,w,,7,(6),(6+1),k,p,0) = 6,
Ac(d,w,a,y,(3),(3+ 1) ,k,p,0) =Ac(d,w,et,y,(7),(T+A),k,p,0) = 16
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In particular, the generalized Narayana numbers in Claim 3] of Conjecture give the first three numbers
in the above, since 0 < h<d —A =2 and

N(A,d+1,0+1+1) =N(2,5,3) =6,
NA,d+1,1+414+A)=N(2,54) =15,
N(A,d+1,24+14+1)=N(2,5,5) =6.

For another example, let A = 3. Then, we obtain the following periodicity:

Ac(d,w,0,7,(0),(0+ 1) ,k,p,0) =Ac(d,w, e, y,(4),(4+ L), k,p,0) =4,
Ac(d,w,o,y,(1),(14+ 1) ,k,p,0) =Ac(d,w,c,7,(5),(5+A),k,p,0) =4;
Ac(d,w,00,7,(2),(24+ 1) ,k,p,0) =Ac(d,w, e, 7,(6),(6+A),k,p,0) =24,
Ac(d,w,0,7,(3),(3+1),k,p,0) =Ac(d,w, e, y,(7),(T+A) ,k,p,0) =24,

Then, the generalized Narayana numbers in Claim [3] of Conjecture account the first two numbers,
because 0 < h<d—A=1and

N(A,d+1,0+1+21) =N(3,5,4) = 4,
N(A,d+1,14+1+1)=N(3,55) =4

We compute the following for some non-flat & in Claim [2] of Conjecture

Example 18.30. Consider the multimonomial index (d,w,a,7) such thatd =2, w = (1), o« = (1,2), and
y=19((3,-3.,0)). Let p=(1) and k = (0,1). Also, let hy = 1 and h, =2. Then, Ly(a) = 1 gives
p(d,hy,hy,a) =2-2—1-1=3. Furthermore, Claimof Conjecture|18.27|is consistent with

Ac(d,w,a,y, (0),(0),](,13,0) :Ac(dawaav% (3),(3),](,[),0) =1,
Ac(d,w,a,y,(l),(1),k,p,0) :Ac(d,W,OC,’)/, (4),(4),/(,[),0) =3,
Ac(d,W,OC,'Y, (2)7(2)ak7p70) :Ac(d,W,OC,’)/, (5),(5),](,[),0) =1L

19 Monomial convolutions and ideal boson—fermion gases

Generalizing Section [[.T1] Section[I9]considers some ideal (mixed) boson—fermion gases with or without
Casimir energies by monomial convolutions. Thus, we obtain statistical-mechanical phase transitions by the
merged-log-concavity.

Unless stated otherwise, Section [L9] assumes the following. Let s = (0,00), / =1, w = (1), and v € Q.
Also, as in Sectlon- let ¢ = ¢ B by the thermodynamic beta B >0 and = e —u by u' = —up of the
chemical potential 1 < 0.

19.1 Monomial convolutions without Casimir energies

We have the following systems of boson—fermion gases without Casimir energies by monomial convolutions.
Suppose integers 0 < d; < d, such that d, € Z>1 and k € Q2. Consider the boson—fermion system My, a,(%)
that has sub-systems B(1,k; ) for A € [d,] and sub-systems F(1,k3) for A € [d; + 1,d] with negligible
interactions among sub-systems. Thus, M, 4, (k) has the grand canonical partition function

Ly 0(@t) = J] Tr ([B”b,m .e—u’Nb> I (e‘ﬁHfm .e_,J/Nf)'
le[dl]] AGIId1+l,d2ﬂ
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Moreover, a = 1%2(1) gives the multimonomial index (da,w, &, ¥« ) such that

Y.k, foreach A € [d1],
Tea = Yr.x, foreach A € [d; +1,d].

Then, by equations (I.T1.4) and (T.T1.3), we realize
QfMdl.dz(K)(%t) =M (dr,w, @, Y, q,1).

19.2 Monomial convolutions with Casimir energies

Sections [I.T1] and [T9.1] ignore zero-point energies, a common practice in statistical mechanics [KapGal].
However, let us not ignore them. By monomial convolutions, we incorporate the Casimir energies as the
following Ramanujan summation of the zero-point energy sums of B(1,v) and F(1,v).

Suppose an entire function a(y) of y € C such that the exponential type of a(y) is less than 7. Then, by
the Bernoulli numbers B , |, we recall the Ramanujan summation [[Canl:

Y a(}v)=/01 ()dy—fa - Y a4 ffl‘) (19.2.1)

AEZZI AGZ>1

For example, a,(y) =y — v gives ):‘;?GZ>1 ay(A) = % — %, which is — ;5 [Ram] when v = 1.
19.2.1 Ideal boson gases

We have the following operators with zero-point energies.

Definition 19.1. Forv € Q, let 54}, denote the Hamiltonian operator such that

8,1
jﬁ),v: Z ‘)2 :;)Uab,ﬂ,}
/,LGZEI
A
=) (MaTlab;mL 24 ) (19.2.2)
/,LGZZI

If u € Z>\, then let 3, and Ny, denote the Hamiltonian and number operators such that
A
%,v,u = Z ( v},azxabl + ‘/2 ) ;
Aefu]

Nb,u: Z a;lahﬂ.
Aeu]

Also, lety/f{?v = ((0,1 _V’z% _ %))

Consider the boson system (1, v) of .4, and N}, in Definition Unlike in equation (I.TT.3), EVTA

in equation (19.2.2) represent zero-point energies. Thus, %(1,v) extends B(1,v) by the zero-point energies.
Also, A(1,v) proposes the grand canonical partition function

Zav)(q,t) = Tr( 3-%‘7.67#’%).
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However, 2(;,)(q,t) has ¢~ 2 of the divergent zero-point energy sum . This would make
ZB(1) (¢,t) =0by 0 < g < 1. Thus, we consider the regularized grand canonical partition function

Yi<a &
2

Z g;l ) (g,t) of #(1,v) by the Ramanujan summation and a monomial convolution as follows.
For each u € Z>, there exists the boson system %(1,v,u) of /4, and N,,. Also, for each A €

_ il 1 + ’ &2
Z>) and ny, € Z>o, we have (n, e Peu (a‘aﬁrz) e 0 n,) = e PEam oMM o=PF | Thus, by

Yoe [u] &2
2

R
[Taey e P35 =y , #(1,v,u) has the grand canonical partition function

/ Ep0
Zp(1va) (4:1) = Tr (e‘mw ek NM) =(q' "), " g T (19.2.3)

In equations (19.2.3), u — o yields the divergent zero-point energy sum
I 1 Z e
m — VA -
“2 el

But, the Ramanujan summation (19.2.T) gives the following regularization (c.f. [Pol, Section 1.3] for v = 1):

1 1 Z 5 v
lim= Y ;- Y ar=-———,
w2, b T S T 4

which is the Casimir energy of Z(1,v). Thus, we have the regularized grand canonical partition function
Q’fg(] ) (g,t) of ZB(1,v) such that

g lzﬂe £,
gég(l,v)(q’t) = gB(l,v)(Qvt)qz Aol A Lo (I) (19.2.4)

Yourd
by equation (T.1T.4). In particular, this Z; 3?217‘}) (g,t) is non-trivial.

19.2.2 Ideal fermion gases

Let us take the following with zero-point energies.

Definition 19.2. Forv € Q, let ¢, denote the Hamiltonian operator such that

8,1
jﬁ,v = Z %[a}ykaaf,l]

AEZEI
T &2
=) (svﬁaf’lafy,l— - ) (19.2.5)
AEZEI

If u € Z», then let 7, and Ny, be the Hamiltonian and number operators such that
€ A
jff,v,u = Z (gv,ka;ﬂaf,/’l - ‘}2 ) ;
Aefu]

Niu= Y. a}@“f,/l-
A€u]

Also, let y;jjv =((3, -v-%+3).
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Consider the fermion system .%# (1,v) of /¢, and N, which extends F(1,v) by the zero-point energies
—8‘% in equation (19:2.3). Also, .7 (1,v) suggests the grand canonical partition function

P11 (1) = Te (e PN ),

Liezs &
However, this has ¢~ 7 , which would make %. Hence, we consider the regularized grand canonical

partition function Z g(l ) (g,t) of #(1,v) by the Ramanujan summation and a monomial convolution as
follows.

For each u € Z>, there is the fermion system .% (1,v,u) of 7, and Ny ,. Also, A € Z> and ny € {0,1}
imply

—3%1(“;%—%> —w'd)a —Be,any  —u'n 7[3-78"'}”
(nyle ™™ eTH DM, ) = e PEamL oK L 3

This gives the grand canonical partition function of .% (1, v, u):
/ —1
ffﬁ(l,v,u) (Q7 t) =Tr (efﬁjff,v‘u . eflvlle,u> — (_qlfvt;q)u . qT Zle[[u]] & .

Then, the Ramanujan summation (19.2.1)) gives the regularization

1 1 & 5 v
lim—= Y g;—-—> ) g1=—+-,
w2, e 2,4, 24" 4

which is the Casimir energy of % (1,v). Hence, we have the regularized grand canonical partition function
fﬁl v)(q,t) of .Z (1,v) such that

9 _lZ% v,
"sz(l,v)(qat) = Zraw(gt)g * Aol Bh prz‘q(t) (19.2.6)

F

by equation (T.TT.3). In particular, this 2 g(] ,)(g,1) is mathematically defined.
19.2.3 Ideal boson—fermion gases

Suppose integers 0 < d; < d, such thatd, € Z>; and k € Q%. Consider the boson—fermion system My, 4, (K)
that has sub-systems #(1, k3 ) for A € [d;] and sub-systems .% (1, ;) for A € [d) + 1,d,] with negligible
interactions among sub-systems. Also, .#y, 4, (%) proposes the grand canonical partition function:

Zuy 0 0(@:1) = H Tr (efﬁjﬁ""l ~€_”/Nb> ’ H Tr (67[3%7“’91 ~6_#,Nf),
2 Aeldi] Aeldi+1.da]

which have divergent zero-point energy sums. However, equations (19.2.4) and (19.2:6) give the regularized
grand canonical partition function 2 Zd () (q,t) of Ay, 4,(K) such that
: 1:92

gzdl.dz('f)(q’l‘) = H gggl,m)(qvt)' H gﬂg(lv’(l)(q’t)’
lGHdlﬂ lGlId1+l-d2]]

which is mathematically defined and non-trivial.

191



Furthermore, & = 1%2(1) yields the multimonomial index (d,w, a,yZ) such that

Vi, if A € [di],
Vi, i A € [dy +1,d,].

vff{

By equations (19.2.4) and (19.2.6), we obtain the monomial convolution

del’dz(K)(Qvt) = %(d%wva)’}/l?v‘bt)' (1927)

Also, .4y, 4,(x) has the Casimir energy

y (5+>+ y (5’<A>5(2011d2)+27<[13d1]):'<[d1+1:d2]'

paa\ 24 4 ey \24 4 24 4

Thus, we obtain

_50d)~dy) | Lr{l:d)) Y Kld) +1:dy)

L (@) =2y yo0(at) g i . (19.2.8)

Now, equations (19.2.7) and (19.2.8)) give the explicit description of ff o K>( t) by g-multinomial
)

coefficients in Claim [I] of Proposition [I8.13] (see Proposition [I8.7] for eta products when k3 = 1 for each
AE [[dzﬂ)

19.3 Phase transitions of ideal boson—fermion gases

As in Section the t-power series of %}, 1.4y (K) (g,t) realize the Helmholtz free energies of the ideal
boson—fermion systems My, 4, (k) without the Casimir energies. Hence, the systems My, 4,(k) obtain
statistical-mechanical phase transitions by the merged-log-concavity in Proposition[I7.20] The same holds
for .#y, 4, (%) with the Casimir energies in equation (19.2.8).

In particular, mequahtles (T73.1) and (17.3.2) that give phase transitions in Proposition imply
l1—v>0and ;5 1y> -1 > in equations (I.TT.4) and (I.TT.5). Therefore, we obtain the energy positivity

&A= A—=v>0
for A € Z>, in the Hamiltonians Hp,, and Hy , by the phase transitions.
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